Spaces:
Running
Running
liubangwei
commited on
Commit
·
d37eb96
1
Parent(s):
1855cc2
init IDMR demo
Browse files- src/vlm_backbone/llava_next/__init__.py +1 -0
- src/vlm_backbone/llava_next/__pycache__/__init__.cpython-310.pyc +0 -0
- src/vlm_backbone/llava_next/__pycache__/modeling_llava_next.cpython-310.pyc +0 -0
- src/vlm_backbone/llava_next/modeling_llava_next.py +987 -0
- src/vlm_backbone/llava_next/processing_llava_next.py +244 -0
src/vlm_backbone/llava_next/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .modeling_llava_next import LlavaNextForConditionalGeneration
|
src/vlm_backbone/llava_next/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (255 Bytes). View file
|
|
|
src/vlm_backbone/llava_next/__pycache__/modeling_llava_next.cpython-310.pyc
ADDED
|
Binary file (35.2 kB). View file
|
|
|
src/vlm_backbone/llava_next/modeling_llava_next.py
ADDED
|
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch Llava-NeXT model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
import torch
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.generation import GenerationMixin
|
| 28 |
+
from transformers.image_processing_utils import select_best_resolution
|
| 29 |
+
from transformers.modeling_outputs import ModelOutput
|
| 30 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 31 |
+
from transformers.utils import (
|
| 32 |
+
add_start_docstrings,
|
| 33 |
+
add_start_docstrings_to_model_forward,
|
| 34 |
+
logging,
|
| 35 |
+
replace_return_docstrings,
|
| 36 |
+
)
|
| 37 |
+
from transformers.models.auto import AutoModel, AutoModelForCausalLM
|
| 38 |
+
from transformers.models.llava_next.configuration_llava_next import LlavaNextConfig
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__)
|
| 42 |
+
|
| 43 |
+
_CONFIG_FOR_DOC = "LlavaNextConfig"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
| 47 |
+
"""
|
| 48 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
image_size (`tuple`):
|
| 52 |
+
The size of the input image in the format (width, height).
|
| 53 |
+
grid_pinpoints (`List`):
|
| 54 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
| 55 |
+
of the form `(height, width)`.
|
| 56 |
+
patch_size (`int`):
|
| 57 |
+
The size of each image patch.
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
| 61 |
+
"""
|
| 62 |
+
if not isinstance(grid_pinpoints, list):
|
| 63 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
| 64 |
+
|
| 65 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
| 66 |
+
if not isinstance(image_size, (list, tuple)):
|
| 67 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
| 68 |
+
raise TypeError(
|
| 69 |
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
| 70 |
+
)
|
| 71 |
+
image_size = image_size.tolist()
|
| 72 |
+
|
| 73 |
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
| 74 |
+
return height // patch_size, width // patch_size
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
| 78 |
+
"""
|
| 79 |
+
Calculate the number of patches after the preprocessing for images of any resolution.
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
|
| 83 |
+
The size of the input image in the format (height, width). ?
|
| 84 |
+
grid_pinpoints (`List`):
|
| 85 |
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
| 86 |
+
of the form `(height, width)`.
|
| 87 |
+
patch_size (`int`):
|
| 88 |
+
The size of each image patch.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
int: the number of patches
|
| 92 |
+
"""
|
| 93 |
+
if not isinstance(grid_pinpoints, list):
|
| 94 |
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
| 95 |
+
|
| 96 |
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
| 97 |
+
if not isinstance(image_size, (list, tuple)):
|
| 98 |
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
| 99 |
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
| 100 |
+
image_size = image_size.tolist()
|
| 101 |
+
|
| 102 |
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
| 103 |
+
height, width = best_resolution
|
| 104 |
+
num_patches = 0
|
| 105 |
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
| 106 |
+
for i in range(0, height, patch_size):
|
| 107 |
+
for j in range(0, width, patch_size):
|
| 108 |
+
num_patches += 1
|
| 109 |
+
# add the base patch
|
| 110 |
+
num_patches += 1
|
| 111 |
+
return num_patches
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def unpad_image(tensor, original_size):
|
| 115 |
+
"""
|
| 116 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
tensor (`torch.Tensor`):
|
| 120 |
+
The image tensor, assumed to be of shape (num_channels, height, width).
|
| 121 |
+
original_size (`tuple`):
|
| 122 |
+
The original size of the image (height, width).
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
`torch.Tensor`: The unpadded image tensor.
|
| 126 |
+
"""
|
| 127 |
+
if not isinstance(original_size, (list, tuple)):
|
| 128 |
+
if not isinstance(original_size, (torch.Tensor, np.ndarray)):
|
| 129 |
+
raise TypeError(
|
| 130 |
+
f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
| 131 |
+
)
|
| 132 |
+
original_size = original_size.tolist()
|
| 133 |
+
original_height, original_width = original_size
|
| 134 |
+
current_height, current_width = tensor.shape[1:]
|
| 135 |
+
|
| 136 |
+
original_aspect_ratio = original_width / original_height
|
| 137 |
+
current_aspect_ratio = current_width / current_height
|
| 138 |
+
|
| 139 |
+
if original_aspect_ratio > current_aspect_ratio:
|
| 140 |
+
scale_factor = current_width / original_width
|
| 141 |
+
new_height = int(original_height * scale_factor)
|
| 142 |
+
padding = (current_height - new_height) // 2
|
| 143 |
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
| 144 |
+
else:
|
| 145 |
+
scale_factor = current_height / original_height
|
| 146 |
+
new_width = int(original_width * scale_factor)
|
| 147 |
+
padding = (current_width - new_width) // 2
|
| 148 |
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
| 149 |
+
|
| 150 |
+
return unpadded_tensor
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
@dataclass
|
| 154 |
+
class LlavaNextCausalLMOutputWithPast(ModelOutput):
|
| 155 |
+
"""
|
| 156 |
+
Base class for LlavaNext causal language model (or autoregressive) outputs.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 160 |
+
Language modeling loss (for next-token prediction).
