Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,771 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import time
|
| 5 |
-
import threading
|
| 6 |
-
import json
|
| 7 |
-
import gc
|
| 8 |
-
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
|
| 9 |
-
from werkzeug.utils import secure_filename
|
| 10 |
-
from PIL import Image
|
| 11 |
-
import io
|
| 12 |
-
import zipfile
|
| 13 |
-
import uuid
|
| 14 |
-
import traceback
|
| 15 |
-
from huggingface_hub import snapshot_download, login
|
| 16 |
-
from flask_cors import CORS
|
| 17 |
-
import numpy as np
|
| 18 |
-
import trimesh
|
| 19 |
-
from transformers import pipeline, AutoImageProcessor, AutoModelForDepthEstimation
|
| 20 |
-
from scipy.ndimage import gaussian_filter
|
| 21 |
-
from scipy import interpolate
|
| 22 |
-
import cv2
|
| 23 |
-
from rembg import remove
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
CACHE_DIR = '/tmp/huggingface'
|
| 32 |
-
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
depth_anything_model = None
|
| 48 |
-
depth_anything_processor = None
|
| 49 |
-
model_loaded = False
|
| 50 |
-
model_loading = False
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
error = [None]
|
| 61 |
-
completed = [False]
|
| 62 |
-
|
| 63 |
-
def target():
|
| 64 |
-
try:
|
| 65 |
-
result[0] = function(*args)
|
| 66 |
-
completed[0] = True
|
| 67 |
-
except Exception as e:
|
| 68 |
-
error[0] = e
|
| 69 |
-
|
| 70 |
-
thread = threading.Thread(target=target)
|
| 71 |
-
thread.daemon = True
|
| 72 |
-
thread.start()
|
| 73 |
-
thread.join(timeout)
|
| 74 |
-
|
| 75 |
-
if not completed[0]:
|
| 76 |
-
if thread.is_alive():
|
| 77 |
-
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
|
| 78 |
-
elif error[0]:
|
| 79 |
-
return None, error[0]
|
| 80 |
-
|
| 81 |
-
if error[0]:
|
| 82 |
-
return None, error[0]
|
| 83 |
-
|
| 84 |
-
return result[0], None
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
cache_dir=CACHE_DIR,
|
| 169 |
-
resume_download=True,
|
| 170 |
-
token=hf_token
|
| 171 |
-
)
|
| 172 |
-
print(f"Successfully downloaded {dpt_model_name}")
|
| 173 |
-
break
|
| 174 |
-
except Exception as e:
|
| 175 |
-
if attempt < max_retries - 1:
|
| 176 |
-
print(f"DPT download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
| 177 |
-
time.sleep(retry_delay)
|
| 178 |
-
retry_delay *= 2
|
| 179 |
-
else:
|
| 180 |
-
raise
|
| 181 |
-
|
| 182 |
-
dpt_estimator = pipeline(
|
| 183 |
-
"depth-estimation",
|
| 184 |
-
model=dpt_model_name,
|
| 185 |
-
device=-1,
|
| 186 |
-
cache_dir=CACHE_DIR,
|
| 187 |
-
use_fast=True
|
| 188 |
-
)
|
| 189 |
-
print("DPT-Large loaded")
|
| 190 |
-
gc.collect()
|
| 191 |
-
|
| 192 |
-
da_model_name = "depth-anything/Depth-Anything-V2-Tiny-hf"
|
| 193 |
-
for attempt in range(max_retries):
|
| 194 |
-
try:
|
| 195 |
-
print(f"Attempting to download {da_model_name}, attempt {attempt+1}")
|
| 196 |
-
snapshot_download(
|
| 197 |
-
repo_id=da_model_name,
|
| 198 |
-
cache_dir=CACHE_DIR,
|
| 199 |
-
resume_download=True,
|
| 200 |
-
token=hf_token
|
| 201 |
-
)
|
| 202 |
-
print(f"Successfully downloaded {da_model_name}")
|
| 203 |
-
break
|
| 204 |
-
except Exception as e:
|
| 205 |
-
if attempt < max_retries - 1:
|
| 206 |
-
print(f"Depth Anything download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
| 207 |
-
time.sleep(retry_delay)
|
| 208 |
-
retry_delay *= 2
|
| 209 |
-
else:
|
| 210 |
-
print(f"Failed to load Depth Anything: {str(e)}. Falling back to DPT-Large only.")
|
| 211 |
-
depth_anything_model = None
|
| 212 |
-
depth_anything_processor = None
|
| 213 |
-
model_loaded = True
|
| 214 |
-
return dpt_estimator, None, None
|
| 215 |
-
|
| 216 |
-
depth_anything_processor = AutoImageProcessor.from_pretrained(
|
| 217 |
-
da_model_name,
|
| 218 |
-
cache_dir=CACHE_DIR,
|
| 219 |
-
token=hf_token
|
| 220 |
-
)
|
| 221 |
-
depth_anything_model = AutoModelForDepthEstimation.from_pretrained(
|
| 222 |
-
da_model_name,
|
| 223 |
-
cache_dir=CACHE_DIR,
|
| 224 |
-
token=hf_token
|
| 225 |
-
).to("cpu")
|
| 226 |
-
|
| 227 |
-
model_loaded = True
|
| 228 |
-
print("Depth Anything loaded")
|
| 229 |
-
return dpt_estimator, depth_anything_model, depth_anything_processor
|
| 230 |
-
|
| 231 |
-
except Exception as e:
|
| 232 |
-
print(f"Error loading models: {str(e)}")
|
| 233 |
-
print(traceback.format_exc())
|
| 234 |
-
raise
|
| 235 |
-
finally:
|
| 236 |
-
model_loading = False
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
fused_depth = dpt_weight * dpt_depth + da_weight * da_depth * weight_da + (1 - weight_da) * dpt_depth
|
| 263 |
-
else:
|
| 264 |
-
weight_da = 0.5 if detail_level == 'medium' else 0.3
|
| 265 |
-
fused_depth = (1 - weight_da) * dpt_depth + weight_da * da_depth
|
| 266 |
-
|
| 267 |
-
fused_depth = np.clip(fused_depth, 0, 1)
|
| 268 |
-
return fused_depth
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
# Rotate vertices based on view angle (in radians)
|
| 324 |
-
if view_angle != 0:
|
| 325 |
-
rotation_matrix = trimesh.transformations.rotation_matrix(view_angle, [0, 1, 0])
|
| 326 |
-
vertices = trimesh.transform_points(vertices, rotation_matrix)
|
| 327 |
-
|
| 328 |
-
faces = []
|
| 329 |
-
for i in range(resolution-1):
|
| 330 |
-
for j in range(resolution-1):
|
| 331 |
-
p1 = i * resolution + j
|
| 332 |
-
p2 = i * resolution + (j + 1)
|
| 333 |
-
p3 = (i + 1) * resolution + j
|
| 334 |
-
p4 = (i + 1) * resolution + (j + 1)
|
| 335 |
-
v1 = vertices[p1]
|
| 336 |
-
v2 = vertices[p2]
|
| 337 |
-
v3 = vertices[p3]
|
| 338 |
-
v4 = vertices[p4]
|
| 339 |
-
norm1 = np.cross(v2-v1, v4-v1)
|
| 340 |
-
norm2 = np.cross(v4-v3, v1-v3)
|
| 341 |
-
if np.dot(norm1, norm2) >= 0:
|
| 342 |
-
faces.append([p1, p2, p4])
|
| 343 |
-
faces.append([p1, p4, p3])
|
| 344 |
-
else:
|
| 345 |
