Spaces:
Runtime error
Runtime error
jasonwuyl92
commited on
Commit
·
2ab45c8
0
Parent(s):
initial commit after cleanup
Browse files- .gitattributes +36 -0
- .gitignore +6 -0
- README.md +14 -0
- app.py +69 -0
- app_old.py +38 -0
- get_embeddings.ipynb +1047 -0
- misc.py +24 -0
- requirements.txt +13 -0
- run.py +51 -0
- streamlit_app.py +39 -0
- utils.py +170 -0
- vector_db.py +37 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.pq filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
.idea/
|
| 3 |
+
.python-version
|
| 4 |
+
.ipynb_checkpoints/
|
| 5 |
+
__pycache__
|
| 6 |
+
flagged
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Image Search Playground
|
| 3 |
+
emoji: 📈
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.30.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
python_version: 3.10.0
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from functools import partial
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
import utils
|
| 8 |
+
import vector_db
|
| 9 |
+
from utils import get_image_embedding, \
|
| 10 |
+
get_image_path, model_names, download_images, generate_and_save_embeddings, get_metadata_path, url_to_image
|
| 11 |
+
|
| 12 |
+
NUM_OUTPUTS = 4
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def search(input_img, model_name):
|
| 16 |
+
query_embedding = get_image_embedding(model_name, input_img).tolist()
|
| 17 |
+
top_results = vector_db.query_embeddings_db(query_embedding=query_embedding,
|
| 18 |
+
dataset_name=utils.cur_dataset, model_name=model_name)
|
| 19 |
+
print (top_results)
|
| 20 |
+
return [utils.url_to_image(hit['metadata']['mainphotourl']) for hit in top_results['matches']]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def read_tsv_temporary_file(temp_file_wrapper):
|
| 24 |
+
dataset_name = os.path.splitext(os.path.basename(temp_file_wrapper.name))[0]
|
| 25 |
+
utils.set_cur_dataset(dataset_name)
|
| 26 |
+
df = pd.read_csv(temp_file_wrapper.name, sep='\t') # Read the TSV content into a pandas DataFrame
|
| 27 |
+
df.to_csv(os.path.join(get_metadata_path(), dataset_name + '.tsv'), sep='\t', index=False)
|
| 28 |
+
print('start downloading')
|
| 29 |
+
download_images(df, get_image_path())
|
| 30 |
+
generate_and_save_embeddings()
|
| 31 |
+
utils.refresh_all_datasets()
|
| 32 |
+
utils.set_cur_dataset(dataset_name)
|
| 33 |
+
return gr.update(choices=utils.all_datasets, value=dataset_name)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def update_dataset_dropdown():
|
| 37 |
+
utils.refresh_all_datasets()
|
| 38 |
+
utils.set_cur_dataset(utils.all_datasets[0])
|
| 39 |
+
return gr.update(choices=utils.all_datasets, value=utils.cur_dataset)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def gen_image_blocks(num_outputs):
|
| 43 |
+
with gr.Row():
|
| 44 |
+
row = [gr.outputs.Image(label=model_name, type='filepath') for i in range(int(num_outputs))]
|
| 45 |
+
return row
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
with gr.Blocks() as demo:
|
| 49 |
+
galleries = dict()
|
| 50 |
+
with gr.Row():
|
| 51 |
+
with gr.Column(scale=1):
|
| 52 |
+
file_upload = gr.File(label="Upload TSV File", file_types=[".tsv"])
|
| 53 |
+
image_input = gr.inputs.Image(type="pil", label="Input Image")
|
| 54 |
+
dataset_dropdown = gr.Dropdown(label='Datasets', choices=utils.all_datasets)
|
| 55 |
+
b1 = gr.Button("Find Similar Images")
|
| 56 |
+
b2 = gr.Button("Refresh Datasets")
|
| 57 |
+
|
| 58 |
+
dataset_dropdown.select(utils.set_cur_dataset, inputs=dataset_dropdown)
|
| 59 |
+
file_upload.upload(read_tsv_temporary_file, inputs=file_upload, outputs=dataset_dropdown)
|
| 60 |
+
b2.click(update_dataset_dropdown, outputs=dataset_dropdown)
|
| 61 |
+
with gr.Column(scale=3):
|
| 62 |
+
for model_name in model_names:
|
| 63 |
+
galleries[model_name] = gen_image_blocks(NUM_OUTPUTS)
|
| 64 |
+
for model_name in model_names:
|
| 65 |
+
b1.click(partial(search, model_name=model_name), inputs=[image_input],
|
| 66 |
+
outputs=galleries[model_name])
|
| 67 |
+
b2.click(utils.refresh_all_datasets, outputs=dataset_dropdown)
|
| 68 |
+
|
| 69 |
+
demo.launch()
|
app_old.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from sentence_transformers import util as st_util