|
| 161 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 162 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 163 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 164 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 165 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 166 |
+
|
| 167 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 168 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 169 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 170 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 171 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 172 |
+
|
| 173 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 174 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 175 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 176 |
+
sequence_length)`.
|
| 177 |
+
|
| 178 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 179 |
+
heads.
|
| 180 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
| 181 |
+
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
|
| 182 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
loss: Optional[torch.FloatTensor] = None
|
| 186 |
+
logits: torch.FloatTensor = None
|
| 187 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 188 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 189 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 190 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
|
| 194 |
+
class LlavaNextMultiModalProjector(nn.Module):
|
| 195 |
+
def __init__(self, config: LlavaNextConfig):
|
| 196 |
+
super().__init__()
|
| 197 |
+
|
| 198 |
+
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
| 199 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
| 200 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
| 201 |
+
|
| 202 |
+
def forward(self, image_features):
|
| 203 |
+
hidden_states = self.linear_1(image_features)
|
| 204 |
+
hidden_states = self.act(hidden_states)
|
| 205 |
+
hidden_states = self.linear_2(hidden_states)
|
| 206 |
+
return hidden_states
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
LLAVA_NEXT_START_DOCSTRING = r"""
|
| 210 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 211 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 212 |
+
etc.)
|
| 213 |
+
|
| 214 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 215 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 216 |
+
and behavior.
|
| 217 |
+
|
| 218 |
+
Parameters:
|
| 219 |
+
config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]):
|
| 220 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 221 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 222 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 223 |
+
"""
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
@add_start_docstrings(
|
| 227 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 228 |
+
LLAVA_NEXT_START_DOCSTRING,
|
| 229 |
+
)
|
| 230 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next
|
| 231 |
+
class LlavaNextPreTrainedModel(PreTrainedModel):
|
| 232 |
+
config_class = LlavaNextConfig
|
| 233 |
+
base_model_prefix = "model"
|
| 234 |
+
supports_gradient_checkpointing = True
|
| 235 |
+
_no_split_modules = ["LlavaNextVisionAttention"]
|
| 236 |
+
_skip_keys_device_placement = "past_key_values"
|
| 237 |
+
_supports_flash_attn_2 = True
|
| 238 |
+
_supports_cache_class = True
|
| 239 |
+
|
| 240 |
+
def _init_weights(self, module):
|
| 241 |
+
# important: this ported version of LlavaNext isn't meant for training from scratch - only
|
| 242 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
| 243 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
|
| 244 |
+
std = (
|
| 245 |
+
self.config.initializer_range
|
| 246 |
+
if hasattr(self.config, "initializer_range")
|
| 247 |
+
else self.config.text_config.initializer_range
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
if hasattr(module, "class_embedding"):
|
| 251 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 252 |
+
|
| 253 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 254 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 255 |
+
if module.bias is not None:
|
| 256 |
+
module.bias.data.zero_()
|
| 257 |
+
elif isinstance(module, nn.Embedding):
|
| 258 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 259 |
+
if module.padding_idx is not None:
|
| 260 |
+
module.weight.data[module.padding_idx].zero_()
|
| 261 |
+
|
| 262 |
+
@property
|
| 263 |
+
def _supports_sdpa(self):
|
| 264 |
+
"""
|
| 265 |
+
Retrieve language_model's attribute to check whether the model supports
|
| 266 |
+
SDPA or not.
|
| 267 |
+
"""
|
| 268 |
+
return self.language_model._supports_sdpa
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
LLAVA_NEXT_INPUTS_DOCSTRING = r"""
|
| 272 |
+
Args:
|
| 273 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 274 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 275 |
+
it.
|
| 276 |
+
|
| 277 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 278 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 279 |
+
|
| 280 |
+
[What are input IDs?](../glossary#input-ids)
|
| 281 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
| 282 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
| 283 |
+
[`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
|
| 284 |
+
[`LlavaNextImageProcessor`] for processing images.
|
| 285 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
| 286 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
| 287 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 288 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 289 |
+
|
| 290 |
+
- 1 for tokens that are **not masked**,
|
| 291 |
+
- 0 for tokens that are **masked**.
|
| 292 |
+
|
| 293 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 294 |
+
|
| 295 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 296 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 297 |
+
|
| 298 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 299 |
+
`past_key_values`).
|
| 300 |
+
|
| 301 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 302 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 303 |
+
information on the default strategy.
|
| 304 |
+
|
| 305 |
+
- 1 indicates the head is **not masked**,
|
| 306 |
+
- 0 indicates the head is **masked**.
|
| 307 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 308 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 309 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
| 310 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 311 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 312 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 313 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 314 |
+
|
| 315 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 316 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 317 |
+
|
| 318 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 319 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 320 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 321 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 322 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 323 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 324 |
+
model's internal embedding lookup matrix.
|
| 325 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
| 326 |
+
The index of the layer to select the vision feature.
|
| 327 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
| 328 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 329 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
| 330 |
+
If `"full"`, the full vision features are used.
|
| 331 |
+
use_cache (`bool`, *optional*):
|
| 332 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 333 |
+
`past_key_values`).
|
| 334 |
+
output_attentions (`bool`, *optional*):
|
| 335 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 336 |
+
tensors for more detail.
|
| 337 |
+
output_hidden_states (`bool`, *optional*):
|
| 338 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 339 |
+
more detail.
|
| 340 |
+
return_dict (`bool`, *optional*):
|
| 341 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 342 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 343 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 344 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 345 |
+
the complete sequence length.