-
faces.append([p1, p2, p3])
|
| 346 |
-
faces.append([p2, p4, p3])
|
| 347 |
-
|
| 348 |
-
faces = np.array(faces)
|
| 349 |
-
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 350 |
-
|
| 351 |
-
if image:
|
| 352 |
-
img_array = np.array(image)
|
| 353 |
-
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
| 354 |
-
for i in range(resolution):
|
| 355 |
-
for j in range(resolution):
|
| 356 |
-
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
| 357 |
-
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
| 358 |
-
x0, y0 = int(img_x), int(img_y)
|
| 359 |
-
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
| 360 |
-
wx = img_x - x0
|
| 361 |
-
wy = img_y - y0
|
| 362 |
-
vertex_idx = i * resolution + j
|
| 363 |
-
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
| 364 |
-
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
| 365 |
-
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
| 366 |
-
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
| 367 |
-
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
| 368 |
-
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
| 369 |
-
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
| 370 |
-
vertex_colors[vertex_idx, :3] = [r, g, b]
|
| 371 |
-
vertex_colors[vertex_idx, 3] = 255
|
| 372 |
-
else:
|
| 373 |
-
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
| 374 |
-
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
| 375 |
-
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
| 376 |
-
vertex_colors[vertex_idx, 3] = 255
|
| 377 |
-
mesh.visual.vertex_colors = vertex_colors
|
| 378 |
-
|
| 379 |
-
if detail_level != 'high':
|
| 380 |
-
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
| 381 |
-
mesh.fix_normals()
|
| 382 |
-
return mesh
|
| 383 |
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
for mesh in meshes:
|
| 393 |
-
combined_vertices.append(mesh.vertices)
|
| 394 |
-
combined_faces.append(mesh.faces + vertex_offset)
|
| 395 |
-
vertex_offset += len(mesh.vertices)
|
| 396 |
-
|
| 397 |
-
combined_vertices = np.vstack(combined_vertices)
|
| 398 |
-
combined_faces = np.vstack(combined_faces)
|
| 399 |
-
|
| 400 |
-
combined_mesh = trimesh.Trimesh(vertices=combined_vertices, faces=combined_faces)
|
| 401 |
-
|
| 402 |
-
# Stitch overlapping vertices
|
| 403 |
-
combined_mesh = combined_mesh.subdivide_to_size(max_edge=0.05)
|
| 404 |
-
combined_mesh = combined_mesh.smoothed(method='laplacian', iterations=2)
|
| 405 |
-
|
| 406 |
-
# Ensure watertight mesh
|
| 407 |
-
combined_mesh.fill_holes()
|
| 408 |
-
combined_mesh.fix_normals()
|
| 409 |
-
|
| 410 |
-
return combined_mesh
|
| 411 |
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
mesh_resolution = min(int(request.form.get('mesh_resolution', 80)), 120)
|
| 471 |
-
output_format = request.form.get('output_format', 'glb').lower()
|
| 472 |
-
detail_level = request.form.get('detail_level', 'medium').lower()
|
| 473 |
-
texture_quality = request.form.get('texture_quality', 'medium').lower()
|
| 474 |
-
except ValueError:
|
| 475 |
-
return jsonify({"error": "Invalid parameter values"}), 400
|
| 476 |
-
|
| 477 |
-
if output_format not in ['obj', 'glb']:
|
| 478 |
-
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
| 479 |
-
|
| 480 |
-
if detail_level == 'high':
|
| 481 |
-
mesh_resolution = min(int(mesh_resolution * 1.5), 120)
|
| 482 |
-
elif detail_level == 'low':
|
| 483 |
-
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
| 484 |
-
|
| 485 |
-
job_id = str(uuid.uuid4())
|
| 486 |
-
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 487 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 488 |
-
|
| 489 |
-
filepaths = {}
|
| 490 |
-
for view, file in view_files.items():
|
| 491 |
-
filename = secure_filename(file.filename)
|
| 492 |
-
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{view}_{filename}")
|
| 493 |
-
file.save(filepath)
|
| 494 |
-
filepaths[view] = filepath
|
| 495 |
-
|
| 496 |
-
processing_jobs[job_id] = {
|
| 497 |
-
'status': 'processing',
|
| 498 |
-
'progress': 0,
|
| 499 |
-
'result_url': None,
|
| 500 |
-
'preview_url': None,
|
| 501 |
-
'error': None,
|
| 502 |
-
'output_format': output_format,
|
| 503 |
-
'created_at': time.time()
|
| 504 |
-
}
|
| 505 |
-
|
| 506 |
-
def process_images():
|
| 507 |
-
thread = threading.current_thread()
|
| 508 |
-
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
| 509 |
-
|
| 510 |
-
try:
|
| 511 |
-
processing_jobs[job_id]['progress'] = 5
|
| 512 |
-
images = {}
|
| 513 |
-
for view, filepath in filepaths.items():
|
| 514 |
-
try:
|
| 515 |
-
images[view] = preprocess_image(filepath)
|
| 516 |
-
except ValueError as e:
|
| 517 |
-
processing_jobs[job_id]['status'] = 'error'
|
| 518 |
-
processing_jobs[job_id]['error'] = f"Error preprocessing {view} image: {str(e)}"
|
| 519 |
-
return
|
| 520 |
-
processing_jobs[job_id]['progress'] = 10
|
| 521 |
-
|
| 522 |
-
try:
|
| 523 |
-
dpt_model, da_model, da_processor = load_models()
|
| 524 |
-
processing_jobs[job_id]['progress'] = 20
|
| 525 |
-
except Exception as e:
|
| 526 |
-
processing_jobs[job_id]['status'] = 'error'
|
| 527 |
-
processing_jobs[job_id]['error'] = f"Error loading models: {str(e)}"
|
| 528 |
-
return
|
| 529 |
-
|
| 530 |
-
try:
|
| 531 |
-
def estimate_depths():
|
| 532 |
-
meshes = []
|
| 533 |
-
view_angles = {'front': 0, 'back': np.pi, 'left': np.pi/2, 'right': -np.pi/2}
|
| 534 |
-
with torch.no_grad():
|
| 535 |
-
for view, image in images.items():
|
| 536 |
-
# DPT-Large
|
| 537 |
-
dpt_result = dpt_model(image)
|
| 538 |
-
dpt_depth = dpt_result["depth"]
|
| 539 |
-
|
| 540 |
-
# Depth Anything (if loaded)
|
| 541 |
-
if da_model and da_processor:
|
| 542 |
-
inputs = da_processor(images=image, return_tensors="pt")
|
| 543 |
-