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import os
|
| 6 |
+
from utils import load_models, get_image_embedding, img_folder, model_name_to_ids, data_path, model_names
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def search(input_img, num_outputs):
|
| 10 |
+
results = []
|
| 11 |
+
for model_name in model_names:
|
| 12 |
+
query_embedding = get_image_embedding(model_name, input_img)
|
| 13 |
+
top_results = st_util.semantic_search(query_embedding,
|
| 14 |
+
np.vstack(list(corpus_embeddings[model_name + '-embedding'])),
|
| 15 |
+
top_k=int(num_outputs))[0]
|
| 16 |
+
results.append([os.path.join(img_folder,
|
| 17 |
+
corpus_embeddings.iloc[hit['corpus_id']]['name']) for hit in top_results])
|
| 18 |
+
return results
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
load_models()
|
| 22 |
+
corpus_embeddings = pd.read_parquet(
|
| 23 |
+
os.path.join(data_path, 'metadata/patagonia_losGatos_embeddings.pq'))
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Create the Gradio interface
|
| 28 |
+
iface = gr.Interface(
|
| 29 |
+
fn=search,
|
| 30 |
+
inputs=[gr.Image(type="pil"),
|
| 31 |
+
gr.inputs.Number(label="Number of results", default=3)],
|
| 32 |
+
outputs=[gr.Gallery(label=model_name, type='filepath') for model_name in model_names],
|
| 33 |
+
title="Search Similar Images",
|
| 34 |
+
description="Upload an image and find similar images",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Launch the Gradio interface
|
| 38 |
+
iface.launch(debug=True)
|
get_embeddings.ipynb
ADDED
|
@@ -0,0 +1,1047 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 28,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"tags": []
|
| 8 |
+
},
|
| 9 |
+
"outputs": [
|
| 10 |
+
{
|
| 11 |
+
"ename": "ImportError",
|
| 12 |
+
"evalue": "cannot import name 'data_path' from 'utils' (/Users/yonglinwu/dev/image-search-playground/utils.py)",
|
| 13 |
+
"output_type": "error",
|
| 14 |
+
"traceback": [
|
| 15 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 16 |
+
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
| 17 |
+
"Cell \u001b[0;32mIn[28], line 9\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mtorch\u001b[39;00m\n\u001b[1;32m 7\u001b[0m torch\u001b[39m.\u001b[39mset_printoptions(precision\u001b[39m=\u001b[39m\u001b[39m10\u001b[39m)\n\u001b[0;32m----> 9\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mutils\u001b[39;00m \u001b[39mimport\u001b[39;00m get_image_embeddings, model_name_to_ids, load_models, model_dict, data_path\n\u001b[1;32m 11\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mwarnings\u001b[39;00m\n\u001b[1;32m 12\u001b[0m warnings\u001b[39m.\u001b[39msimplefilter(action\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mignore\u001b[39m\u001b[39m'\u001b[39m, category\u001b[39m=\u001b[39m\u001b[39mFutureWarning\u001b[39;00m)\n",
|
| 18 |
+
"\u001b[0;31mImportError\u001b[0m: cannot import name 'data_path' from 'utils' (/Users/yonglinwu/dev/image-search-playground/utils.py)"
|
| 19 |
+
]
|
| 20 |
+
}
|
| 21 |
+
],
|
| 22 |
+
"source": [
|
| 23 |
+
"from sentence_transformers import SentenceTransformer, util\n",
|
| 24 |
+
"from PIL import Image\n",
|
| 25 |
+
"import pandas as pd\n",
|
| 26 |
+
"import os\n",
|
| 27 |
+
"import numpy as np\n",
|
| 28 |
+
"import torch\n",
|
| 29 |
+
"torch.set_printoptions(precision=10)\n",
|
| 30 |
+
"\n",
|
| 31 |
+
"from utils import get_image_embeddings, model_name_to_ids, load_models, model_dict, data_path\n",
|
| 32 |
+
"\n",
|
| 33 |
+
"import warnings\n",
|
| 34 |
+
"warnings.simplefilter(action='ignore', category=FutureWarning)\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"%load_ext autoreload\n",
|
| 37 |
+
"%autoreload 2\n"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": []
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"cell_type": "code",
|
| 49 |
+
"execution_count": 3,
|
| 50 |
+
"metadata": {
|
| 51 |
+
"tags": []
|
| 52 |
+
},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"patagonia_df = pd.read_csv(data_path + 'metadata/patagonia_losGatos.tsv', sep='\\t')"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": 4,
|
| 61 |
+
"metadata": {
|
| 62 |
+
"tags": []
|
| 63 |
