likhonsheikh commited on
Commit
f16ace1
Β·
verified Β·
1 Parent(s): c2f1523

Upload README_space.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README_space.md +243 -0
README_space.md ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - bn
5
+ - en
6
+ tags:
7
+ - transformers
8
+ - safetensors
9
+ - stable-diffusion
10
+ - bangla
11
+ - text-to-video
12
+ - lora
13
+ - scene-planning
14
+ - computer-vision
15
+ - natural-language-processing
16
+ - mlops
17
+ - production-grade
18
+ pipeline_tag: text-to-video
19
+ model-index:
20
+ - name: memo
21
+ results: []
22
+ ---
23
+
24
+ # Memo: Production-Grade Transformers + Safetensors Implementation
25
+
26
+ ![Memo Logo](https://img.shields.io/badge/Memo-Transformers%20%2B%20Safetensors-brightgreen?style=for-the-badge)
27
+ ![Transformers](https://img.shields.io/badge/Transformers-4.57.3-blue?style=flat-square)
28
+ ![Safetensors](https://img.shields.io/badge/Safetensors-0.7.0-red?style=flat-square)
29
+ ![License](https://img.shields.io/badge/License-Apache%202.0-green?style=flat-square)
30
+
31
+ ## Overview
32
+
33
+ This is the complete transformation of Memo to use **Transformers + Safetensors** properly, replacing unsafe pickle files and toy logic with enterprise-grade machine learning infrastructure.
34
+
35
+ ## What We've Built
36
+
37
+ ### βœ… Core Requirements Met
38
+
39
+ 1. **Transformers Integration**
40
+ - Bangla text parsing using `google/mt5-small`
41
+ - Proper tokenization and model loading
42
+ - Deterministic scene extraction with controlled parameters
43
+ - Memory optimization with device mapping
44
+
45
+ 2. **Safetensors Security**
46
+ - **MANDATORY** `use_safetensors=True` for all model loading
47
+ - No .bin, .ckpt, or pickle files anywhere
48
+ - Model weight validation and security checks
49
+ - Signature verification for LoRA files
50
+
51
+ 3. **Production Architecture**
52
+ - Tier-based model management (Free/Pro/Enterprise)
53
+ - Memory optimization and performance tuning
54
+ - Background processing for long-running tasks
55
+ - Proper error handling and logging
56
+
57
+ ## File Structure
58
+
59
+ ```
60
+ πŸ“ Memo/
61
+ β”œβ”€β”€ πŸ“„ requirements.txt # Production dependencies
62
+ β”œβ”€β”€ πŸ“ models/
63
+ β”‚ └── πŸ“ text/
64
+ β”‚ └── πŸ“„ bangla_parser.py # Transformer-based Bangla parser
65
+ β”œβ”€β”€ πŸ“ core/
66
+ β”‚ └── πŸ“„ scene_planner.py # ML-based scene planning
67
+ β”œβ”€β”€ πŸ“ models/
68
+ β”‚ └── πŸ“ image/
69
+ β”‚ └── πŸ“„ sd_generator.py # Stable Diffusion + Safetensors
70
+ β”œβ”€β”€ πŸ“ data/
71
+ β”‚ └── πŸ“ lora/
72
+ β”‚ └── πŸ“„ README.md # LoRA configuration (safetensors only)
73
+ β”œβ”€β”€ πŸ“ scripts/
74
+ β”‚ └── πŸ“„ train_scene_lora.py # Training with safetensors output
75
+ β”œβ”€β”€ πŸ“ config/
76
+ β”‚ └── πŸ“„ model_tiers.py # Tier management system
77
+ └── πŸ“ api/
78
+ └── πŸ“„ main.py # Production API endpoint
79
+ ```
80
+
81
+ ## Key Features
82
+
83
+ ### πŸ”’ Security (Non-Negotiable)
84
+ - **Safetensors-only model loading** - No unsafe formats
85
+ - **Model signature validation** - Verify weight integrity
86
+ - **LoRA security checks** - Ensure only .safetensors files
87
+ - **Memory-safe loading** - Prevent buffer overflows
88
+
89
+ ### πŸš€ Performance
90
+ - **Memory optimization** - xFormers, attention slicing, CPU offload
91
+ - **FP16 precision** - 50% memory reduction with maintained quality
92
+ - **LCM acceleration** - Faster inference when available
93
+ - **Device mapping** - Optimal GPU/CPU utilization
94
+
95
+ ### 🏒 Enterprise Features
96
+ - **Tier-based pricing** - Free/Pro/Enterprise configurations
97
+ - **Resource management** - Memory limits and concurrent request handling
98
+ - **Security compliance** - Audit trails and validation
99
+ - **Scalability** - Background processing and proper async handling
100
+
101
+ ## Model Tiers
102
+
103
+ ### Free Tier
104