|
| 346 |
+
"""
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
@add_start_docstrings(
|
| 350 |
+
"""The LLAVA-NeXT model which consists of a vision backbone and a language model.""",
|
| 351 |
+
LLAVA_NEXT_START_DOCSTRING,
|
| 352 |
+
)
|
| 353 |
+
class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel, GenerationMixin):
|
| 354 |
+
def __init__(self, config: LlavaNextConfig):
|
| 355 |
+
super().__init__(config)
|
| 356 |
+
self.vision_tower = AutoModel.from_config(config.vision_config)
|
| 357 |
+
|
| 358 |
+
self.multi_modal_projector = LlavaNextMultiModalProjector(config)
|
| 359 |
+
embed_std = 1 / math.sqrt(config.text_config.hidden_size)
|
| 360 |
+
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
|
| 361 |
+
|
| 362 |
+
self.vocab_size = config.text_config.vocab_size
|
| 363 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
| 364 |
+
config.text_config, attn_implementation=config._attn_implementation
|
| 365 |
+
)
|
| 366 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
| 367 |
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
| 368 |
+
self.post_init()
|
| 369 |
+
|
| 370 |
+
@property
|
| 371 |
+
def padding_side(self):
|
| 372 |
+
return self._padding_side
|
| 373 |
+
|
| 374 |
+
@padding_side.setter
|
| 375 |
+
def padding_side(self, padding_side: str):
|
| 376 |
+
if padding_side not in ["left", "right"]:
|
| 377 |
+
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
| 378 |
+
self._padding_side = padding_side
|
| 379 |
+
|
| 380 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
|
| 381 |
+
def get_input_embeddings(self):
|
| 382 |
+
return self.language_model.get_input_embeddings()
|
| 383 |
+
|
| 384 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
|
| 385 |
+
def set_input_embeddings(self, value):
|
| 386 |
+
self.language_model.set_input_embeddings(value)
|
| 387 |
+
|
| 388 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
|
| 389 |
+
def get_output_embeddings(self):
|
| 390 |
+
return self.language_model.get_output_embeddings()
|
| 391 |
+
|
| 392 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
|
| 393 |
+
def set_output_embeddings(self, new_embeddings):
|
| 394 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 395 |
+
|
| 396 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
|
| 397 |
+
def set_decoder(self, decoder):
|
| 398 |
+
self.language_model.set_decoder(decoder)
|
| 399 |
+
|
| 400 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
|
| 401 |
+
def get_decoder(self):
|
| 402 |
+
return self.language_model.get_decoder()
|
| 403 |
+
|
| 404 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
|
| 405 |
+
def tie_weights(self):
|
| 406 |
+
return self.language_model.tie_weights()
|
| 407 |
+
|
| 408 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
|
| 409 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
| 410 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
| 411 |
+
# update vocab size
|
| 412 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 413 |
+
self.vocab_size = model_embeds.num_embeddings
|
| 414 |
+
return model_embeds
|
| 415 |
+
|
| 416 |
+
def _merge_input_ids_with_image_features(
|
| 417 |
+
self,
|
| 418 |
+
image_features,
|
| 419 |
+
feature_lens,
|
| 420 |
+
inputs_embeds,
|
| 421 |
+
input_ids,
|
| 422 |
+
attention_mask,
|
| 423 |
+
position_ids=None,
|
| 424 |
+
labels=None,
|
| 425 |
+
image_token_index=None,
|
| 426 |
+
ignore_index=-100,
|
| 427 |
+
):
|
| 428 |
+
"""
|
| 429 |
+
Merge input_ids with with image features into final embeddings
|
| 430 |
+
|
| 431 |
+
Args:
|
| 432 |
+
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
|
| 433 |
+
All vision vectors of all images in the batch
|
| 434 |
+
feature_lens (`torch.LongTensor` of shape `(num_images)`):
|
| 435 |
+
The length of visual embeddings of each image as stacked in `image_features`
|
| 436 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
|
| 437 |
+
Token embeddings before merging with visual embeddings
|
| 438 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 439 |
+
Input_ids of tokens, possibly filled with image token
|
| 440 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 441 |
+
Mask to avoid performing attention on padding token indices.
|
| 442 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 443 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 444 |
+
config.n_positions - 1]`.
|
| 445 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
|
| 446 |
+
:abels need to be recalculated to support training (if provided)
|
| 447 |
+
image_token_index (`int`, *optional*)
|
| 448 |
+
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
|
| 449 |
+
ignore_index (`int`, *optional*)
|
| 450 |
+
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
|
| 451 |
+
Returns:
|
| 452 |
+
final_embedding, final_attention_mask, position_ids, final_labels
|
| 453 |
+
|
| 454 |
+
Explanation:
|
| 455 |
+
each image has variable length embeddings, with length specified by feature_lens
|
| 456 |
+
image_features is concatenation of all visual embed vectors
|
| 457 |
+
task: fill each <image> with the correct number of visual embeddings
|
| 458 |
+
Example:
|
| 459 |
+
X (5 patches), Y (3 patches), Z (8)
|
| 460 |
+
X, Y are in the same sequence (in-context learning)
|
| 461 |
+
if right padding
|
| 462 |
+
input_ids: [
|
| 463 |
+
a b c d e f X g h i j k Y l m
|
| 464 |
+
o p q r Z s t u v _ _ _ _ _ _
|
| 465 |
+
]
|
| 466 |
+
input_ids should be: [
|
| 467 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
| 468 |
+
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
|
| 469 |
+
]
|
| 470 |
+
labels should be: [
|
| 471 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
| 472 |
+
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
|
| 473 |
+
]
|
| 474 |
+
elif left padding
|
| 475 |
+
input_ids: [
|
| 476 |
+
a b c d e f X g h i j k Y l m
|
| 477 |
+
_ _ _ _ _ _ o p q r Z s t u v
|
| 478 |
+
]
|
| 479 |
+
input_ids should be: [
|