+
},
|
| 64 |
+
"outputs": [
|
| 65 |
+
{
|
| 66 |
+
"data": {
|
| 67 |
+
"text/html": [
|
| 68 |
+
"<div>\n",
|
| 69 |
+
"<style scoped>\n",
|
| 70 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 71 |
+
" vertical-align: middle;\n",
|
| 72 |
+
" }\n",
|
| 73 |
+
"\n",
|
| 74 |
+
" .dataframe tbody tr th {\n",
|
| 75 |
+
" vertical-align: top;\n",
|
| 76 |
+
" }\n",
|
| 77 |
+
"\n",
|
| 78 |
+
" .dataframe thead th {\n",
|
| 79 |
+
" text-align: right;\n",
|
| 80 |
+
" }\n",
|
| 81 |
+
"</style>\n",
|
| 82 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 83 |
+
" <thead>\n",
|
| 84 |
+
" <tr style=\"text-align: right;\">\n",
|
| 85 |
+
" <th></th>\n",
|
| 86 |
+
" <th>brand</th>\n",
|
| 87 |
+
" <th>title</th>\n",
|
| 88 |
+
" <th>product_url</th>\n",
|
| 89 |
+
" <th>price</th>\n",
|
| 90 |
+
" <th>description</th>\n",
|
| 91 |
+
" <th>size</th>\n",
|
| 92 |
+
" <th>category</th>\n",
|
| 93 |
+
" <th>colors</th>\n",
|
| 94 |
+
" <th>Poshmark</th>\n",
|
| 95 |
+
" <th>Unnamed: 9</th>\n",
|
| 96 |
+
" <th>...</th>\n",
|
| 97 |
+
" <th>Unnamed: 38</th>\n",
|
| 98 |
+
" <th>Unnamed: 39</th>\n",
|
| 99 |
+
" <th>Unnamed: 40</th>\n",
|
| 100 |
+
" <th>Unnamed: 41</th>\n",
|
| 101 |
+
" <th>Unnamed: 42</th>\n",
|
| 102 |
+
" <th>Unnamed: 43</th>\n",
|
| 103 |
+
" <th>Unnamed: 44</th>\n",
|
| 104 |
+
" <th>Unnamed: 45</th>\n",
|
| 105 |
+
" <th>Unnamed: 46</th>\n",
|
| 106 |
+
" <th>Unnamed: 47</th>\n",
|
| 107 |
+
" </tr>\n",
|
| 108 |
+
" </thead>\n",
|
| 109 |
+
" <tbody>\n",
|
| 110 |
+
" <tr>\n",
|
| 111 |
+
" <th>0</th>\n",
|
| 112 |
+
" <td>Patagonia</td>\n",
|
| 113 |
+
" <td>Patagonia Women's Los Gatos Fleece 1/4-Zip Smo...</td>\n",
|
| 114 |
+
" <td>https://poshmark.com/listing/63d4821f2fbf1afe8...</td>\n",
|
| 115 |
+
" <td>$36.00</td>\n",
|
| 116 |
+
" <td>A soft, warm and versatile quarter-zip pullove...</td>\n",
|
| 117 |
+
" <td>M</td>\n",
|
| 118 |
+
" <td>Tops</td>\n",
|
| 119 |
+
" <td>[{'name': 'Gray', 'rgb': '#929292', 'message_i...</td>\n",
|
| 120 |
+
" <td>Poshmark</td>\n",
|
| 121 |
+
" <td>False</td>\n",
|
| 122 |
+
" <td>...</td>\n",
|
| 123 |
+
" <td>NaN</td>\n",
|
| 124 |
+
" <td>NaN</td>\n",
|
| 125 |
+
" <td>NaN</td>\n",
|
| 126 |
+
" <td>NaN</td>\n",
|
| 127 |
+
" <td>NaN</td>\n",
|
| 128 |
+
" <td>NaN</td>\n",
|
| 129 |
+
" <td>NaN</td>\n",
|
| 130 |
+
" <td>NaN</td>\n",
|
| 131 |
+
" <td>NaN</td>\n",
|
| 132 |
+
" <td>NaN</td>\n",
|
| 133 |
+
" </tr>\n",
|
| 134 |
+
" <tr>\n",
|
| 135 |
+
" <th>1</th>\n",
|
| 136 |
+
" <td>Patagonia</td>\n",
|
| 137 |
+
" <td>Patagonia Los Gatos 1/4 Zip Pullover M Beech B...</td>\n",
|
| 138 |
+
" <td>https://poshmark.com/listing/63fcd7709f212bd48...</td>\n",
|
| 139 |
+
" <td>$59.00</td>\n",
|
| 140 |
+
" <td>High pile, quarter zip pulllover\\nMeasurements...</td>\n",
|
| 141 |
+
" <td>M</td>\n",
|
| 142 |
+
" <td>Tops</td>\n",
|
| 143 |
+
" <td>[{'name': 'Brown', 'rgb': '#663509', 'message_...</td>\n",
|
| 144 |
+
" <td>Poshmark</td>\n",
|
| 145 |
+
" <td>False</td>\n",
|
| 146 |
+
" <td>...</td>\n",
|
| 147 |
+
" <td>NaN</td>\n",
|
| 148 |
+
" <td>NaN</td>\n",
|
| 149 |
+
" <td>NaN</td>\n",
|
| 150 |
+
" <td>NaN</td>\n",
|
| 151 |
+
" <td>NaN</td>\n",
|
| 152 |
+
" <td>NaN</td>\n",
|
| 153 |
+
" <td>NaN</td>\n",
|
| 154 |
+
" <td>NaN</td>\n",
|
| 155 |
+
" <td>NaN</td>\n",
|
| 156 |
+
" <td>NaN</td>\n",
|
| 157 |
+
" </tr>\n",
|
| 158 |
+
" <tr>\n",
|
| 159 |
+
" <th>2</th>\n",
|
| 160 |
+
" <td>Patagonia</td>\n",
|
| 161 |
+
" <td>PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul...</td>\n",
|
| 162 |
+
" <td>https://poshmark.com/listing/642b9bbcfed51f812...</td>\n",
|
| 163 |
+
" <td>$59.00</td>\n",
|
| 164 |
+
" <td>PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul...</td>\n",
|
| 165 |
+
" <td>S</td>\n",
|
| 166 |
+
" <td>Tops</td>\n",
|
| 167 |
+
" <td>[{'name': 'White', 'rgb': '#FFFFFF', 'message_...</td>\n",
|
| 168 |
+
" <td>Poshmark</td>\n",
|
| 169 |
+
" <td>False</td>\n",
|
| 170 |
+
" <td>...</td>\n",
|
| 171 |
+
" <td>NaN</td>\n",
|
| 172 |
+
" <td>NaN</td>\n",
|
| 173 |
+
" <td>NaN</td>\n",
|
| 174 |
+
" <td>NaN</td>\n",
|
| 175 |
+
" <td>NaN</td>\n",
|
| 176 |
+
" <td>NaN</td>\n",
|
| 177 |
+
" <td>NaN</td>\n",
|