inputs = {k: v.to("cpu") for k, v in inputs.items()}
|
| 544 |
-
outputs = da_model(**inputs)
|
| 545 |
-
da_depth = outputs.predicted_depth.squeeze()
|
| 546 |
-
da_depth = torch.nn.functional.interpolate(
|
| 547 |
-
da_depth.unsqueeze(0).unsqueeze(0),
|
| 548 |
-
size=(image.height, image.width),
|
| 549 |
-
mode='bicubic',
|
| 550 |
-
align_corners=False
|
| 551 |
-
).squeeze()
|
| 552 |
-
fused_depth = fuse_depth_maps(dpt_depth, da_depth, detail_level)
|
| 553 |
-
else:
|
| 554 |
-
fused_depth = np.array(dpt_depth) if isinstance(dpt_depth, Image.Image) else dpt_depth
|
| 555 |
-
if len(fused_depth.shape) > 2:
|
| 556 |
-
fused_depth = np.mean(fused_depth, axis=2)
|
| 557 |
-
p_low, p_high = np.percentile(fused_depth, [1, 99])
|
| 558 |
-
fused_depth = np.clip((fused_depth - p_low) / (p_high - p_low), 0, 1) if p_high > p_low else fused_depth
|
| 559 |
-
|
| 560 |
-
mesh = depth_to_mesh(fused_depth, image, resolution=mesh_resolution, detail_level=detail_level, view_angle=view_angles[view])
|
| 561 |
-
meshes.append(mesh)
|
| 562 |
-
gc.collect()
|
| 563 |
-
|
| 564 |
-
combined_mesh = combine_meshes(meshes)
|
| 565 |
-
return combined_mesh
|
| 566 |
-
|
| 567 |
-
combined_mesh, error = process_with_timeout(estimate_depths, [], TIMEOUT_SECONDS)
|
| 568 |
-
|
| 569 |
-
if error:
|
| 570 |
-
if isinstance(error, TimeoutError):
|
| 571 |
-
processing_jobs[job_id]['status'] = 'error'
|
| 572 |
-
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
| 573 |
-
return
|
| 574 |
-
else:
|
| 575 |
-
raise error
|
| 576 |
-
|
| 577 |
-
processing_jobs[job_id]['progress'] = 80
|
| 578 |
-
|
| 579 |
-
if output_format == 'obj':
|
| 580 |
-
obj_path = os.path.join(output_dir, "model.obj")
|
| 581 |
-
combined_mesh.export(
|
| 582 |
-
obj_path,
|
| 583 |
-
file_type='obj',
|
| 584 |
-
include_normals=True,
|
| 585 |
-
include_texture=True
|
| 586 |
-
)
|
| 587 |
-
zip_path = os.path.join(output_dir, "model.zip")
|
| 588 |
-
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 589 |
-
zipf.write(obj_path, arcname="model.obj")
|
| 590 |
-
mtl_path = os.path.join(output_dir, "model.mtl")
|
| 591 |
-
if os.path.exists(mtl_path):
|
| 592 |
-
zipf.write(mtl_path, arcname="model.mtl")
|
| 593 |
-
texture_path = os.path.join(output_dir, "model.png")
|
| 594 |
-
if os.path.exists(texture_path):
|
| 595 |
-
zipf.write(texture_path, arcname="model.png")
|
| 596 |
-
|
| 597 |
-
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
| 598 |
-
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
| 599 |
-
|
| 600 |
-
elif output_format == 'glb':
|
| 601 |
-
glb_path = os.path.join(output_dir, "model.glb")
|
| 602 |
-
combined_mesh.export(
|
| 603 |
-
glb_path,
|
| 604 |
-
file_type='glb'
|
| 605 |
-
)
|
| 606 |
-
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
| 607 |
-
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
| 608 |
-
|
| 609 |
-
processing_jobs[job_id]['status'] = 'completed'
|
| 610 |
-
processing_jobs[job_id]['progress'] = 100
|
| 611 |
-
print(f"Job {job_id} completed")
|
| 612 |
-
|
| 613 |
-
except Exception as e:
|
| 614 |
-
error_details = traceback.format_exc()
|
| 615 |
-
processing_jobs[job_id]['status'] = 'error'
|
| 616 |
-
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
| 617 |
-
print(f"Error processing job {job_id}: {str(e)}")
|
| 618 |
-
print(error_details)
|
| 619 |
-
return
|
| 620 |
-
|
| 621 |
-
for filepath in filepaths.values():
|
| 622 |
-
if os.path.exists(filepath):
|
| 623 |
-
os.remove(filepath)
|
| 624 |
-
gc.collect()
|
| 625 |
-
|
| 626 |
-
except Exception as e:
|
| 627 |
-
error_details = traceback.format_exc()
|
| 628 |
-
processing_jobs[job_id]['status'] = 'error'
|
| 629 |
-
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
|
| 630 |
-
print(f"Error processing job {job_id}: {str(e)}")
|
| 631 |
-
print(error_details)
|
| 632 |
-
for filepath in filepaths.values():
|
| 633 |
-
if os.path.exists(filepath):
|
| 634 |
-
os.remove(filepath)
|
| 635 |
-
|
| 636 |
-
processing_thread = threading.Thread(target=process_images)
|
| 637 |
-
processing_thread.daemon = True
|
| 638 |
-
processing_thread.start()
|
| 639 |
-
|
| 640 |
-
return jsonify({"job_id": job_id}), 202
|
| 641 |
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 679 |
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
model_stats['package_size'] = os.path.getsize(zip_path)
|
| 728 |
-
else:
|
| 729 |
-
glb_path = os.path.join(output_dir, "model.glb")
|
| 730 |
-
if os.path.exists(glb_path):
|
| 731 |
-
model_stats['model_size'] = os.path.getsize(glb_path)
|
| 732 |
-
|
| 733 |
-
return jsonify({
|
| 734 |
-
"status": job['status'],
|
| 735 |
-
"model_format": job['output_format'],
|
| 736 |
-
"download_url": job['result_url'],
|
| 737 |
-
"preview_url": job['preview_url'],
|
| 738 |
-
"model_stats": model_stats,
|
| 739 |
-
"created_at": job.get('created_at'),
|
| 740 |
-
"completed_at": job.get('completed_at')
|
| 741 |
-
}), 200
|
| 742 |
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
"endpoints": [
|
| 748 |
-
"/convert",
|
| 749 |
-
"/progress/<job_id>",
|
| 750 |
-
"/download/<job_id>",
|
| 751 |
-
"/preview/<job_id>",
|
| 752 |
-
"/model-info/<job_id>"
|
| 753 |
-
],
|
| 754 |
-
"parameters": {
|
| 755 |
-
"front": "Image file (required)",
|
| 756 |
-
"back": "Image file (required)",
|
| 757 |
-
"left": "Image file (optional)",
|
| 758 |
-
"right": "Image file (optional)",
|
| 759 |
-
"mesh_resolution": "Integer (50-120)",
|
| 760 |
-
"output_format": "obj or glb",
|
| 761 |
-
"detail_level": "low, medium, or high",
|
| 762 |
-
"texture_quality": "low, medium, or high"
|
| 763 |
-
},
|
| 764 |
-
"description": "Creates high-quality 3D models from multiple 2D images (front, back, left, right) using DPT-Large and Depth Anything."
