#!/usr/bin/env python3 import subprocess import sys import threading import spaces import torch import gradio as gr from PIL import Image from io import BytesIO import pypdfium2 as pdfium from transformers import ( LightOnOCRForConditionalGeneration, LightOnOCRProcessor, TextIteratorStreamer, ) device = "cuda" if torch.cuda.is_available() else "cpu" # Choose best attention implementation based on device if device == "cuda": attn_implementation = "sdpa" dtype = torch.bfloat16 print("Using sdpa for GPU") else: attn_implementation = "eager" # Best for CPU dtype = torch.float32 print("Using eager attention for CPU") # Initialize the LightOnOCR model and processor print(f"Loading model on {device} with {attn_implementation} attention...") model = LightOnOCRForConditionalGeneration.from_pretrained( "lightonai/LightOnOCR-1B-1025", attn_implementation=attn_implementation, torch_dtype=dtype, trust_remote_code=True ).to(device).eval() processor = LightOnOCRProcessor.from_pretrained( "lightonai/LightOnOCR-1B-1025", trust_remote_code=True ) print("Model loaded successfully!") def render_pdf_page(page, max_resolution=1540, scale=2.77): """Render a PDF page to PIL Image.""" width, height = page.get_size() pixel_width = width * scale pixel_height = height * scale resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height) target_scale = scale * resize_factor return page.render(scale=target_scale, rev_byteorder=True).to_pil() def process_pdf(pdf_path, page_num=1): """Extract a specific page from PDF.""" pdf = pdfium.PdfDocument(pdf_path) total_pages = len(pdf) page_idx = min(max(int(page_num) - 1, 0), total_pages - 1) page = pdf[page_idx] img = render_pdf_page(page) pdf.close() return img, total_pages, page_idx + 1 def clean_output_text(text): """Remove chat template artifacts from output.""" # Remove common chat template markers markers_to_remove = ["system", "user", "assistant"] # Split by lines and filter lines = text.split('\n') cleaned_lines = [] for line in lines: stripped = line.strip() # Skip lines that are just template markers if stripped.lower() not in markers_to_remove: cleaned_lines.append(line) # Join back and strip leading/trailing whitespace cleaned = '\n'.join(cleaned_lines).strip() # Alternative approach: if there's an "assistant" marker, take everything after it if "assistant" in text.lower(): parts = text.split("assistant", 1) if len(parts) > 1: cleaned = parts[1].strip() return cleaned @spaces.GPU def extract_text_from_image(image, temperature=0.2, stream=False): """Extract text from image using LightOnOCR model.""" # Prepare the chat format chat = [ { "role": "user", "content": [ {"type": "image", "url": image}, ], } ] # Apply chat template and tokenize inputs = processor.apply_chat_template( chat, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ) # Move inputs to device AND convert to the correct dtype inputs = { k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16] else v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items() } generation_kwargs = dict( **inputs, max_new_tokens=2048, temperature=temperature if temperature > 0 else 0.0, use_cache=True, do_sample=temperature > 0, ) if stream: # Setup streamer for streaming generation streamer = TextIteratorStreamer( processor.tokenizer, skip_prompt=True, skip_special_tokens=True ) generation_kwargs["streamer"] = streamer # Run generation in a separate thread thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Yield chunks as they arrive full_text = "" for new_text in streamer: full_text += new_text # Clean the accumulated text cleaned_text = clean_output_text(full_text) yield cleaned_text thread.join() else: # Non-streaming generation with torch.no_grad(): outputs = model.generate(**generation_kwargs) # Decode the output output_text = processor.decode(outputs[0], skip_special_tokens=True) # Clean the output cleaned_text = clean_output_text(output_text) yield cleaned_text def process_input(file_input, temperature, page_num, enable_streaming): """Process uploaded file (image or PDF) and extract text with optional streaming.""" if file_input is None: yield "Please upload an image or PDF first.", "", "", None, gr.update() return image_to_process = None page_info = "" file_path = file_input if isinstance(file_input, str) else file_input.name # Handle PDF files if file_path.lower().endswith('.pdf'): try: image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num)) page_info = f"Processing page {actual_page} of {total_pages}" except Exception as e: yield f"Error processing PDF: {str(e)}", "", "", None, gr.update() return # Handle image files else: try: image_to_process = Image.open(file_path) page_info = "Processing image" except Exception as e: yield f"Error opening image: {str(e)}", "", "", None, gr.update() return try: # Extract text using LightOnOCR with optional streaming for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming): yield extracted_text, extracted_text, page_info, image_to_process, gr.update() except Exception as e: error_msg = f"Error during text extraction: {str(e)}" yield error_msg, error_msg, page_info, image_to_process, gr.update() def update_slider(file_input): """Update page slider based on PDF page count.""" if file_input is None: return gr.update(maximum=20, value=1) file_path = file_input if isinstance(file_input, str) else file_input.name if file_path.lower().endswith('.pdf'): try: pdf = pdfium.PdfDocument(file_path) total_pages = len(pdf) pdf.close() return gr.update(maximum=total_pages, value=1) except: return gr.update(maximum=20, value=1) else: return gr.update(maximum=1, value=1) # Create Gradio interface with gr.Blocks(title="📖 Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo: gr.Markdown(f""" # ⚠️ **HEADS UP: This space is now on CPU and runs very slowly.** For much faster results, check out the [GPU version here](https://huggingface.co/spaces/lightonai/LightOnOCR-1B-Demo-zero). --- # 📖 Image/PDF to Text Extraction with LightOnOCR **💡 How to use:** 1. Upload an image or PDF 2. For PDFs: select which page to extract (1-20) 3. Adjust temperature if needed 4. Click "Extract Text" **Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables! **Model:** LightOnOCR-1B-1025 by LightOn AI **Device:** {device.upper()} **Attention:** {attn_implementation} """) with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="🖼️ Upload Image or PDF", file_types=[".pdf", ".png", ".jpg", ".jpeg"], type="filepath" ) rendered_image = gr.Image( label="📄 Preview", type="pil", height=400, interactive=False ) num_pages = gr.Slider( minimum=1, maximum=20, value=1, step=1, label="PDF: Page Number", info="Select which page to extract" ) page_info = gr.Textbox( label="Processing Info", value="", interactive=False ) temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.2, step=0.05, label="Temperature", info="0.0 = deterministic, Higher = more varied" ) enable_streaming = gr.Checkbox( label="Enable Streaming", value=False, info="Show text progressively as it's generated" ) submit_btn = gr.Button("Extract Text", variant="primary") clear_btn = gr.Button("Clear", variant="secondary") with gr.Column(scale=2): output_text = gr.Markdown( label="📄 Extracted Text (Rendered)", value="*Extracted text will appear here...*" ) with gr.Row(): with gr.Column(): raw_output = gr.Textbox( label="Raw Markdown Output", placeholder="Raw text will appear here...", lines=20, max_lines=30, show_copy_button=True ) # Event handlers submit_btn.click( fn=process_input, inputs=[file_input, temperature, num_pages, enable_streaming], outputs=[output_text, raw_output, page_info, rendered_image, num_pages] ) file_input.change( fn=update_slider, inputs=[file_input], outputs=[num_pages] ) clear_btn.click( fn=lambda: (None, "*Extracted text will appear here...*", "", "", None, 1), outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages] ) if __name__ == "__main__": demo.launch()