| 178 |
+
" <td>NaN</td>\n",
|
| 179 |
+
" <td>NaN</td>\n",
|
| 180 |
+
" <td>NaN</td>\n",
|
| 181 |
+
" </tr>\n",
|
| 182 |
+
" <tr>\n",
|
| 183 |
+
" <th>3</th>\n",
|
| 184 |
+
" <td>Patagonia</td>\n",
|
| 185 |
+
" <td>Girl’s Patagonia Los Gatos Fleece 1/4 Zip XS</td>\n",
|
| 186 |
+
" <td>https://poshmark.com/listing/63f4f459c5df6c7f8...</td>\n",
|
| 187 |
+
" <td>$30.00</td>\n",
|
| 188 |
+
" <td>Girl’s Patagonia Los Gatos 1/4 Zip Fleece\\n\\n-...</td>\n",
|
| 189 |
+
" <td>XSG</td>\n",
|
| 190 |
+
" <td>Other</td>\n",
|
| 191 |
+
" <td>[{'name': 'Tan', 'rgb': '#d1b48e', 'message_id...</td>\n",
|
| 192 |
+
" <td>Poshmark</td>\n",
|
| 193 |
+
" <td>False</td>\n",
|
| 194 |
+
" <td>...</td>\n",
|
| 195 |
+
" <td>NaN</td>\n",
|
| 196 |
+
" <td>NaN</td>\n",
|
| 197 |
+
" <td>NaN</td>\n",
|
| 198 |
+
" <td>NaN</td>\n",
|
| 199 |
+
" <td>NaN</td>\n",
|
| 200 |
+
" <td>NaN</td>\n",
|
| 201 |
+
" <td>NaN</td>\n",
|
| 202 |
+
" <td>NaN</td>\n",
|
| 203 |
+
" <td>NaN</td>\n",
|
| 204 |
+
" <td>NaN</td>\n",
|
| 205 |
+
" </tr>\n",
|
| 206 |
+
" <tr>\n",
|
| 207 |
+
" <th>4</th>\n",
|
| 208 |
+
" <td>Patagonia</td>\n",
|
| 209 |
+
" <td>Patagonia Los Gatos Quarter Zip Grey</td>\n",
|
| 210 |
+
" <td>https://poshmark.com/listing/622cc43d3a0db900b...</td>\n",
|
| 211 |
+
" <td>$59.00</td>\n",
|
| 212 |
+
" <td>Patagonia Los Gatos Quarter Zip Grey \\nWomen’s...</td>\n",
|
| 213 |
+
" <td>M</td>\n",
|
| 214 |
+
" <td>Tops</td>\n",
|
| 215 |
+
" <td>[{'name': 'Gray', 'rgb': '#929292', 'message_i...</td>\n",
|
| 216 |
+
" <td>Poshmark</td>\n",
|
| 217 |
+
" <td>False</td>\n",
|
| 218 |
+
" <td>...</td>\n",
|
| 219 |
+
" <td>NaN</td>\n",
|
| 220 |
+
" <td>NaN</td>\n",
|
| 221 |
+
" <td>NaN</td>\n",
|
| 222 |
+
" <td>NaN</td>\n",
|
| 223 |
+
" <td>NaN</td>\n",
|
| 224 |
+
" <td>NaN</td>\n",
|
| 225 |
+
" <td>NaN</td>\n",
|
| 226 |
+
" <td>NaN</td>\n",
|
| 227 |
+
" <td>NaN</td>\n",
|
| 228 |
+
" <td>NaN</td>\n",
|
| 229 |
+
" </tr>\n",
|
| 230 |
+
" </tbody>\n",
|
| 231 |
+
"</table>\n",
|
| 232 |
+
"<p>5 rows × 48 columns</p>\n",
|
| 233 |
+
"</div>"
|
| 234 |
+
],
|
| 235 |
+
"text/plain": [
|
| 236 |
+
" brand title \\\n",
|
| 237 |
+
"0 Patagonia Patagonia Women's Los Gatos Fleece 1/4-Zip Smo... \n",
|
| 238 |
+
"1 Patagonia Patagonia Los Gatos 1/4 Zip Pullover M Beech B... \n",
|
| 239 |
+
"2 Patagonia PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul... \n",
|
| 240 |
+
"3 Patagonia Girl’s Patagonia Los Gatos Fleece 1/4 Zip XS \n",
|
| 241 |
+
"4 Patagonia Patagonia Los Gatos Quarter Zip Grey \n",
|
| 242 |
+
"\n",
|
| 243 |
+
" product_url price \\\n",
|
| 244 |
+
"0 https://poshmark.com/listing/63d4821f2fbf1afe8... $36.00 \n",
|
| 245 |
+
"1 https://poshmark.com/listing/63fcd7709f212bd48... $59.00 \n",
|
| 246 |
+
"2 https://poshmark.com/listing/642b9bbcfed51f812... $59.00 \n",
|
| 247 |
+
"3 https://poshmark.com/listing/63f4f459c5df6c7f8... $30.00 \n",
|
| 248 |
+
"4 https://poshmark.com/listing/622cc43d3a0db900b... $59.00 \n",
|
| 249 |
+
"\n",
|
| 250 |
+
" description size category \\\n",
|
| 251 |
+
"0 A soft, warm and versatile quarter-zip pullove... M Tops \n",
|
| 252 |
+
"1 High pile, quarter zip pulllover\\nMeasurements... M Tops \n",
|
| 253 |
+
"2 PATAGONIA Women's Los Gatos Fleece 1/4-Zip Pul... S Tops \n",
|
| 254 |
+
"3 Girl’s Patagonia Los Gatos 1/4 Zip Fleece\\n\\n-... XSG Other \n",
|
| 255 |
+
"4 Patagonia Los Gatos Quarter Zip Grey \\nWomen’s... M Tops \n",
|
| 256 |
+
"\n",
|
| 257 |
+
" colors Poshmark Unnamed: 9 \\\n",
|
| 258 |
+
"0 [{'name': 'Gray', 'rgb': '#929292', 'message_i... Poshmark False \n",
|
| 259 |
+
"1 [{'name': 'Brown', 'rgb': '#663509', 'message_... Poshmark False \n",
|
| 260 |
+
"2 [{'name': 'White', 'rgb': '#FFFFFF', 'message_... Poshmark False \n",
|
| 261 |
+
"3 [{'name': 'Tan', 'rgb': '#d1b48e', 'message_id... Poshmark False \n",
|
| 262 |
+
"4 [{'name': 'Gray', 'rgb': '#929292', 'message_i... Poshmark False \n",
|
| 263 |
+
"\n",
|
| 264 |
+
" ... Unnamed: 38 Unnamed: 39 Unnamed: 40 Unnamed: 41 Unnamed: 42 \\\n",
|
| 265 |
+
"0 ... NaN NaN NaN NaN NaN \n",
|
| 266 |
+
"1 ... NaN NaN NaN NaN NaN \n",
|
| 267 |
+
"2 ... NaN NaN NaN NaN NaN \n",
|
| 268 |
+
"3 ... NaN NaN NaN NaN NaN \n",