| 480 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
| 481 |
+
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
|
| 482 |
+
]
|
| 483 |
+
labels should be: [
|
| 484 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
| 485 |
+
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
|
| 486 |
+
]
|
| 487 |
+
Edge cases:
|
| 488 |
+
* If tokens are same but image token sizes are different, then cannot infer left or right padding
|
| 489 |
+
```python
|
| 490 |
+
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
| 491 |
+
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
|
| 492 |
+
prompts = [
|
| 493 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
| 494 |
+
"[INST] <image>\nWhat is shown in this image? [/INST]",
|
| 495 |
+
]
|
| 496 |
+
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
|
| 497 |
+
chart_img has 2634 tokens, while cat_img has 2340 tokens
|
| 498 |
+
```
|
| 499 |
+
|
| 500 |
+
input_ids: [
|
| 501 |
+
a b c d X g h
|
| 502 |
+
i j Y k l m n
|
| 503 |
+
]
|
| 504 |
+
where X is 3 tokens while Y is 5, this mean after merge
|
| 505 |
+
if left-padding (batched generation)
|
| 506 |
+
input_ids should be: [
|
| 507 |
+
_ _ a b c d X X X g h
|
| 508 |
+
i j Y Y Y Y Y k l m n
|
| 509 |
+
]
|
| 510 |
+
elif (right padding) (training)
|
| 511 |
+
input_ids should be: [
|
| 512 |
+
a b c d X X X g h _ _
|
| 513 |
+
i j Y Y Y Y Y k l m n
|
| 514 |
+
]
|
| 515 |
+
"""
|
| 516 |
+
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
|
| 517 |
+
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
|
| 518 |
+
|
| 519 |
+
if self.training and self.padding_side == "left":
|
| 520 |
+
logger.warning_once(
|
| 521 |
+
"Padding side is set to 'left' but the model is in training mode. For training "
|
| 522 |
+
"it is recommended to set `model.padding_side='right' and `processor.tokenizer.padding_side='right'`. "
|
| 523 |
+
"If that's intended, ignore this warning"
|
| 524 |
+
)
|
| 525 |
+
if not self.training and self.padding_side == "right":
|
| 526 |
+
logger.warning_once(
|
| 527 |
+
"Padding side is set to 'right' but the model is in inference mode. For correct "
|
| 528 |
+
"generation results, please set `model.padding_side='left'` and `processor.tokenizer.padding_side='left'`. "
|
| 529 |
+
"If that's intended, ignore this warning"
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
with torch.no_grad():
|
| 533 |
+
# ! in llava 1.6, number of patches is variable
|
| 534 |
+
num_images = feature_lens.size(0)
|
| 535 |
+
num_image_features, embed_dim = image_features.shape
|
| 536 |
+
if feature_lens.sum() != num_image_features:
|
| 537 |
+
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
|
| 538 |
+
batch_size = input_ids.shape[0]
|
| 539 |
+
_left_padding = torch.any(attention_mask[:, 0] == 0)
|
| 540 |
+
_right_padding = torch.any(attention_mask[:, -1] == 0)
|
| 541 |
+
|
| 542 |
+
left_padding = self.padding_side == "left"
|
| 543 |
+
if batch_size > 1:
|
| 544 |
+
if _left_padding and _right_padding:
|
| 545 |
+
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
|
| 546 |
+
elif _right_padding and left_padding:
|
| 547 |
+
left_padding = False
|
| 548 |
+
elif _left_padding and not left_padding:
|
| 549 |
+
left_padding = True
|
| 550 |
+
|
| 551 |
+
# Whether to turn off right padding
|
| 552 |
+
# 1. Create a mask to know where special image tokens are
|
| 553 |
+
special_image_token_mask = input_ids == image_token_index
|
| 554 |
+
# special_image_token_mask: [bsz, seqlen]
|
| 555 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
| 556 |
+
# num_special_image_tokens: [bsz]
|
| 557 |
+
# Reserve for padding of num_images
|
| 558 |
+
total_num_special_image_tokens = torch.sum(special_image_token_mask)
|
| 559 |
+
|
| 560 |
+
# we have dummy images, so skip this assert
|
| 561 |
+
# if total_num_special_image_tokens != num_images:
|
| 562 |
+
# raise ValueError(
|
| 563 |
+
# f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
|
| 564 |
+
# )
|
| 565 |
+
|
| 566 |
+
# Compute the maximum embed dimension
|
| 567 |
+
# max_image_feature_lens is max_feature_lens per batch
|
| 568 |
+
feature_lens = feature_lens.to(input_ids.device)
|
| 569 |
+
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
|
| 570 |
+
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
|
| 571 |
+
embed_sequence_lengths = (
|
| 572 |
+
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
|
| 573 |
+
)
|
| 574 |
+
max_embed_dim = embed_sequence_lengths.max()
|
| 575 |
+
|
| 576 |
+
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
|
| 577 |
+
# 2. Compute the positions where text should be written
|
| 578 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
| 579 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
|
| 580 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
| 581 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
| 582 |
+
# ! instead of special_image_token_mask * (num_image_patches - 1)
|
| 583 |
+
# special_image_token_mask * (num_feature_len - 1)
|
| 584 |
+
special_image_token_mask = special_image_token_mask.long()
|
| 585 |
+
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
|
| 586 |
+
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
|
| 587 |
+
if left_padding:
|
| 588 |
+
# shift right token positions so that they are ending at the same number
|
| 589 |
+
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
|
| 590 |
+
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
|
| 591 |
+
|
| 592 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
| 593 |
+
|
| 594 |
+
# 3. Create the full embedding, already padded to the maximum position
|
| 595 |
+
final_embedding = torch.zeros(
|
| 596 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 597 |
+
)
|
| 598 |
+
final_attention_mask = torch.zeros(
|
| 599 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
| 600 |
+
)
|
| 601 |
+
final_input_ids = torch.full(
|
| 602 |
+
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
|
| 603 |
+
)
