Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import numpy as np
|
|
| 7 |
from PIL import Image
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
-
from diffusers import StableDiffusion3Pipeline,
|
| 11 |
from huggingface_hub import snapshot_download
|
| 12 |
|
| 13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
@@ -33,8 +33,11 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
| 33 |
|
| 34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def save_image(img):
|
| 40 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
@@ -63,6 +66,7 @@ def generate(
|
|
| 63 |
use_resolution_binning: bool = True,
|
| 64 |
progress=gr.Progress(track_tqdm=True),
|
| 65 |
):
|
|
|
|
| 66 |
pipe.to(device)
|
| 67 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 68 |
generator = torch.Generator().manual_seed(seed)
|
|
@@ -100,7 +104,8 @@ def img2img_generate(
|
|
| 100 |
use_resolution_binning: bool = True,
|
| 101 |
progress=gr.Progress(track_tqdm=True),
|
| 102 |
):
|
| 103 |
-
|
|
|
|
| 104 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 105 |
generator = torch.Generator().manual_seed(seed)
|
| 106 |
|
|
@@ -109,7 +114,7 @@ def img2img_generate(
|
|
| 109 |
|
| 110 |
init_image = init_image.resize((768, 768))
|
| 111 |
|
| 112 |
-
output =
|
| 113 |
prompt=prompt,
|
| 114 |
image=init_image,
|
| 115 |
negative_prompt=negative_prompt,
|
|
@@ -177,7 +182,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 177 |
)
|
| 178 |
seed = gr.Slider(
|
| 179 |
label="Seed",
|
| 180 |
-
|
| 181 |
maximum=MAX_SEED,
|
| 182 |
step=1,
|
| 183 |
value=0,
|
|
@@ -185,14 +190,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 185 |
|
| 186 |
steps = gr.Slider(
|
| 187 |
label="Steps",
|
| 188 |
-
|
| 189 |
maximum=60,
|
| 190 |
step=1,
|
| 191 |
value=25,
|
| 192 |
)
|
| 193 |
number_image = gr.Slider(
|
| 194 |
label="Number of Images",
|
| 195 |
-
|
| 196 |
maximum=4,
|
| 197 |
step=1,
|
| 198 |
value=1,
|
|
@@ -201,14 +206,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 201 |
with gr.Row(visible=True):
|
| 202 |
width = gr.Slider(
|
| 203 |
label="Width",
|
| 204 |
-
|
| 205 |
maximum=MAX_IMAGE_SIZE,
|
| 206 |
step=32,
|
| 207 |
value=1024,
|
| 208 |
)
|
| 209 |
height = gr.Slider(
|
| 210 |
label="Height",
|
| 211 |
-
|
| 212 |
maximum=MAX_IMAGE_SIZE,
|
| 213 |
step=32,
|
| 214 |
value=1024,
|
|
@@ -216,7 +221,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 216 |
with gr.Row():
|
| 217 |
guidance_scale = gr.Slider(
|
| 218 |
label="Guidance Scale",
|
| 219 |
-
|
| 220 |
maximum=10,
|
| 221 |
step=0.1,
|
| 222 |
value=7.0,
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
+
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline
|
| 11 |
from huggingface_hub import snapshot_download
|
| 12 |
|
| 13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
| 33 |
|
| 34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 35 |
|
| 36 |
+
def load_pipeline(pipeline_type):
|
| 37 |
+
if pipeline_type == "text2img":
|
| 38 |
+
return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 39 |
+
elif pipeline_type == "img2img":
|
| 40 |
+
return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 41 |
|
| 42 |
def save_image(img):
|
| 43 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
|
| 66 |
use_resolution_binning: bool = True,
|
| 67 |
progress=gr.Progress(track_tqdm=True),
|
| 68 |
):
|
| 69 |
+
pipe = load_pipeline("text2img")
|
| 70 |
pipe.to(device)
|
| 71 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 72 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 104 |
use_resolution_binning: bool = True,
|
| 105 |
progress=gr.Progress(track_tqdm=True),
|
| 106 |
):
|
| 107 |
+
pipe = load_pipeline("img2img")
|
| 108 |
+
pipe.to(device)
|
| 109 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 110 |
generator = torch.Generator().manual_seed(seed)
|
| 111 |
|
|
|
|
| 114 |
|
| 115 |
init_image = init_image.resize((768, 768))
|
| 116 |
|
| 117 |
+
output = pipe(
|
| 118 |
prompt=prompt,
|
| 119 |
image=init_image,
|
| 120 |
negative_prompt=negative_prompt,
|
|
|
|
| 182 |
)
|
| 183 |
seed = gr.Slider(
|
| 184 |
label="Seed",
|
| 185 |
+
minimum=0,
|
| 186 |
maximum=MAX_SEED,
|
| 187 |
step=1,
|
| 188 |
value=0,
|
|
|
|
| 190 |
|
| 191 |
steps = gr.Slider(
|
| 192 |
label="Steps",
|
| 193 |
+
minimum=0,
|
| 194 |
maximum=60,
|
| 195 |
step=1,
|
| 196 |
value=25,
|
| 197 |
)
|
| 198 |
number_image = gr.Slider(
|
| 199 |
label="Number of Images",
|
| 200 |
+
minimum=1,
|
| 201 |
maximum=4,
|
| 202 |
step=1,
|
| 203 |
value=1,
|
|
|
|
| 206 |
with gr.Row(visible=True):
|
| 207 |
width = gr.Slider(
|
| 208 |
label="Width",
|
| 209 |
+
minimum=256,
|
| 210 |
maximum=MAX_IMAGE_SIZE,
|
| 211 |
step=32,
|
| 212 |
value=1024,
|
| 213 |
)
|
| 214 |
height = gr.Slider(
|
| 215 |
label="Height",
|
| 216 |
+
minimum=256,
|
| 217 |
maximum=MAX_IMAGE_SIZE,
|
| 218 |
step=32,
|
| 219 |
value=1024,
|
|
|
|
| 221 |
with gr.Row():
|
| 222 |
guidance_scale = gr.Slider(
|
| 223 |
label="Guidance Scale",
|
| 224 |
+
minimum=0.1,
|
| 225 |
maximum=10,
|
| 226 |
step=0.1,
|
| 227 |
value=7.0,
|