+ - Base SDXL model (512x512)
105
+ - 15 inference steps
106
+ - No LoRA
107
+ - 1 concurrent request
108
+
109
+ ### Pro Tier
110
+ - Base SDXL model (768x768)
111
+ - 25 inference steps
112
+ - Scene LoRA enabled
113
+ - LCM acceleration
114
+ - 3 concurrent requests
115
+
116
+ ### Enterprise Tier
117
+ - Base SDXL model (1024x1024)
118
+ - 30 inference steps
119
+ - Custom LoRA support
120
+ - LCM acceleration
121
+ - 10 concurrent requests
122
+
123
+ ## Usage Examples
124
+
125
+ ### Basic Scene Planning
126
+ ```python
127
+ from core.scene_planner import plan_scenes
128
+
129
+ scenes = plan_scenes(
130
+ text_bn="ΰ¦†ΰ¦œΰ¦•ΰ§‡ΰ¦° দিনটি খুব সুন্দর ছিলΰ₯€",
131
+ duration=15
132
+ )
133
+ ```
134
+
135
+ ### Tier-Based Generation
136
+ ```python
137
+ from config.model_tiers import get_tier_config
138
+ from models.image.sd_generator import get_generator
139
+
140
+ config = get_tier_config("pro")
141
+ generator = get_generator(
142
+ model_id=config.image_model_id,
143
+ lora_path=config.lora_path,
144
+ use_lcm=config.lcm_enabled
145
+ )
146
+
147
+ frames = generator.generate_frames(
148
+ prompt="Beautiful landscape scene",
149
+ frames=5
150
+ )
151
+ ```
152
+
153
+ ### API Usage
154
+ ```bash
155
+ curl -X POST "http://localhost:8000/generate" \\
156
+ -H "Content-Type: application/json" \\
157
+ -d '{
158
+ "text": "ΰ¦†ΰ¦œΰ¦•ΰ§‡ΰ¦° দিনটি খুব সুন্দর ছিলΰ₯€",
159
+ "duration": 15,
160
+ "tier": "pro"
161
+ }'
162
+ ```
163
+
164
+ ## Training Custom LoRA
165
+
166
+ ```python
167
+ from scripts.train_scene_lora import SceneLoRATrainer, TrainingConfig
168
+
169
+ config = TrainingConfig(
170
+ base_model="google/mt5-small",
171
+ rank=32,
172
+ alpha=64,
173
+ save_safetensors=True # MANDATORY
174
+ )
175
+
176
+ trainer = SceneLoRATrainer(config)
177
+ trainer.load_model()
178
+ trainer.setup_lora()
179
+ trainer.train(training_data)
180
+ ```
181
+
182
+ ## Security Validation
183
+
184
+ ```python
185
+ from config.model_tiers import validate_model_weights_security
186
+
187
+ result = validate_model_weights_security("data/lora/memo-scene-lora.safetensors")
188
+ print(f"Secure: {result['is_secure']}")
189
+ print(f"Issues: {result['issues']}")
190
+ ```
191
+
192
+ ## What This Guarantees
193
+
194
+ βœ… **Transformers-based** - Real ML, not toy logic
195
+ βœ… **Safetensors-only** - No security vulnerabilities
196
+ βœ… **Production-ready** - Enterprise architecture
197
+ βœ… **Memory optimized** - Proper resource management
198
+ βœ… **Tier-based** - Scalable pricing model
199
+ βœ… **Audit compliant** - Security validation built-in
200
+
201
+ ## What This Doesn't Do
202
+
203
+ ❌ Make GPUs cheap
204
+ ❌ Fix bad prompts
205
+ ❌ Read your mind
206
+ ❌ Guarantee perfect results
207
+
208
+ ## Next Steps
209
+
210
+ If you're serious about production deployment:
211
+
212
+ 1. **Cold-start optimization** - Preload frequently used models
213
+ 2. **Model versioning** - Track changes per tier
214
+ 3. **A/B testing** - Compare model performance
215
+ 4. **Monitoring** - Track usage and performance metrics
216
+ 5. **Load balancing** - Distribute across multiple GPUs
217
+
218
+ ## Running the System
219
+
220
+ ```bash
221
+ # Install dependencies
222
+ pip install -r requirements.txt
223
+
224
+ # Train custom LoRA
225
+ python scripts/train_scene_lora.py
226
+
227
+ # Start API server
228
+ python api/main.py
229
+
230
+ # Check health
231
+ curl http://localhost:8000/health
232
+ ```
233
+
234
+ ## Reality Check
235
+
236
+ This implementation is now:
237
+ - βœ… **Correct** - Uses proper ML frameworks
238
+ - βœ… **Modern** - Transformers + Safetensors
239
+ - βœ… **Secure** - No unsafe model formats
240
+ - βœ… **Scalable** - Tier-based architecture
241
+ - βœ… **Defensible** - Production-grade security
242
+
243
+ If your API claims "state-of-the-art" without these features, you're lying. Memo now actually delivers on that promise.