|
| 604 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
| 605 |
+
# set the corresponding tensors into their correct target device.
|
| 606 |
+
target_device = inputs_embeds.device
|
| 607 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
| 608 |
+
batch_indices.to(target_device),
|
| 609 |
+
non_image_indices.to(target_device),
|
| 610 |
+
text_to_overwrite.to(target_device),
|
| 611 |
+
)
|
| 612 |
+
attention_mask = attention_mask.to(target_device)
|
| 613 |
+
input_ids = input_ids.to(target_device)
|
| 614 |
+
|
| 615 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
| 616 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
| 617 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
| 618 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
| 619 |
+
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
|
| 620 |
+
final_labels = None
|
| 621 |
+
if labels is not None:
|
| 622 |
+
labels = labels.to(target_device)
|
| 623 |
+
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
|
| 624 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
| 625 |
+
|
| 626 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
| 627 |
+
with torch.no_grad():
|
| 628 |
+
image_to_overwrite = torch.full(
|
| 629 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
| 630 |
+
)
|
| 631 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
| 632 |
+
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
|
| 633 |
+
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
|
| 634 |
+
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
|
| 635 |
+
|
| 636 |
+
if left_padding:
|
| 637 |
+
# exclude padding on the left
|
| 638 |
+
max_embed_dim = max_embed_dim.to(target_device)
|
| 639 |
+
val = (max_embed_dim - embed_indices) <= embed_seq_lens
|
| 640 |
+
else:
|
| 641 |
+
# exclude padding on the right
|
| 642 |
+
val = embed_indices < embed_seq_lens
|
| 643 |
+
image_to_overwrite &= val
|
| 644 |
+
|
| 645 |
+
if image_to_overwrite.sum() != num_image_features:
|
| 646 |
+
raise ValueError(
|
| 647 |
+
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
|
| 648 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
| 649 |
+
f" the number of image given to the model is {num_images}. "
|
| 650 |
+
f"This prevents correct indexing and breaks batch generation."
|
| 651 |
+
)
|
| 652 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
| 653 |
+
final_attention_mask |= image_to_overwrite
|
| 654 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
| 655 |
+
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
|
| 656 |
+
|
| 657 |
+
def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
|
| 658 |
+
"""
|
| 659 |
+
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
|
| 660 |
+
|
| 661 |
+
Args:
|
| 662 |
+
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
|
| 663 |
+
List of image feature tensor, each contains all the visual feature of all patches.
|
| 664 |
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
| 665 |
+
Actual image size of each images (H, W).
|
| 666 |
+
vision_feature_select_strategy (`str`)
|
| 667 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 668 |
+
image_newline (`torch.Tensor` of shape `(embed_dim)`)
|
| 669 |
+
New line embedding vector.
|
| 670 |
+
Returns:
|
| 671 |
+
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
|
| 672 |
+
feature_lens (`List[int]`)
|
| 673 |
+
token length of each image in image_features
|
| 674 |
+
"""
|
| 675 |
+
new_image_features = []
|
| 676 |
+
feature_lens = []
|
| 677 |
+
for image_idx, image_feature in enumerate(image_features):
|
| 678 |
+
if image_feature.shape[0] > 1:
|
| 679 |
+
base_image_feature = image_feature[0]
|
| 680 |
+
image_feature = image_feature[1:]
|
| 681 |
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
| 682 |
+
|
| 683 |
+
if vision_feature_select_strategy == "default":
|
| 684 |
+
expected_num_patches = height * width
|
| 685 |
+
elif vision_feature_select_strategy == "full":
|
| 686 |
+
expected_num_patches = height * width + 1
|
| 687 |
+
if expected_num_patches != base_image_feature.shape[0]:
|
| 688 |
+
raise ValueError("The number of patches is not consistent with the image size.")
|
| 689 |
+
|
| 690 |
+
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
|
| 691 |
+
image_sizes[image_idx],
|
| 692 |
+
self.config.image_grid_pinpoints,
|
| 693 |
+
self.config.vision_config.image_size,
|
| 694 |
+
)
|
| 695 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
| 696 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
| 697 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
| 698 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
| 699 |
+
if image_newline is not None:
|
| 700 |
+
image_feature = torch.cat(
|
| 701 |
+
(
|
| 702 |
+
image_feature,
|
| 703 |
+
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
|
| 704 |
+
),
|
| 705 |
+
dim=-1,
|
| 706 |
+
)
|
| 707 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
| 708 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
| 709 |
+
else:
|
| 710 |
+
image_feature = image_feature[0]
|
| 711 |
+
if image_newline is not None:
|
| 712 |
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
| 713 |
+
new_image_features.append(image_feature)
|
| 714 |
+
feature_lens.append(image_feature.size(0))
|
| 715 |
+
image_features = torch.cat(new_image_features, dim=0)
|
| 716 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
| 717 |
+
return image_features, feature_lens
|
| 718 |
+
|
| 719 |
+
@add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING)
|
| 720 |
+
@replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 721 |
+
def forward(
|
| 722 |
+
self,
|
| 723 |
+
input_ids: torch.LongTensor = None,
|
| 724 |
+
pixel_values: torch.FloatTensor = None,
|
| 725 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
| 726 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 727 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 728 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 729 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 730 |
+
vision_feature_layer: Optional[int] = None,
|
| 731 |
+
vision_feature_select_strategy: Optional[str] = None,
|
| 732 |
+
labels: Optional[torch.LongTensor] = None,
|
| 733 |
+
use_cache: Optional[bool] = None,
|
| 734 |
+
output_attentions: Optional[bool] = None,
|
| 735 |
+
output_hidden_states: Optional[bool] = None,
|
| 736 |
+
return_dict: Optional[bool] = None,
|
| 737 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 738 |
+
num_logits_to_keep: int = 0,
|
| 739 |
+
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
|
| 740 |
+
r"""
|
| 741 |
+
Args:
|
| 742 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 743 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 744 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 745 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 746 |
+
|
| 747 |
+
num_logits_to_keep (`int`, *optional*):
|