|
| 765 |
-
}), 200
|
| 766 |
-
|
| 767 |
-
if __name__ == '__main__':
|
| 768 |
-
cleanup_old_jobs()
|
| 769 |
-
port = int(os.environ.get('PORT', 7860))
|
| 770 |
-
app.run(host='0.0.0.0', port=port)
|
| 771 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
import threading
|
| 5 |
+
import json
|
| 6 |
+
import gc
|
| 7 |
+
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
|
| 8 |
+
from werkzeug.utils import secure_filename
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
import zipfile
|
| 12 |
+
import uuid
|
| 13 |
+
import traceback
|
| 14 |
+
from huggingface_hub import snapshot_download, login
|
| 15 |
+
from flask_cors import CORS
|
| 16 |
+
import numpy as np
|
| 17 |
+
import trimesh
|
| 18 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForDepthEstimation
|
| 19 |
+
from scipy.ndimage import gaussian_filter
|
| 20 |
+
from scipy import interpolate
|
| 21 |
+
import cv2
|
| 22 |
+
from rembg import remove
|
| 23 |
|
| 24 |
+
app = Flask(__name__)
|
| 25 |
+
CORS(app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Configure directories
|
| 28 |
+
UPLOAD_FOLDER = '/tmp/uploads'
|
| 29 |
+
RESULTS_FOLDER = '/tmp/results'
|
| 30 |
+
CACHE_DIR = '/tmp/huggingface'
|
| 31 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
| 32 |
|
| 33 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 34 |
+
os.makedirs(RESULTS_FOLDER, exist_ok=True)
|
| 35 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
os.environ['HF_HOME'] = CACHE_DIR
|
| 38 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 39 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
|
| 40 |
|
| 41 |
+
# Job tracking
|
| 42 |
+
processing_jobs = {}
|
|
|
|
| 43 |
|
| 44 |
+
# Model variables
|
| 45 |
+
dpt_estimator = None
|
| 46 |
+
depth_anything_model = None
|
| 47 |
+
depth_anything_processor = None
|
| 48 |
+
model_loaded = False
|
| 49 |
+
model_loading = False
|
| 50 |
|
| 51 |
+
TIMEOUT_SECONDS = 240
|
| 52 |
+
MAX_DIMENSION = 518
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
class TimeoutError(Exception):
|
| 55 |
+
pass
|
| 56 |
|
| 57 |
+
def process_with_timeout(function, args, timeout):
|
| 58 |
+
result = [None]
|
| 59 |
+
error = [None]
|
| 60 |
+
completed = [False]
|
| 61 |
+
|
| 62 |
+
def target():
|
| 63 |
+
try:
|
| 64 |
+
result[0] = function(*args)
|
| 65 |
+
completed[0] = True
|
| 66 |
+
except Exception as e:
|
| 67 |
+
error[0] = e
|
| 68 |
+
|
| 69 |
+
thread = threading.Thread(target=target)
|
| 70 |
+
thread.daemon = True
|
| 71 |
+
thread.start()
|
| 72 |
+
thread.join(timeout)
|
| 73 |
+
|
| 74 |
+
if not completed[0]:
|
| 75 |
+
if thread.is_alive():
|
| 76 |
+
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
|
| 77 |
+
elif error[0]:
|
| 78 |
+
return None, error[0]
|
| 79 |
+
|
| 80 |
+
if error[0]:
|
| 81 |
+
return None, error[0]
|
| 82 |
+
|
| 83 |
+
return result[0], None
|
| 84 |
|
| 85 |
+
def allowed_file(filename):
|
| 86 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
def remove_background(image_path):
|
| 89 |
+
try:
|
| 90 |
+
with open(image_path, "rb") as img_file:
|
| 91 |
+
img_data = img_file.read()
|
| 92 |
+
result = remove(img_data)
|
| 93 |
+
img = Image.open(io.BytesIO(result)).convert("RGBA")
|
| 94 |
+
|
| 95 |
+
# Check if image is fully transparent (no object)
|
| 96 |
+
img_array = np.array(img)
|
| 97 |
+
if np.all(img_array[:, :, 3] == 0):
|
| 98 |
+
print(f"Warning: Image {image_path} is fully transparent or no object detected")
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
# Create black background
|
| 102 |
+
black_bg = Image.new("RGB", img.size, (0, 0, 0))
|
| 103 |
+
black_bg.paste(img, (0, 0), img)
|
| 104 |
+
return black_bg
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Error in remove_background for {image_path}: {str(e)}")
|
| 107 |
+
raise
|
| 108 |
|
| 109 |
+
def preprocess_image(image_path):
|
| 110 |
+
# Remove background and add black background
|
| 111 |
+
img = remove_background(image_path)
|
| 112 |
+
if img is None:
|
| 113 |
+
raise ValueError("Image is fully transparent or no object detected")
|
| 114 |
+
|
| 115 |
+
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
|
| 116 |
+
if img.width > img.height:
|
| 117 |
+
new_width = MAX_DIMENSION
|
| 118 |
+
new_height = int(img.height * (MAX_DIMENSION / img.width))
|
| 119 |
+
else:
|
| 120 |
+
new_height = MAX_DIMENSION
|
| 121 |
+
new_width = int(img.width * (MAX_DIMENSION / img.height))
|
| 122 |
+
img = img.resize((new_width, new_height), Image.LANCZOS)
|
| 123 |
+
|
| 124 |
+
img_array = np.array(img)
|
| 125 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
| 126 |
+
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
|
| 127 |
+
l, a, b = cv2.split(lab)
|
| 128 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
| 129 |
+
cl = clahe.apply(l)
|
| 130 |
+
enhanced_lab = cv2.merge((cl, a, b))
|
| 131 |
+
img_array = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
|
| 132 |
+
img = Image.fromarray(img_array)
|
| 133 |
+
|
| 134 |
+
return img
|
| 135 |
|
| 136 |
+
def load_models():
|
| 137 |
+
global dpt_estimator, depth_anything_model, depth_anything_processor, model_loaded, model_loading
|
| 138 |
+
|
| 139 |
+
if model_loaded:
|
| 140 |
+
return dpt_estimator, depth_anything_model, depth_anything_processor
|
| 141 |
+
|
| 142 |
+
if model_loading:
|
| 143 |
+
while model_loading and not model_loaded:
|
| 144 |
+
time.sleep(0.5)
|
| 145 |
+
return dpt_estimator, depth_anything_model, depth_anything_processor
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
model_loading = True
|
| 149 |
+
print("Loading models...")
|
| 150 |
+
|
| 151 |
+
hf_token = os.environ.get('HF_TOKEN')
|
| 152 |
+
if hf_token:
|
| 153 |
+
print("HF_TOKEN found, attempting login...")
|
| 154 |
+
login(token=hf_token)
|
| 155 |
+
print("Authenticated with Hugging Face token")
|
| 156 |
+
else:
|
| 157 |
+
print("Warning: HF_TOKEN not found in environment")
|
| 158 |
+
|
| 159 |
+
dpt_model_name = "Intel/dpt-large"
|
| 160 |
+
max_retries = 3
|
| 161 |
+
retry_delay = 5
|
| 162 |
+
for attempt in range(max_retries):
|
| 163 |
+
try:
|
| 164 |
+
print(f"Attempting to download {dpt_model_name}, attempt {attempt+1}")
|
| 165 |
+
snapshot_download(
|
| 166 |
+
repo_id=dpt_model_name,
|
| 167 |
+
cache_dir=CACHE_DIR,
|
| 168 |
+
resume_download=True,
|
| 169 |
+
token=hf_token
|
| 170 |
+
)
|
| 171 |
+
print(f"Successfully downloaded {dpt_model_name}")
|
| 172 |
+
break
|
| 173 |
+
except Exception as e:
|
| 174 |
+
if attempt < max_retries - 1:
|
| 175 |
+
print(f"DPT download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
| 176 |
+
time.sleep(retry_delay)
|
| 177 |
+
retry_delay *= 2
|
| 178 |
+
else:
|
| 179 |
+
raise
|
| 180 |
+
|
| 181 |
+
dpt_estimator = pipeline(
|
| 182 |
+
"depth-estimation",
|
| 183 |
+
model=dpt_model_name,
|
| 184 |
+
device=-1,
|
| 185 |
+
cache_dir=CACHE_DIR,
|
| 186 |
+
use_fast=True
|
| 187 |
+
)
|
| 188 |
+
print("DPT-Large loaded")
|
| 189 |
+
gc.collect()
|
| 190 |
+
|
| 191 |
+
da_model_name = "depth-anything/Depth-Anything-V2-Tiny-hf"
|
| 192 |
+
for attempt in range(max_retries):
|
| 193 |
+
try:
|
| 194 |
+
print(f"Attempting to download {da_model_name}, attempt {attempt+1}")
|
| 195 |
+
snapshot_download(
|
| 196 |
+
repo_id=da_model_name,
|
| 197 |
+
cache_dir=CACHE_DIR,
|
| 198 |
+
resume_download=True,
|
| 199 |
+
token=hf_token
|
| 200 |
+
)
|
| 201 |
+
print(f"Successfully downloaded {da_model_name}")
|
| 202 |
+
break
|
| 203 |
+
except Exception as e:
|
| 204 |
+
if attempt < max_retries - 1:
|
| 205 |
+
print(f"Depth Anything download attempt {attempt+1} failed: {str(e)}. Retrying after {retry_delay}s...")