|
| 269 |
+
"4 ... NaN NaN NaN NaN NaN \n",
|
| 270 |
+
"\n",
|
| 271 |
+
" Unnamed: 43 Unnamed: 44 Unnamed: 45 Unnamed: 46 Unnamed: 47 \n",
|
| 272 |
+
"0 NaN NaN NaN NaN NaN \n",
|
| 273 |
+
"1 NaN NaN NaN NaN NaN \n",
|
| 274 |
+
"2 NaN NaN NaN NaN NaN \n",
|
| 275 |
+
"3 NaN NaN NaN NaN NaN \n",
|
| 276 |
+
"4 NaN NaN NaN NaN NaN \n",
|
| 277 |
+
"\n",
|
| 278 |
+
"[5 rows x 48 columns]"
|
| 279 |
+
]
|
| 280 |
+
},
|
| 281 |
+
"execution_count": 4,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"output_type": "execute_result"
|
| 284 |
+
}
|
| 285 |
+
],
|
| 286 |
+
"source": [
|
| 287 |
+
"patagonia_df.head()"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": null,
|
| 293 |
+
"metadata": {},
|
| 294 |
+
"outputs": [],
|
| 295 |
+
"source": [
|
| 296 |
+
"#download_images(patagonia_df, data_path)"
|
| 297 |
+
]
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"cell_type": "code",
|
| 301 |
+
"execution_count": 56,
|
| 302 |
+
"metadata": {
|
| 303 |
+
"tags": []
|
| 304 |
+
},
|
| 305 |
+
"outputs": [],
|
| 306 |
+
"source": [
|
| 307 |
+
"load_models()"
|
| 308 |
+
]
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"cell_type": "code",
|
| 312 |
+
"execution_count": 54,
|
| 313 |
+
"metadata": {
|
| 314 |
+
"tags": []
|
| 315 |
+
},
|
| 316 |
+
"outputs": [],
|
| 317 |
+
"source": [
|
| 318 |
+
"def generate_embeddings():\n",
|
| 319 |
+
" embeddings_df = pd.DataFrame()\n",
|
| 320 |
+
"\n",
|
| 321 |
+
" # Get image embeddings\n",
|
| 322 |
+
" with torch.no_grad():\n",
|
| 323 |
+
" for fp in os.listdir(data_path + 'images/'):\n",
|
| 324 |
+
" if fp.endswith('.jpg'):\n",
|
| 325 |
+
" new_row = {'name': fp}\n",
|
| 326 |
+
" for model_name in model_name_to_ids.keys():\n",
|
| 327 |
+
" new_row[f'{model_name}-embedding'] = get_image_embeddings(model_name, Image.open(data_path + 'images/' + fp))\n",
|
| 328 |
+
" embeddings_df = embeddings_df.append(new_row, ignore_index=True)\n",
|
| 329 |
+
" return embeddings_df"
|
| 330 |
+
]
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"cell_type": "code",
|
| 334 |
+
"execution_count": 26,
|
| 335 |
+
"metadata": {
|
| 336 |
+
"tags": []
|
| 337 |
+
},
|
| 338 |
+
"outputs": [],
|
| 339 |
+
"source": [
|
| 340 |
+
"fp = os.listdir(data_path + 'images/')[0]"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": 28,
|
| 346 |
+
"metadata": {
|
| 347 |
+
"tags": []
|
| 348 |
+
},
|
| 349 |
+
"outputs": [],
|
| 350 |
+
"source": [
|
| 351 |
+
"model_name = 'fashion'"
|
| 352 |
+
]
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"cell_type": "code",
|
| 356 |
+
"execution_count": 29,
|
| 357 |
+
"metadata": {
|
| 358 |
+
"tags": []
|
| 359 |
+
},
|
| 360 |
+
"outputs": [],
|
| 361 |
+
"source": [
|
| 362 |
+
"new_row = {'name': fp, f'{model_name}-embedding': get_image_embeddings(model_name, Image.open(data_path + 'images/' + fp))}\n",
|
| 363 |
+
" "
|
| 364 |
+
]
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"cell_type": "code",
|
| 368 |
+
"execution_count": 57,
|
| 369 |
+
"metadata": {
|
| 370 |
+
"tags": []
|
| 371 |
+
},
|
| 372 |
+
"outputs": [],
|
| 373 |
+
"source": [
|
| 374 |
+
"embeddings_df = generate_embeddings()"
|
| 375 |
+
]
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"cell_type": "code",
|
| 379 |
+
"execution_count": 58,
|
| 380 |
+
"metadata": {
|
| 381 |
+
"tags": []
|
| 382 |
+
},
|
| 383 |
+
"outputs": [
|
| 384 |
+
{
|
| 385 |
+
"data": {
|
| 386 |
+
"text/html": [
|
| 387 |
+
"<div>\n",
|
| 388 |
+
"<style scoped>\n",
|
| 389 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 390 |
+
" vertical-align: middle;\n",
|
| 391 |
+
" }\n",
|
| 392 |
+
"\n",
|
| 393 |
+
" .dataframe tbody tr th {\n",
|
| 394 |
+
" vertical-align: top;\n",
|
| 395 |
+
" }\n",
|
| 396 |
+
"\n",
|
| 397 |
+
" .dataframe thead th {\n",
|
| 398 |
+
" text-align: right;\n",
|
| 399 |
+
" }\n",
|
| 400 |
+
"</style>\n",
|
| 401 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 402 |
+
" <thead>\n",
|
| 403 |
+
" <tr style=\"text-align: right;\">\n",
|
| 404 |
+
" <th></th>\n",
|
| 405 |
+
" <th>name</th>\n",
|
| 406 |
+
" <th>sentence-transformer-clip-ViT-L-14-embedding</th>\n",
|
| 407 |
+
" <th>fashion-embedding</th>\n",
|