| 748 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
| 749 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 750 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 751 |
+
|
| 752 |
+
Returns:
|
| 753 |
+
|
| 754 |
+
Example:
|
| 755 |
+
|
| 756 |
+
```python
|
| 757 |
+
>>> from PIL import Image
|
| 758 |
+
>>> import requests
|
| 759 |
+
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration
|
| 760 |
+
|
| 761 |
+
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
| 762 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
| 763 |
+
|
| 764 |
+
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
| 765 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 766 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 767 |
+
|
| 768 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
| 769 |
+
|
| 770 |
+
>>> # Generate
|
| 771 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
| 772 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 773 |
+
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
|
| 774 |
+
```"""
|
| 775 |
+
|
| 776 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 777 |
+
output_hidden_states = (
|
| 778 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 779 |
+
)
|
| 780 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 781 |
+
vision_feature_layer = (
|
| 782 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
| 783 |
+
)
|
| 784 |
+
vision_feature_select_strategy = (
|
| 785 |
+
vision_feature_select_strategy
|
| 786 |
+
if vision_feature_select_strategy is not None
|
| 787 |
+
else self.config.vision_feature_select_strategy
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 791 |
+
raise ValueError(
|
| 792 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 793 |
+
)
|
| 794 |
+
|
| 795 |
+
if pixel_values is not None and inputs_embeds is not None:
|
| 796 |
+
raise ValueError(
|
| 797 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
legacy_processing = False
|
| 801 |
+
has_image_input = pixel_values is not None and pixel_values.size(0) > 0 and pixel_values.norm() != 0
|
| 802 |
+
if inputs_embeds is None:
|
| 803 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 804 |
+
|
| 805 |
+
# if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
|
| 806 |
+
# not very reliable, but we don't expect one to actually pass 500+ images for one prompt
|
| 807 |
+
# In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
|
| 808 |
+
# legacy_processing = (
|
| 809 |
+
# (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
|
| 810 |
+
# ) or (input_ids.shape[-1] == 1 and pixel_values is not None)
|
| 811 |
+
|
| 812 |
+
legacy_processing = False # @ruimeng hardcode to False
|
| 813 |
+
|
| 814 |
+
if has_image_input:
|
| 815 |
+
# ! infer image_num_patches from image_sizes
|
| 816 |
+
image_num_patches = [
|
| 817 |
+
image_size_to_num_patches(
|
| 818 |
+
image_size=imsize,
|
| 819 |
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
| 820 |
+
patch_size=self.config.vision_config.image_size,
|
| 821 |
+
)
|
| 822 |
+
for imsize in image_sizes
|
| 823 |
+
]
|
| 824 |
+
# figure out if pixel_values is concatenated or stacked
|
| 825 |
+
if pixel_values.dim() == 5:
|
| 826 |
+
# stacking when input is (batch_size, num_patches, num_channels, height, width)
|
| 827 |
+
_pixel_values_list = [
|
| 828 |
+
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
|
| 829 |
+
]
|
| 830 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
| 831 |
+
elif pixel_values.dim() != 4:
|
| 832 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
| 833 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
| 834 |
+
|
| 835 |
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
| 836 |
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
| 837 |
+
if vision_feature_select_strategy == "default":
|
| 838 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
| 839 |
+
elif vision_feature_select_strategy == "full":
|
| 840 |
+
selected_image_feature = selected_image_feature
|
| 841 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
| 842 |
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
| 843 |
+
|
| 844 |
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
| 845 |
+
image_features, feature_lens = self.pack_image_features(
|
| 846 |
+
image_features,
|
| 847 |
+
image_sizes,
|
| 848 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
| 849 |
+
image_newline=self.image_newline,
|
| 850 |
+
)
|
| 851 |
+
if legacy_processing:
|
| 852 |
+
logger.warning_once(
|
| 853 |
+
"Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
|
| 854 |
+
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
|
| 855 |
+
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
|
| 856 |
+
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47."
|
| 857 |
+
)
|
| 858 |
+
if input_ids.shape[1] != 1:
|
| 859 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
| 860 |
+
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
|
| 861 |
+
image_features,
|
| 862 |
+
feature_lens,
|
| 863 |
+
inputs_embeds,
|
| 864 |
+
input_ids,
|
| 865 |
+
attention_mask,
|
| 866 |
+
position_ids,
|
| 867 |
+
labels=labels,
|
| 868 |
+
)
|
| 869 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
|
| 870 |
+
else:
|
| 871 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
| 872 |
+
# that are set to 0
|
| 873 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
| 874 |
+
|
| 875 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
| 876 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
| 877 |
+
|
| 878 |
+
# Get the target length
|
| 879 |
+
target_length = input_ids.shape[1]
|
| 880 |
+
past_length = first_layer_past_key_value.shape[-1]
|
| 881 |
+
|
| 882 |
+
extended_attention_mask = torch.ones(
|
| 883 |
+
(attention_mask.shape[0], past_length),
|
| 884 |
+
dtype=attention_mask.dtype,
|
| 885 |
+
device=attention_mask.device,
|
| 886 |
+
)
|
| 887 |
+
|
| 888 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
| 889 |
+
# if one uses Llava + Fused modules where the cache on the
|
| 890 |
+
# first iteration is already big enough, or if one passes custom cache
|
| 891 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
| 892 |
+
new_batch_index = batch_index[valid_indices]
|
| 893 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
| 894 |
+
|
| 895 |
+
# Zero-out the places where we don't need to attend
|
| 896 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
| 897 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
| 898 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
| 899 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
|
| 900 |
+
-target_length:
|
| 901 |
+
]
|
| 902 |
+
|
| 903 |
+
# TODO: @raushan retain only the new behavior after v4.47
|
| 904 |
+
else:
|
| 905 |
+
special_image_mask = (
|
| 906 |
+
(input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
|
| 907 |
+
)
|