|
| 206 |
+
time.sleep(retry_delay)
|
| 207 |
+
retry_delay *= 2
|
| 208 |
+
else:
|
| 209 |
+
print(f"Failed to load Depth Anything: {str(e)}. Falling back to DPT-Large only.")
|
| 210 |
+
depth_anything_model = None
|
| 211 |
+
depth_anything_processor = None
|
| 212 |
+
model_loaded = True
|
| 213 |
+
return dpt_estimator, None, None
|
| 214 |
+
|
| 215 |
+
depth_anything_processor = AutoImageProcessor.from_pretrained(
|
| 216 |
+
da_model_name,
|
| 217 |
+
cache_dir=CACHE_DIR,
|
| 218 |
+
token=hf_token
|
| 219 |
+
)
|
| 220 |
+
depth_anything_model = AutoModelForDepthEstimation.from_pretrained(
|
| 221 |
+
da_model_name,
|
| 222 |
+
cache_dir=CACHE_DIR,
|
| 223 |
+
token=hf_token
|
| 224 |
+
).to("cpu")
|
| 225 |
+
|
| 226 |
+
model_loaded = True
|
| 227 |
+
print("Depth Anything loaded")
|
| 228 |
+
return dpt_estimator, depth_anything_model, depth_anything_processor
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
print(f"Error loading models: {str(e)}")
|
| 232 |
+
print(traceback.format_exc())
|
| 233 |
+
raise
|
| 234 |
+
finally:
|
| 235 |
+
model_loading = False
|
| 236 |
|
| 237 |
+
def fuse_depth_maps(dpt_depth, da_depth, detail_level='medium'):
|
| 238 |
+
if isinstance(dpt_depth, Image.Image):
|
| 239 |
+
dpt_depth = np.array(dpt_depth)
|
| 240 |
+
if isinstance(da_depth, torch.Tensor):
|
| 241 |
+
da_depth = da_depth.cpu().numpy()
|
| 242 |
+
if len(dpt_depth.shape) > 2:
|
| 243 |
+
dpt_depth = np.mean(dpt_depth, axis=2)
|
| 244 |
+
if len(da_depth.shape) > 2:
|
| 245 |
+
da_depth = np.mean(da_depth, axis=2)
|
| 246 |
+
|
| 247 |
+
if dpt_depth.shape != da_depth.shape:
|
| 248 |
+
da_depth = cv2.resize(da_depth, (dpt_depth.shape[1], dpt_depth.shape[0]), interpolation=cv2.INTER_CUBIC)
|
| 249 |
+
|
| 250 |
+
p_low_dpt, p_high_dpt = np.percentile(dpt_depth, [1, 99])
|
| 251 |
+
p_low_da, p_high_da = np.percentile(da_depth, [1, 99])
|
| 252 |
+
dpt_depth = np.clip((dpt_depth - p_low_dpt) / (p_high_dpt - p_low_dpt), 0, 1) if p_high_dpt > p_low_dpt else dpt_depth
|
| 253 |
+
da_depth = np.clip((da_depth - p_low_da) / (p_high_da - p_low_da), 0, 1) if p_high_da > p_low_da else da_depth
|
| 254 |
+
|
| 255 |
+
if detail_level == 'high':
|
| 256 |
+
weight_da = 0.7
|
| 257 |
+
edges = cv2.Canny((da_depth * 255).astype(np.uint8), 50, 150)
|
| 258 |
+
edge_mask = (edges > 0).astype(np.float32)
|
| 259 |
+
dpt_weight = gaussian_filter(1 - edge_mask, sigma=1.0)
|
| 260 |
+
da_weight = gaussian_filter(edge_mask, sigma=1.0)
|
| 261 |
+
fused_depth = dpt_weight * dpt_depth + da_weight * da_depth * weight_da + (1 - weight_da) * dpt_depth
|
| 262 |
+
else:
|
| 263 |
+
weight_da = 0.5 if detail_level == 'medium' else 0.3
|
| 264 |
+
fused_depth = (1 - weight_da) * dpt_depth + weight_da * da_depth
|
| 265 |
+
|
| 266 |
+
fused_depth = np.clip(fused_depth, 0, 1)
|
| 267 |
+
return fused_depth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
+
def enhance_depth_map(depth_map, detail_level='medium'):
|
| 270 |
+
enhanced_depth = depth_map.copy().astype(np.float32)
|
| 271 |
+
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
|
| 272 |
+
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
|
| 273 |
+
enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
|
| 274 |
+
|
| 275 |
+
if detail_level == 'high':
|
| 276 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
| 277 |
+
mask = enhanced_depth - blurred
|
| 278 |
+
enhanced_depth = enhanced_depth + 1.5 * mask
|
| 279 |
+
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
| 280 |
+
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
| 281 |
+
edge_mask = enhanced_depth - smooth2
|
| 282 |
+
enhanced_depth = smooth1 + 1.2 * edge_mask
|
| 283 |
+
elif detail_level == 'medium':
|
| 284 |
+
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
| 285 |
+
mask = enhanced_depth - blurred
|
| 286 |
+
enhanced_depth = enhanced_depth + 0.8 * mask
|
| 287 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
|
| 288 |
+
else:
|
| 289 |
+
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
|
| 290 |
+
|
| 291 |
+
fused_depth = np.clip(fused_depth, 0, 1)
|
| 292 |
+
return fused_depth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
+
def depth_to_mesh(depth_map, image, resolution=80, detail_level='medium', view_angle=0):
|
| 295 |
+
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
| 296 |
+
h, w = enhanced_depth.shape
|
| 297 |
+
x = np.linspace(0, w-1, resolution)
|
| 298 |
+
y = np.linspace(0, h-1, resolution)
|
| 299 |
+
x_grid, y_grid = np.meshgrid(x, y)
|
| 300 |
+
|
| 301 |
+
interp_func = interpolate.RectBivariateSpline(
|
| 302 |
+
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
| 303 |
+
)
|
| 304 |
+
z_values = interp_func(y, x, grid=True)
|
| 305 |
+
|
| 306 |
+
if detail_level == 'high':
|
| 307 |
+
dx = np.gradient(z_values, axis=1)
|
| 308 |
+
dy = np.gradient(z_values, axis=0)
|
| 309 |
+
gradient_magnitude = np.sqrt(dx**2 + dy**2)
|
| 310 |
+
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2)
|
| 311 |
+
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
|
| 312 |
+
|
| 313 |
+
z_min, z_max = np.percentile(z_values, [2, 98])
|
| 314 |
+
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
| 315 |
+
z_scaling = 2.5 if detail_level == 'high' else 2.0 if detail_level == 'medium' else 1.5
|
| 316 |
+
z_values = z_values * z_scaling
|
| 317 |
+
|
| 318 |
+
x_grid = (x_grid / w - 0.5) * 2.0
|
| 319 |
+
y_grid = (y_grid / h - 0.5) * 2.0
|
| 320 |
+
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
| 321 |
+
|
| 322 |
+
# Rotate vertices based on view angle (in radians)
|
| 323 |
+
if view_angle != 0:
|
| 324 |
+
rotation_matrix = trimesh.transformations.rotation_matrix(view_angle, [0, 1, 0])
|
| 325 |
+
vertices = trimesh.transform_points(vertices, rotation_matrix)
|
| 326 |
+
|
| 327 |
+
faces = []
|
| 328 |
+
for i in range(resolution-1):
|
| 329 |
+
for j in range(resolution-1):
|
| 330 |
+
p1 = i * resolution + j
|
| 331 |
+
p2 = i * resolution + (j + 1)
|
| 332 |
+
p3 = (i + 1) * resolution + j
|
| 333 |
+
p4 = (i + 1) * resolution + (j + 1)
|
| 334 |
+
v1 = vertices[p1]
|
| 335 |
+
v2 = vertices[p2]
|
| 336 |
+