| 408 |
+
" <th>openai-clip-embedding</th>\n",
|
| 409 |
+
" </tr>\n",
|
| 410 |
+
" </thead>\n",
|
| 411 |
+
" <tbody>\n",
|
| 412 |
+
" <tr>\n",
|
| 413 |
+
" <th>0</th>\n",
|
| 414 |
+
" <td>Women's Under Armour Hustle Fleece Hoodie pull...</td>\n",
|
| 415 |
+
" <td>[1.0734258, 0.99022365, 0.32032806, 0.2895219,...</td>\n",
|
| 416 |
+
" <td>[0.23177437, -1.9268938, 0.273342, -0.02474568...</td>\n",
|
| 417 |
+
" <td>[-0.32902592, -0.09434131, 0.3055967, 0.229937...</td>\n",
|
| 418 |
+
" </tr>\n",
|
| 419 |
+
" <tr>\n",
|
| 420 |
+
" <th>1</th>\n",
|
| 421 |
+
" <td>Patagonia Los Gatos Fleece Grey Pullover.jpg</td>\n",
|
| 422 |
+
" <td>[0.6227796, 0.026531212, 0.45240527, -0.488214...</td>\n",
|
| 423 |
+
" <td>[0.38133767, -1.3040155, 1.1697398, -0.3085520...</td>\n",
|
| 424 |
+
" <td>[-0.1695469, 0.5067289, 0.31120676, -0.0083701...</td>\n",
|
| 425 |
+
" </tr>\n",
|
| 426 |
+
" <tr>\n",
|
| 427 |
+
" <th>2</th>\n",
|
| 428 |
+
" <td>REI Women's Down With It Quilted Hooded Parka ...</td>\n",
|
| 429 |
+
" <td>[0.8497103, 1.2925782, -0.21685322, 0.24116844...</td>\n",
|
| 430 |
+
" <td>[-0.30043703, -1.3144073, -0.33848628, 0.24008...</td>\n",
|
| 431 |
+
" <td>[-0.24841668, 0.4876942, 0.39810008, -0.141552...</td>\n",
|
| 432 |
+
" </tr>\n",
|
| 433 |
+
" <tr>\n",
|
| 434 |
+
" <th>3</th>\n",
|
| 435 |
+
" <td>Chanel Haute Couture Navy Blue Dress Semi Shee...</td>\n",
|
| 436 |
+
" <td>[0.536018, 0.60787296, -0.2751825, 1.0325747, ...</td>\n",
|
| 437 |
+
" <td>[-0.101031125, 0.033914, -0.44531134, -0.64656...</td>\n",
|
| 438 |
+
" <td>[-0.08328074, 0.19443086, 0.14361368, 0.259305...</td>\n",
|
| 439 |
+
" </tr>\n",
|
| 440 |
+
" <tr>\n",
|
| 441 |
+
" <th>4</th>\n",
|
| 442 |
+
" <td>Patagonia Women’s S Los Gatos Quarter-Zip Flee...</td>\n",
|
| 443 |
+
" <td>[0.79398394, 1.3899276, -0.21383175, 0.0109823...</td>\n",
|
| 444 |
+
" <td>[0.60070944, -1.1051046, 1.0572466, 0.47092092...</td>\n",
|
| 445 |
+
" <td>[-0.27894062, -0.09589732, 0.5556799, -0.13458...</td>\n",
|
| 446 |
+
" </tr>\n",
|
| 447 |
+
" <tr>\n",
|
| 448 |
+
" <th>...</th>\n",
|
| 449 |
+
" <td>...</td>\n",
|
| 450 |
+
" <td>...</td>\n",
|
| 451 |
+
" <td>...</td>\n",
|
| 452 |
+
" <td>...</td>\n",
|
| 453 |
+
" </tr>\n",
|
| 454 |
+
" <tr>\n",
|
| 455 |
+
" <th>326</th>\n",
|
| 456 |
+
" <td>Women's REI Elements Jacket Size M.jpg</td>\n",
|
| 457 |
+
" <td>[0.6310029, 0.9942212, 0.009293936, 0.7862729,...</td>\n",
|
| 458 |
+
" <td>[0.19858713, -1.8665266, -0.3323754, 0.0465058...</td>\n",
|
| 459 |
+
" <td>[-0.0952643, 0.8016211, 0.08129032, 0.15187423...</td>\n",
|
| 460 |
+
" </tr>\n",
|
| 461 |
+
" <tr>\n",
|
| 462 |
+
" <th>327</th>\n",
|
| 463 |
+
" <td>CHANEL Black cotton bodycon tank dress with zi...</td>\n",
|
| 464 |
+
" <td>[1.0761135, 0.18927886, -0.007131472, 0.625682...</td>\n",
|
| 465 |
+
" <td>[0.07516122, -0.1886161, 0.1334078, -0.2829321...</td>\n",
|
| 466 |
+
" <td>[-0.12297699, 0.026368856, 0.04415588, 0.26031...</td>\n",
|
| 467 |
+
" </tr>\n",
|
| 468 |
+
" <tr>\n",
|
| 469 |
+
" <th>328</th>\n",
|
| 470 |
+
" <td>Reformation X Veda Women's Bad Leather Jacket ...</td>\n",
|
| 471 |
+
" <td>[0.79690784, 1.2895226, 0.22802149, -0.2736021...</td>\n",
|
| 472 |
+
" <td>[-0.12224964, -0.38734418, 0.35824925, 0.95855...</td>\n",
|
| 473 |
+
" <td>[0.6507246, 0.27751687, 0.36114892, -0.0831387...</td>\n",
|
| 474 |
+
" </tr>\n",
|
| 475 |
+
" <tr>\n",
|
| 476 |
+
" <th>329</th>\n",
|
| 477 |
+
" <td>DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua...</td>\n",
|
| 478 |
+
" <td>[1.1617887, 0.19193622, 0.046035454, 0.4334900...</td>\n",
|
| 479 |
+
" <td>[-0.20762922, 0.1754938, -0.7334341, -0.106492...</td>\n",
|
| 480 |
+
" <td>[-0.31946087, 0.19534132, 0.37351555, -0.09741...</td>\n",
|
| 481 |
+
" </tr>\n",
|
| 482 |
+
" <tr>\n",
|
| 483 |
+
" <th>330</th>\n",
|
| 484 |
+
" <td>PATAGONIA Nano Puff Jacket Zip Primaloft Insul...</td>\n",
|
| 485 |
+
" <td>[0.2912089, 0.72192264, -0.01620815, 0.0022971...</td>\n",
|
| 486 |
+
" <td>[0.0026952028, -1.6660439, 0.03839147, -0.2164...</td>\n",
|
| 487 |
+
" <td>[0.12799336, 0.75828236, 0.10943861, -0.036647...</td>\n",
|
| 488 |
+
" </tr>\n",
|
| 489 |
+
" </tbody>\n",