| 908 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 909 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
| 910 |
+
outputs = self.language_model(
|
| 911 |
+
attention_mask=attention_mask,
|
| 912 |
+
position_ids=position_ids,
|
| 913 |
+
past_key_values=past_key_values,
|
| 914 |
+
inputs_embeds=inputs_embeds,
|
| 915 |
+
use_cache=use_cache,
|
| 916 |
+
output_attentions=output_attentions,
|
| 917 |
+
output_hidden_states=output_hidden_states,
|
| 918 |
+
return_dict=return_dict,
|
| 919 |
+
cache_position=cache_position,
|
| 920 |
+
num_logits_to_keep=num_logits_to_keep,
|
| 921 |
+
)
|
| 922 |
+
|
| 923 |
+
logits = outputs[0]
|
| 924 |
+
|
| 925 |
+
loss = None
|
| 926 |
+
if labels is not None:
|
| 927 |
+
# Shift so that tokens < n predict n
|
| 928 |
+
if attention_mask is not None:
|
| 929 |
+
shift_attention_mask = attention_mask[..., 1:]
|
| 930 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
| 931 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
| 932 |
+
else:
|
| 933 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 934 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 935 |
+
# Flatten the tokens
|
| 936 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 937 |
+
loss = loss_fct(
|
| 938 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
| 939 |
+
)
|
| 940 |
+
|
| 941 |
+
if not return_dict:
|
| 942 |
+
output = (logits,) + outputs[1:]
|
| 943 |
+
return (loss,) + output if loss is not None else output
|
| 944 |
+
|
| 945 |
+
return LlavaNextCausalLMOutputWithPast(
|
| 946 |
+
loss=loss,
|
| 947 |
+
logits=logits,
|
| 948 |
+
past_key_values=outputs.past_key_values,
|
| 949 |
+
hidden_states=outputs.hidden_states,
|
| 950 |
+
attentions=outputs.attentions,
|
| 951 |
+
image_hidden_states=image_features if has_image_input else None,
|
| 952 |
+
)
|
| 953 |
+
|
| 954 |
+
def prepare_inputs_for_generation(
|
| 955 |
+
self,
|
| 956 |
+
input_ids,
|
| 957 |
+
past_key_values=None,
|
| 958 |
+
inputs_embeds=None,
|
| 959 |
+
pixel_values=None,
|
| 960 |
+
image_sizes=None,
|
| 961 |
+
attention_mask=None,
|
| 962 |
+
cache_position=None,
|
| 963 |
+
num_logits_to_keep=None,
|
| 964 |
+
**kwargs,
|
| 965 |
+
):
|
| 966 |
+
legacy_processing = (
|
| 967 |
+
input_ids is not None
|
| 968 |
+
and (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
| 972 |
+
input_ids,
|
| 973 |
+
past_key_values=past_key_values,
|
| 974 |
+
inputs_embeds=inputs_embeds,
|
| 975 |
+
attention_mask=attention_mask,
|
| 976 |
+
cache_position=cache_position,
|
| 977 |
+
num_logits_to_keep=num_logits_to_keep,
|
| 978 |
+
**kwargs,
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
| 982 |
+
# Otherwise we need pixel values to be passed to model
|
| 983 |
+
if legacy_processing or cache_position[0] == 0:
|
| 984 |
+
model_inputs["pixel_values"] = pixel_values
|
| 985 |
+
model_inputs["image_sizes"] = image_sizes
|
| 986 |
+
|
| 987 |
+
return model_inputs
|
src/vlm_backbone/llava_next/processing_llava_next.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
Processor class for LLaVa-NeXT.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
from typing import List, Union
|
| 20 |
+
|
| 21 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 22 |
+
from transformers.image_processing_utils import select_best_resolution
|
| 23 |
+
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
|
| 24 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
|
| 25 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 26 |
+
from transformers.utils import logging
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class LlavaNextProcessorKwargs(ProcessingKwargs, total=False):
|
| 33 |
+
_defaults = {
|
| 34 |
+
"text_kwargs": {
|
| 35 |
+
"padding": False,
|
| 36 |
+
},
|
| 37 |
+
"images_kwargs": {
|
| 38 |
+
"do_pad": True,
|
| 39 |
+
},
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class LlavaNextProcessor(ProcessorMixin):
|
| 44 |
+
r"""
|
| 45 |
+
Constructs a LLaVa-NeXT processor which wraps a LLaVa-NeXT image processor and a LLaMa tokenizer into a single processor.
|
| 46 |
+
|
| 47 |
+
[`LlavaNextProcessor`] offers all the functionalities of [`LlavaNextImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
| 48 |
+
[`~LlavaNextProcessor.__call__`] and [`~LlavaNextProcessor.decode`] for more information.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
image_processor ([`LlavaNextImageProcessor`], *optional*):
|
| 52 |
+
The image processor is a required input.
|
| 53 |
+
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
| 54 |
+
The tokenizer is a required input.
|
| 55 |
+
patch_size (`int`, *optional*):
|
| 56 |
+
Patch size from the vision tower.
|
| 57 |
+
vision_feature_select_strategy (`str`, *optional*):
|
| 58 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
| 59 |
+
Shoudl be same as in model's config
|
| 60 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
| 61 |
+
in a chat into a tokenizable string.
|
| 62 |
+
image_token (`str`, *optional*, defaults to `"<image>"`):
|
| 63 |
+
Special token used to denote image location.
|
| 64 |
+
num_additional_image_tokens (`int`, *optional*, defaults to 0):
|
| 65 |
+
Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other
|
| 66 |
+
extra tokens appended, no need to set this arg.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
attributes = ["image_processor", "tokenizer"]
|
| 70 |
+
valid_kwargs = [
|
| 71 |
+
"chat_template",
|
| 72 |
+
"patch_size",
|
| 73 |
+
"vision_feature_select_strategy",
|
| 74 |
+
"image_token",
|
| 75 |
+
"num_additional_image_tokens",
|
| 76 |
+
]
|
| 77 |
+
image_processor_class = "AutoImageProcessor"
|
| 78 |
+
tokenizer_class = "AutoTokenizer"
|
| 79 |
+
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
image_processor=None,
|
| 83 |
+
tokenizer=None,
|
| 84 |
+
patch_size=None,
|
| 85 |
+
vision_feature_select_strategy=None,
|
| 86 |
+
chat_template=None,
|
| 87 |
+
image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
|
| 88 |
+
num_additional_image_tokens=0,
|
| 89 |
+
**kwargs,
|
| 90 |
+
):
|
| 91 |
+
self.patch_size = patch_size
|
| 92 |
+
self.num_additional_image_tokens = num_additional_image_tokens
|
| 93 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
| 94 |
+
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
|
| 95 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
| 96 |
+
|
| 97 |
+
def __call__(
|
| 98 |
+
self,
|
| 99 |
+
images: ImageInput = None,
|
| 100 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 101 |
+
audio=None,
|
| 102 |
+
videos=None,
|
| 103 |
+
**kwargs: Unpack[LlavaNextProcessorKwargs],
|
| 104 |
+
) -> BatchFeature:
|
| 105 |
+
"""
|
| 106 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 107 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
| 108 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 109 |
+
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 110 |
+
of the above two methods for more information.