v3 = vertices[p3]
|
| 337 |
+
v4 = vertices[p4]
|
| 338 |
+
norm1 = np.cross(v2-v1, v4-v1)
|
| 339 |
+
norm2 = np.cross(v4-v3, v1-v3)
|
| 340 |
+
if np.dot(norm1, norm2) >= 0:
|
| 341 |
+
faces.append([p1, p2, p4])
|
| 342 |
+
faces.append([p1, p4, p3])
|
| 343 |
+
else:
|
| 344 |
+
faces.append([p1, p2, p3])
|
| 345 |
+
faces.append([p2, p4, p3])
|
| 346 |
+
|
| 347 |
+
faces = np.array(faces)
|
| 348 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 349 |
+
|
| 350 |
+
if image:
|
| 351 |
+
img_array = np.array(image)
|
| 352 |
+
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
| 353 |
+
for i in range(resolution):
|
| 354 |
+
for j in range(resolution):
|
| 355 |
+
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
| 356 |
+
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
| 357 |
+
x0, y0 = int(img_x), int(img_y)
|
| 358 |
+
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
| 359 |
+
wx = img_x - x0
|
| 360 |
+
wy = img_y - y0
|
| 361 |
+
vertex_idx = i * resolution + j
|
| 362 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
|
| 363 |
+
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
| 364 |
+
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
| 365 |
+
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
| 366 |
+
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
| 367 |
+
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
| 368 |
+
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
| 369 |
+
vertex_colors[vertex_idx, :3] = [r, g, b]
|
| 370 |
+
vertex_colors[vertex_idx, 3] = 255
|
| 371 |
+
else:
|
| 372 |
+
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
| 373 |
+
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
| 374 |
+
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
| 375 |
+
vertex_colors[vertex_idx, 3] = 255
|
| 376 |
+
mesh.visual.vertex_colors = vertex_colors
|
| 377 |
+
|
| 378 |
+
if detail_level != 'high':
|
| 379 |
+
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
| 380 |
+
mesh.fix_normals()
|
| 381 |
+
return mesh
|
| 382 |
|
| 383 |
+
def combine_meshes(meshes):
|
| 384 |
+
if len(meshes) == 1:
|
| 385 |
+
return meshes[0]
|
| 386 |
+
|
| 387 |
+
combined_vertices = []
|
| 388 |
+
combined_faces = []
|
| 389 |
+
vertex_offset = 0
|
| 390 |
+
|
| 391 |
+
for mesh in meshes:
|
| 392 |
+
combined_vertices.append(mesh.vertices)
|
| 393 |
+
combined_faces.append(mesh.faces + vertex_offset)
|
| 394 |
+
vertex_offset += len(mesh.vertices)
|
| 395 |
+
|
| 396 |
+
combined_vertices = np.vstack(combined_vertices)
|
| 397 |
+
combined_faces = np.vstack(combined_faces)
|
| 398 |
+
|
| 399 |
+
combined_mesh = trimesh.Trimesh(vertices=combined_vertices, faces=combined_faces)
|
| 400 |
+
|
| 401 |
+
# Stitch overlapping vertices
|
| 402 |
+
combined_mesh = combined_mesh.subdivide_to_size(max_edge=0.05)
|
| 403 |
+
combined_mesh = combined_mesh.smoothed(method='laplacian', iterations=2)
|
| 404 |
+
|
| 405 |
+
# Ensure watertight mesh
|
| 406 |
+
combined_mesh.fill_holes()
|
| 407 |
+
combined_mesh.fix_normals()
|
| 408 |
+
|
| 409 |
+
return combined_mesh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
+
@app.route('/health', methods=['GET'])
|
| 412 |
+
def health_check():
|
| 413 |
+
return jsonify({
|
| 414 |
+
"status": "healthy",
|
| 415 |
+
"model": "DPT-Large + Depth Anything (Multi-View)",
|
| 416 |
+
"device": "cpu"
|
| 417 |
+
}), 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
+
@app.route('/progress/<job_id>', methods=['GET'])
|
| 420 |
+
def progress(job_id):
|
| 421 |
+
def generate():
|
| 422 |
+
if job_id not in processing_jobs:
|
| 423 |
+
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
|
| 424 |
+
return
|
| 425 |
+
|
| 426 |
+
job = processing_jobs[job_id]
|
| 427 |
+
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
|
| 428 |
+
|
| 429 |
+
last_progress = job['progress']
|
| 430 |
+
check_count = 0
|
| 431 |
+
while job['status'] == 'processing':
|
| 432 |
+
if job['progress'] != last_progress:
|
| 433 |
+
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
|
| 434 |
+
last_progress = job['progress']
|
| 435 |
+
time.sleep(0.5)
|
| 436 |
+
check_count += 1
|
| 437 |
+
if check_count > 60:
|
| 438 |
+
if 'thread_alive' in job and not job['thread_alive']():
|
| 439 |
+
job['status'] = 'error'
|
| 440 |
+
job['error'] = 'Processing thread died unexpectedly'
|
| 441 |
+
break
|
| 442 |
+
check_count = 0
|
| 443 |
+
|
| 444 |
+
if job['status'] == 'completed':
|
| 445 |
+
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
|
| 446 |
+
else:
|
| 447 |
+
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
|
| 448 |
+
|
| 449 |
+
return Response(stream_with_context(generate()), mimetype='text/event-stream')
|
| 450 |
|
| 451 |
+
@app.route('/convert', methods=['POST'])
|
| 452 |
+
def convert_image_to_3d():
|
| 453 |
+
required_views = ['front', 'back']
|
| 454 |
+
optional_views = ['left', 'right']
|
| 455 |
+
view_files = {}
|
| 456 |
+
|
| 457 |
+
for view in required_views + optional_views:
|
| 458 |
+
if view in request.files and request.files[view].filename != '':
|
| 459 |
+
view_files[view] = request.files[view]
|
| 460 |
+
|
| 461 |
+
if not all(view in view_files for view in required_views):
|
| 462 |
+
return jsonify({"error": "Front and back images are required"}), 400
|
| 463 |
+
|
| 464 |
+
for view, file in view_files.items():
|
| 465 |
+
if not allowed_file(file.filename):
|
| 466 |
+
return jsonify({"error": f"File type not allowed for {view}. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
|
| 467 |
+
|
| 468 |
+
try:
|
| 469 |
+
mesh_resolution = min(int(request.form.get('mesh_resolution', 80)), 120)
|
| 470 |
+
output_format = request.form.get('output_format', 'glb').lower()
|
| 471 |
+
detail_level = request.form.get('detail_level', 'medium').lower()
|
| 472 |
+
texture_quality = request.form.get('texture_quality', 'medium').lower()
|
| 473 |
+
except ValueError:
|
| 474 |
+
return jsonify({"error": "Invalid parameter values"}), 400
|
| 475 |
+
|
| 476 |
+
if output_format not in ['obj', 'glb']:
|
| 477 |
+
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
|
| 478 |
+
|
| 479 |
+