|
| 490 |
+
"</table>\n",
|
| 491 |
+
"<p>331 rows × 4 columns</p>\n",
|
| 492 |
+
"</div>"
|
| 493 |
+
],
|
| 494 |
+
"text/plain": [
|
| 495 |
+
" name \\\n",
|
| 496 |
+
"0 Women's Under Armour Hustle Fleece Hoodie pull... \n",
|
| 497 |
+
"1 Patagonia Los Gatos Fleece Grey Pullover.jpg \n",
|
| 498 |
+
"2 REI Women's Down With It Quilted Hooded Parka ... \n",
|
| 499 |
+
"3 Chanel Haute Couture Navy Blue Dress Semi Shee... \n",
|
| 500 |
+
"4 Patagonia Women’s S Los Gatos Quarter-Zip Flee... \n",
|
| 501 |
+
".. ... \n",
|
| 502 |
+
"326 Women's REI Elements Jacket Size M.jpg \n",
|
| 503 |
+
"327 CHANEL Black cotton bodycon tank dress with zi... \n",
|
| 504 |
+
"328 Reformation X Veda Women's Bad Leather Jacket ... \n",
|
| 505 |
+
"329 DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua... \n",
|
| 506 |
+
"330 PATAGONIA Nano Puff Jacket Zip Primaloft Insul... \n",
|
| 507 |
+
"\n",
|
| 508 |
+
" sentence-transformer-clip-ViT-L-14-embedding \\\n",
|
| 509 |
+
"0 [1.0734258, 0.99022365, 0.32032806, 0.2895219,... \n",
|
| 510 |
+
"1 [0.6227796, 0.026531212, 0.45240527, -0.488214... \n",
|
| 511 |
+
"2 [0.8497103, 1.2925782, -0.21685322, 0.24116844... \n",
|
| 512 |
+
"3 [0.536018, 0.60787296, -0.2751825, 1.0325747, ... \n",
|
| 513 |
+
"4 [0.79398394, 1.3899276, -0.21383175, 0.0109823... \n",
|
| 514 |
+
".. ... \n",
|
| 515 |
+
"326 [0.6310029, 0.9942212, 0.009293936, 0.7862729,... \n",
|
| 516 |
+
"327 [1.0761135, 0.18927886, -0.007131472, 0.625682... \n",
|
| 517 |
+
"328 [0.79690784, 1.2895226, 0.22802149, -0.2736021... \n",
|
| 518 |
+
"329 [1.1617887, 0.19193622, 0.046035454, 0.4334900... \n",
|
| 519 |
+
"330 [0.2912089, 0.72192264, -0.01620815, 0.0022971... \n",
|
| 520 |
+
"\n",
|
| 521 |
+
" fashion-embedding \\\n",
|
| 522 |
+
"0 [0.23177437, -1.9268938, 0.273342, -0.02474568... \n",
|
| 523 |
+
"1 [0.38133767, -1.3040155, 1.1697398, -0.3085520... \n",
|
| 524 |
+
"2 [-0.30043703, -1.3144073, -0.33848628, 0.24008... \n",
|
| 525 |
+
"3 [-0.101031125, 0.033914, -0.44531134, -0.64656... \n",
|
| 526 |
+
"4 [0.60070944, -1.1051046, 1.0572466, 0.47092092... \n",
|
| 527 |
+
".. ... \n",
|
| 528 |
+
"326 [0.19858713, -1.8665266, -0.3323754, 0.0465058... \n",
|
| 529 |
+
"327 [0.07516122, -0.1886161, 0.1334078, -0.2829321... \n",
|
| 530 |
+
"328 [-0.12224964, -0.38734418, 0.35824925, 0.95855... \n",
|
| 531 |
+
"329 [-0.20762922, 0.1754938, -0.7334341, -0.106492... \n",
|
| 532 |
+
"330 [0.0026952028, -1.6660439, 0.03839147, -0.2164... \n",
|
| 533 |
+
"\n",
|
| 534 |
+
" openai-clip-embedding \n",
|
| 535 |
+
"0 [-0.32902592, -0.09434131, 0.3055967, 0.229937... \n",
|
| 536 |
+
"1 [-0.1695469, 0.5067289, 0.31120676, -0.0083701... \n",
|
| 537 |
+
"2 [-0.24841668, 0.4876942, 0.39810008, -0.141552... \n",
|
| 538 |
+
"3 [-0.08328074, 0.19443086, 0.14361368, 0.259305... \n",
|
| 539 |
+
"4 [-0.27894062, -0.09589732, 0.5556799, -0.13458... \n",
|
| 540 |
+
".. ... \n",
|
| 541 |
+
"326 [-0.0952643, 0.8016211, 0.08129032, 0.15187423... \n",
|
| 542 |
+
"327 [-0.12297699, 0.026368856, 0.04415588, 0.26031... \n",
|
| 543 |
+
"328 [0.6507246, 0.27751687, 0.36114892, -0.0831387... \n",
|
| 544 |
+
"329 [-0.31946087, 0.19534132, 0.37351555, -0.09741... \n",
|
| 545 |
+
"330 [0.12799336, 0.75828236, 0.10943861, -0.036647... \n",
|
| 546 |
+
"\n",
|
| 547 |
+
"[331 rows x 4 columns]"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
"execution_count": 58,
|
| 551 |
+
"metadata": {},
|
| 552 |
+
"output_type": "execute_result"
|
| 553 |
+
}
|
| 554 |
+
],
|
| 555 |
+
"source": [
|
| 556 |
+
"embeddings_df"
|
| 557 |
+
]
|
| 558 |
+
},
|
| 559 |
+
{
|
| 560 |
+
"cell_type": "code",
|
| 561 |
+
"execution_count": 65,
|
| 562 |
+
"metadata": {
|
| 563 |
+
"tags": []
|
| 564 |
+
},
|
| 565 |
+
"outputs": [],
|
| 566 |
+
"source": [
|
| 567 |
+
"embeddings_path = os.path.join(data_path, 'metadata/patagonia_losGatos_embeddings.pq')\n",
|
| 568 |
+
"embeddings_df.to_parquet(embeddings_path)"
|
| 569 |
+
]
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"cell_type": "code",
|
| 573 |
+
"execution_count": 66,
|
| 574 |
+
"metadata": {
|
| 575 |
+
"tags": []
|
| 576 |
+
},
|
| 577 |
+
"outputs": [],
|
| 578 |
+
"source": [