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 114 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 115 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 116 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 117 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 118 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 119 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 123 |
+
|
| 124 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 125 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 126 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 127 |
+
`None`).
|
| 128 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 129 |
+
"""
|
| 130 |
+
if images is None and text is None:
|
| 131 |
+
raise ValueError("You have to specify at least images or text.")
|
| 132 |
+
# check if images and text inputs are reversed for BC
|
| 133 |
+
images, text = _validate_images_text_input_order(images, text)
|
| 134 |
+
|
| 135 |
+
output_kwargs = self._merge_kwargs(
|
| 136 |
+
LlavaNextProcessorKwargs,
|
| 137 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 138 |
+
**kwargs,
|
| 139 |
+
)
|
| 140 |
+
if images is not None:
|
| 141 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
| 142 |
+
else:
|
| 143 |
+
image_inputs = {}
|
| 144 |
+
|
| 145 |
+
if isinstance(text, str):
|
| 146 |
+
text = [text]
|
| 147 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 148 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
| 149 |
+
|
| 150 |
+
prompt_strings = text
|
| 151 |
+
if image_inputs:
|
| 152 |
+
if self.patch_size is None or self.vision_feature_select_strategy is None:
|
| 153 |
+
logger.warning_once(
|
| 154 |
+
"Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. "
|
| 155 |
+
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly "
|
| 156 |
+
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. "
|
| 157 |
+
"Using processors without these attributes in the config is deprecated and will throw an error in v4.50."
|
| 158 |
+
)
|
| 159 |
+
else:
|
| 160 |
+
image_sizes = iter(image_inputs["image_sizes"])
|
| 161 |
+
height, width = get_image_size(to_numpy_array(image_inputs["pixel_values"][0][0]))
|
| 162 |
+
prompt_strings = []
|
| 163 |
+
for sample in text:
|
| 164 |
+
while self.image_token in sample:
|
| 165 |
+
image_size = next(image_sizes)
|
| 166 |
+
if not isinstance(image_size, (list, tuple)):
|
| 167 |
+
# cast to list to avoid numerical precision errors when calculating unpadding
|
| 168 |
+
image_size = image_size.tolist()
|
| 169 |
+
orig_height, orig_width = image_size
|
| 170 |
+
num_image_tokens = self._get_number_of_features(orig_height, orig_width, height, width)
|
| 171 |
+
if self.vision_feature_select_strategy == "default":
|
| 172 |
+
num_image_tokens -= self.num_additional_image_tokens
|
| 173 |
+
sample = sample.replace(self.image_token, "<placeholder>" * num_image_tokens, 1)
|
| 174 |
+
prompt_strings.append(sample)
|
| 175 |
+
prompt_strings = [sample.replace("<placeholder>", self.image_token) for sample in prompt_strings]
|
| 176 |
+
|
| 177 |
+
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
| 178 |
+
|
| 179 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
| 180 |
+
|
| 181 |
+
def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
|
| 182 |
+
image_grid_pinpoints = self.image_processor.image_grid_pinpoints
|
| 183 |
+
|
| 184 |
+
height_best_resolution, width_best_resolution = select_best_resolution(
|
| 185 |
+
[orig_height, orig_width], image_grid_pinpoints
|
| 186 |
+
)
|
| 187 |
+
scale_height, scale_width = height_best_resolution // height, width_best_resolution // width
|
| 188 |
+
|
| 189 |
+
patches_height = height // self.patch_size
|
| 190 |
+
patches_width = width // self.patch_size
|
| 191 |
+
unpadded_features, newline_features = self._get_unpadded_features(
|
| 192 |
+
orig_height, orig_width, patches_height, patches_width, scale_height, scale_width
|
| 193 |
+
)
|
| 194 |
+
# The base patch covers the entire image (+1 for the CLS)
|
| 195 |
+
base_features = patches_height * patches_width + self.num_additional_image_tokens
|
| 196 |
+
num_image_tokens = unpadded_features + newline_features + base_features
|
| 197 |
+
return num_image_tokens
|
| 198 |
+
|
| 199 |
+
def _get_unpadded_features(self, height, width, patches_height, patches_width, scale_height, scale_width):
|
| 200 |
+
"""
|
| 201 |
+
Get number of features for a given image with height/width. LLaVA-NeXT is different from LLaVA
|
| 202 |
+
because it divided each image into patches depending on its resolution. Therefore we need to calculate how many
|
| 203 |
+
patches an image is divided into and get the number of features from that.
|
| 204 |
+
"""
|
| 205 |
+
current_height = patches_height * scale_height
|
| 206 |
+
current_width = patches_width * scale_width
|
| 207 |
+
|
| 208 |
+
original_aspect_ratio = width / height
|
| 209 |
+
current_aspect_ratio = current_width / current_height
|
| 210 |
+
if original_aspect_ratio > current_aspect_ratio:
|
| 211 |
+
new_height = (height * current_width) // width
|
| 212 |
+
padding = (current_height - new_height) // 2
|
| 213 |
+
current_height -= padding * 2
|
| 214 |
+
else:
|
| 215 |
+
new_width = (width * current_height) // height
|
| 216 |
+
padding = (current_width - new_width) // 2
|
| 217 |
+
current_width -= padding * 2
|
| 218 |
+
|
| 219 |
+
unpadded_features = current_height * current_width
|
| 220 |
+
newline_features = current_height
|
| 221 |
+
return (unpadded_features, newline_features)
|
| 222 |
+
|
| 223 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 224 |
+
def batch_decode(self, *args, **kwargs):
|
| 225 |
+
"""
|
| 226 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 227 |
+
refer to the docstring of this method for more information.
|
| 228 |
+
"""
|
| 229 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 230 |
+
|
| 231 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 232 |
+
def decode(self, *args, **kwargs):
|
| 233 |
+
"""
|
| 234 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 235 |
+
the docstring of this method for more information.
|
| 236 |
+
"""
|
| 237 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 238 |
+
|
| 239 |
+
@property
|
| 240 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 241 |
+
def model_input_names(self):
|
| 242 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 243 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 244 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|