if detail_level == 'high':
|
| 480 |
+
mesh_resolution = min(int(mesh_resolution * 1.5), 120)
|
| 481 |
+
elif detail_level == 'low':
|
| 482 |
+
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
|
| 483 |
+
|
| 484 |
+
job_id = str(uuid.uuid4())
|
| 485 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 486 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 487 |
+
|
| 488 |
+
filepaths = {}
|
| 489 |
+
for view, file in view_files.items():
|
| 490 |
+
filename = secure_filename(file.filename)
|
| 491 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{view}_{filename}")
|
| 492 |
+
file.save(filepath)
|
| 493 |
+
filepaths[view] = filepath
|
| 494 |
+
|
| 495 |
+
processing_jobs[job_id] = {
|
| 496 |
+
'status': 'processing',
|
| 497 |
+
'progress': 0,
|
| 498 |
+
'result_url': None,
|
| 499 |
+
'preview_url': None,
|
| 500 |
+
'error': None,
|
| 501 |
+
'output_format': output_format,
|
| 502 |
+
'created_at': time.time()
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
def process_images():
|
| 506 |
+
thread = threading.current_thread()
|
| 507 |
+
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
|
| 508 |
+
|
| 509 |
+
try:
|
| 510 |
+
processing_jobs[job_id]['progress'] = 5
|
| 511 |
+
images = {}
|
| 512 |
+
for view, filepath in filepaths.items():
|
| 513 |
+
try:
|
| 514 |
+
images[view] = preprocess_image(filepath)
|
| 515 |
+
except ValueError as e:
|
| 516 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 517 |
+
processing_jobs[job_id]['error'] = f"Error preprocessing {view} image: {str(e)}"
|
| 518 |
+
return
|
| 519 |
+
processing_jobs[job_id]['progress'] = 10
|
| 520 |
+
|
| 521 |
+
try:
|
| 522 |
+
dpt_model, da_model, da_processor = load_models()
|
| 523 |
+
processing_jobs[job_id]['progress'] = 20
|
| 524 |
+
except Exception as e:
|
| 525 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 526 |
+
processing_jobs[job_id]['error'] = f"Error loading models: {str(e)}"
|
| 527 |
+
return
|
| 528 |
+
|
| 529 |
+
try:
|
| 530 |
+
def estimate_depths():
|
| 531 |
+
meshes = []
|
| 532 |
+
view_angles = {'front': 0, 'back': np.pi, 'left': np.pi/2, 'right': -np.pi/2}
|
| 533 |
+
with torch.no_grad():
|
| 534 |
+
for view, image in images.items():
|
| 535 |
+
# DPT-Large
|
| 536 |
+
dpt_result = dpt_model(image)
|
| 537 |
+
dpt_depth = dpt_result["depth"]
|
| 538 |
+
|
| 539 |
+
# Depth Anything (if loaded)
|
| 540 |
+
if da_model and da_processor:
|
| 541 |
+
inputs = da_processor(images=image, return_tensors="pt")
|
| 542 |
+
inputs = {k: v.to("cpu") for k, v in inputs.items()}
|
| 543 |
+
outputs = da_model(**inputs)
|
| 544 |
+
da_depth = outputs.predicted_depth.squeeze()
|
| 545 |
+
da_depth = torch.nn.functional.interpolate(
|
| 546 |
+
da_depth.unsqueeze(0).unsqueeze(0),
|
| 547 |
+
size=(image.height, image.width),
|
| 548 |
+
mode='bicubic',
|
| 549 |
+
align_corners=False
|
| 550 |
+
).squeeze()
|
| 551 |
+
fused_depth = fuse_depth_maps(dpt_depth, da_depth, detail_level)
|
| 552 |
+
else:
|
| 553 |
+
fused_depth = np.array(dpt_depth) if isinstance(dpt_depth, Image.Image) else dpt_depth
|
| 554 |
+
if len(fused_depth.shape) > 2:
|
| 555 |
+
fused_depth = np.mean(fused_depth, axis=2)
|
| 556 |
+
p_low, p_high = np.percentile(fused_depth, [1, 99])
|
| 557 |
+
fused_depth = np.clip((fused_depth - p_low) / (p_high - p_low), 0, 1) if p_high > p_low else fused_depth
|
| 558 |
+
|
| 559 |
+
mesh = depth_to_mesh(fused_depth, image, resolution=mesh_resolution, detail_level=detail_level, view_angle=view_angles[view])
|
| 560 |
+
meshes.append(mesh)
|
| 561 |
+
gc.collect()
|
| 562 |
+
|
| 563 |
+
combined_mesh = combine_meshes(meshes)
|
| 564 |
+
return combined_mesh
|
| 565 |
+
|
| 566 |
+
combined_mesh, error = process_with_timeout(estimate_depths, [], TIMEOUT_SECONDS)
|
| 567 |
+
|
| 568 |
+
if error:
|
| 569 |
+
if isinstance(error, TimeoutError):
|
| 570 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 571 |
+
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
|
| 572 |
+
return
|
| 573 |
+
else:
|
| 574 |
+
raise error
|
| 575 |
+
|
| 576 |
+
processing_jobs[job_id]['progress'] = 80
|
| 577 |
+
|
| 578 |
+
if output_format == 'obj':
|
| 579 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
| 580 |
+
combined_mesh.export(
|
| 581 |
+
obj_path,
|
| 582 |
+
file_type='obj',
|
| 583 |
+
include_normals=True,
|
| 584 |
+
include_texture=True
|
| 585 |
+
)
|
| 586 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
| 587 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 588 |
+
zipf.write(obj_path, arcname="model.obj")
|
| 589 |
+
mtl_path = os.path.join(output_dir, "model.mtl")
|
| 590 |
+
if os.path.exists(mtl_path):
|
| 591 |
+
zipf.write(mtl_path, arcname="model.mtl")
|
| 592 |
+
texture_path = os.path.join(output_dir, "model.png")
|
| 593 |
+
if os.path.exists(texture_path):
|
| 594 |
+
zipf.write(texture_path, arcname="model.png")
|
| 595 |
+
|
| 596 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
| 597 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
| 598 |
+
|
| 599 |
+
elif output_format == 'glb':
|
| 600 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
| 601 |
+
combined_mesh.export(
|
| 602 |
+
glb_path,
|
| 603 |
+
file_type='glb'
|
| 604 |
+
)
|
| 605 |
+
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
|
| 606 |
+
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
|
| 607 |
+
|
| 608 |
+
processing_jobs[job_id]['status'] = 'completed'
|
| 609 |
+
processing_jobs[job_id]['progress'] = 100
|
| 610 |
+
print(f"Job {job_id} completed")
|
| 611 |
+
|
| 612 |
+
except Exception as e:
|
| 613 |
+
error_details = traceback.format_exc()
|
| 614 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 615 |
+
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
|
| 616 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
| 617 |
+
print(error_details)
|
| 618 |
+
return
|
| 619 |
+
|
| 620 |
+
for filepath in filepaths.values():
|
| 621 |
+
if os.path.exists(filepath):
|
| 622 |
+
os.remove(filepath)
|
| 623 |
+
gc.collect()
|
| 624 |
+
|
| 625 |
+
except Exception as e:
|
| 626 |
+
error_details = traceback.format_exc()
|
| 627 |
+
processing_jobs[job_id]['status'] = 'error'
|
| 628 |
+
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
|
| 629 |
+
print(f"Error processing job {job_id}: {str(e)}")
|
| 630 |
+
print(error_details)
|
| 631 |
+
for filepath in filepaths.values():
|
| 632 |
+
if os.path.exists(filepath):
|
| 633 |
+
os.remove(filepath)
|
| 634 |
+
|
| 635 |
+
processing_thread = threading.Thread(target=process_images)
|
| 636 |
+
processing_thread.daemon = True
|
| 637 |
+
processing_thread.start()
|
| 638 |
+
|
| 639 |
+
return jsonify({"job_id": job_id}), 202
|
| 640 |
|
| 641 |
+
@app.route('/download/<job_id>', methods=['GET'])
|
| 642 |
+
def download_model(job_id):
|
| 643 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
| 644 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
| 645 |
+
|
| 646 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 647 |
+
output_format = processing_jobs[job_id].get('output_format', 'glb')
|
| 648 |
+
|
| 649 |
+
if output_format == 'obj':
|
| 650 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
| 651 |
+
if os.path.exists(zip_path):
|
| 652 |
+
return send_file(zip_path, as_attachment=True, download_name="model.zip")
|
| 653 |
+
else:
|
| 654 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
| 655 |
+
if os.path.exists(glb_path):
|
| 656 |
+
return send_file(glb_path, as_attachment=True, download_name="model.glb")
|
| 657 |
+
|
| 658 |
+
return jsonify({"error": "File not found"}), 404
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 659 |
|
| 660 |
+
@app.route('/preview/<job_id>', methods=['GET'])
|
| 661 |
+
def preview_model(job_id):
|
| 662 |
+
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
|
| 663 |
+
return jsonify({"error": "Model not found or processing not complete"}), 404
|
| 664 |
+
|
| 665 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 666 |
+
output_format = processing_jobs[job_id].get('output_format', 'glb')
|
| 667 |
+
|
| 668 |
+
if output_format == 'obj':
|
| 669 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
| 670 |
+
if os.path.exists(obj_path):
|
| 671 |
+
return send_file(obj_path, mimetype='model/obj')
|
| 672 |
+
else:
|
| 673 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
| 674 |
+
if os.path.exists(glb_path):
|
| 675 |
+
return send_file(glb_path, mimetype='model/gltf-binary')
|
| 676 |
+
|
| 677 |
+
return jsonify({"error": "File not found"}), 404
|
| 678 |
|
| 679 |
+
def cleanup_old_jobs():
|
| 680 |
+
current_time = time.time()
|
| 681 |
+
job_ids_to_remove = []
|
| 682 |
+
|
| 683 |
+
for job_id, job_data in processing_jobs.items():
|
| 684 |
+
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
|
| 685 |
+
job_ids_to_remove.append(job_id)
|
| 686 |
+
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
|
| 687 |
+
job_ids_to_remove.append(job_id)
|
| 688 |
+
|
| 689 |
+
for job_id in job_ids_to_remove:
|
| 690 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 691 |
+
try:
|
| 692 |
+
import shutil
|
| 693 |
+
if os.path.exists(output_dir):
|
| 694 |
+
shutil.rmtree(output_dir)
|
| 695 |
+
except Exception as e:
|
| 696 |
+
print(f"Error cleaning up job {job_id}: {str(e)}")
|
| 697 |
+
|
| 698 |
+
if job_id in processing_jobs:
|
| 699 |
+
del processing_jobs[job_id]
|
| 700 |
+
|
| 701 |
+
threading.Timer(300, cleanup_old_jobs).start()
|
| 702 |
|
| 703 |
+
@app.route('/model-info/<job_id>', methods=['GET'])
|
| 704 |
+
def model_info(job_id):
|
| 705 |
+
if job_id not in processing_jobs:
|
| 706 |
+
return jsonify({"error": "Model not found"}), 404
|
| 707 |
+
|
| 708 |
+
job = processing_jobs[job_id]
|
| 709 |
+
|
| 710 |
+
if job['status'] != 'completed':
|
| 711 |
+
return jsonify({
|
| 712 |
+
"status": job['status'],
|
| 713 |
+
"progress": job['progress'],
|
| 714 |
+
"error": job.get('error')
|
| 715 |
+
}), 200
|
| 716 |
+
|
| 717 |
+
output_dir = os.path.join(RESULTS_FOLDER, job_id)
|
| 718 |
+
model_stats = {}
|
| 719 |
+
|
| 720 |
+
if job['output_format'] == 'obj':
|
| 721 |
+
obj_path = os.path.join(output_dir, "model.obj")
|
| 722 |
+
zip_path = os.path.join(output_dir, "model.zip")
|
| 723 |
+
if os.path.exists(obj_path):
|
| 724 |
+
model_stats['obj_size'] = os.path.getsize(obj_path)
|
| 725 |
+
if os.path.exists(zip_path):
|
| 726 |
+
model_stats['package_size'] = os.path.getsize(zip_path)
|
| 727 |
+
else:
|
| 728 |
+
glb_path = os.path.join(output_dir, "model.glb")
|
| 729 |
+
if os.path.exists(glb_path):
|
| 730 |
+
model_stats['model_size'] = os.path.getsize(glb_path)
|
| 731 |
+
|
| 732 |
+
return jsonify({
|
| 733 |
+
"status": job['status'],
|
| 734 |
+
"model_format": job['output_format'],
|
| 735 |
+
"download_url": job['result_url'],
|
| 736 |
+
"preview_url": job['preview_url'],
|
| 737 |
+
"model_stats": model_stats,
|
| 738 |
+
"created_at": job.get('created_at'),
|
| 739 |
+
"completed_at": job.get('completed_at')
|
| 740 |
+
}), 200
|
| 741 |
|
| 742 |
+
@app.route('/', methods=['GET'])
|
| 743 |
+
def index():
|
| 744 |
+
return jsonify({
|
| 745 |
+
"message": "Multi-View Image to 3D API (DPT-Large + Depth Anything)",
|
| 746 |
+
"endpoints": [
|
| 747 |
+
"/convert",
|
| 748 |
+
"/progress/<job_id>",
|
| 749 |
+
"/download/<job_id>",
|
| 750 |
+
"/preview/<job_id>",
|
| 751 |
+
"/model-info/<job_id>"
|
| 752 |
+
],
|
| 753 |
+
"parameters": {
|
| 754 |
+
"front": "Image file (required)",
|
| 755 |
+
"back": "Image file (required)",
|
| 756 |
+
"left": "Image file (optional)",
|
| 757 |
+
"right": "Image file (optional)",
|
| 758 |
+
"mesh_resolution": "Integer (50-120)",
|
| 759 |
+
"output_format": "obj or glb",
|
| 760 |
+
"detail_level": "low, medium, or high",
|
| 761 |
+
"texture_quality": "low, medium, or high"
|
| 762 |
+
},
|
| 763 |
+
"description": "Creates high-quality 3D models from multiple 2D images (front, back, left, right) using DPT-Large and Depth Anything."
|
| 764 |
+
}), 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 765 |
|
| 766 |
+
if __name__ == '__main__':
|
| 767 |
+
cleanup_old_jobs()
|
| 768 |
+
port = int(os.environ.get('PORT', 7860))
|
| 769 |
+
app.run(host='0.0.0.0', port=port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|