|
| 579 |
+
"embeddings_df = pd.read_parquet(embeddings_path)"
|
| 580 |
+
]
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"cell_type": "code",
|
| 584 |
+
"execution_count": 67,
|
| 585 |
+
"metadata": {
|
| 586 |
+
"tags": []
|
| 587 |
+
},
|
| 588 |
+
"outputs": [],
|
| 589 |
+
"source": [
|
| 590 |
+
"for i, row in embeddings_df.iterrows():\n",
|
| 591 |
+
" if '\\n' in row['name']:\n",
|
| 592 |
+
" print(row['name'])\n",
|
| 593 |
+
" embeddings_df = embeddings_df.drop(i)"
|
| 594 |
+
]
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"cell_type": "code",
|
| 598 |
+
"execution_count": 68,
|
| 599 |
+
"metadata": {
|
| 600 |
+
"tags": []
|
| 601 |
+
},
|
| 602 |
+
"outputs": [
|
| 603 |
+
{
|
| 604 |
+
"data": {
|
| 605 |
+
"text/html": [
|
| 606 |
+
"<div>\n",
|
| 607 |
+
"<style scoped>\n",
|
| 608 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 609 |
+
" vertical-align: middle;\n",
|
| 610 |
+
" }\n",
|
| 611 |
+
"\n",
|
| 612 |
+
" .dataframe tbody tr th {\n",
|
| 613 |
+
" vertical-align: top;\n",
|
| 614 |
+
" }\n",
|
| 615 |
+
"\n",
|
| 616 |
+
" .dataframe thead th {\n",
|
| 617 |
+
" text-align: right;\n",
|
| 618 |
+
" }\n",
|
| 619 |
+
"</style>\n",
|
| 620 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 621 |
+
" <thead>\n",
|
| 622 |
+
" <tr style=\"text-align: right;\">\n",
|
| 623 |
+
" <th></th>\n",
|
| 624 |
+
" <th>name</th>\n",
|
| 625 |
+
" <th>sentence-transformer-clip-ViT-L-14-embedding</th>\n",
|
| 626 |
+
" <th>fashion-embedding</th>\n",
|
| 627 |
+
" <th>openai-clip-embedding</th>\n",
|
| 628 |
+
" </tr>\n",
|
| 629 |
+
" </thead>\n",
|
| 630 |
+
" <tbody>\n",
|
| 631 |
+
" <tr>\n",
|
| 632 |
+
" <th>0</th>\n",
|
| 633 |
+
" <td>Women's Under Armour Hustle Fleece Hoodie pull...</td>\n",
|
| 634 |
+
" <td>[1.0734258, 0.99022365, 0.32032806, 0.2895219,...</td>\n",
|
| 635 |
+
" <td>[0.23177437, -1.9268938, 0.273342, -0.02474568...</td>\n",
|
| 636 |
+
" <td>[-0.32902592, -0.09434131, 0.3055967, 0.229937...</td>\n",
|
| 637 |
+
" </tr>\n",
|
| 638 |
+
" <tr>\n",
|
| 639 |
+
" <th>1</th>\n",
|
| 640 |
+
" <td>Patagonia Los Gatos Fleece Grey Pullover.jpg</td>\n",
|
| 641 |
+
" <td>[0.6227796, 0.026531212, 0.45240527, -0.488214...</td>\n",
|
| 642 |
+
" <td>[0.38133767, -1.3040155, 1.1697398, -0.3085520...</td>\n",
|
| 643 |
+
" <td>[-0.1695469, 0.5067289, 0.31120676, -0.0083701...</td>\n",
|
| 644 |
+
" </tr>\n",
|
| 645 |
+
" <tr>\n",
|
| 646 |
+
" <th>2</th>\n",
|
| 647 |
+
" <td>REI Women's Down With It Quilted Hooded Parka ...</td>\n",
|
| 648 |
+
" <td>[0.8497103, 1.2925782, -0.21685322, 0.24116844...</td>\n",
|
| 649 |
+
" <td>[-0.30043703, -1.3144073, -0.33848628, 0.24008...</td>\n",
|
| 650 |
+
" <td>[-0.24841668, 0.4876942, 0.39810008, -0.141552...</td>\n",
|
| 651 |
+
" </tr>\n",
|
| 652 |
+
" <tr>\n",
|
| 653 |
+
" <th>3</th>\n",
|
| 654 |
+
" <td>Chanel Haute Couture Navy Blue Dress Semi Shee...</td>\n",
|
| 655 |
+
" <td>[0.536018, 0.60787296, -0.2751825, 1.0325747, ...</td>\n",
|
| 656 |
+
" <td>[-0.101031125, 0.033914, -0.44531134, -0.64656...</td>\n",
|
| 657 |
+
" <td>[-0.08328074, 0.19443086, 0.14361368, 0.259305...</td>\n",
|
| 658 |
+
" </tr>\n",
|
| 659 |
+
" <tr>\n",
|
| 660 |
+
" <th>4</th>\n",
|
| 661 |
+
" <td>Patagonia Women’s S Los Gatos Quarter-Zip Flee...</td>\n",
|
| 662 |
+
" <td>[0.79398394, 1.3899276, -0.21383175, 0.0109823...</td>\n",
|
| 663 |
+
" <td>[0.60070944, -1.1051046, 1.0572466, 0.47092092...</td>\n",
|
| 664 |
+
" <td>[-0.27894062, -0.09589732, 0.5556799, -0.13458...</td>\n",
|
| 665 |
+
" </tr>\n",
|
| 666 |
+
" <tr>\n",
|
| 667 |
+
" <th>...</th>\n",
|
| 668 |
+
" <td>...</td>\n",
|
| 669 |
+
" <td>...</td>\n",
|
| 670 |
+
" <td>...</td>\n",
|
| 671 |
+
" <td>...</td>\n",
|
| 672 |
+
" </tr>\n",
|
| 673 |
+
" <tr>\n",
|
| 674 |
+
" <th>326</th>\n",
|
| 675 |
+
" <td>Women's REI Elements Jacket Size M.jpg</td>\n",
|
| 676 |
+
" <td>[0.6310029, 0.9942212, 0.009293936, 0.7862729,...</td>\n",
|
| 677 |
+
" <td>[0.19858713, -1.8665266, -0.3323754, 0.0465058...</td>\n",
|
| 678 |
+
" <td>[-0.0952643, 0.8016211, 0.08129032, 0.15187423...</td>\n",
|
| 679 |
+
" </tr>\n",
|
| 680 |
+
" <tr>\n",
|
| 681 |
+
" <th>327</th>\n",
|
| 682 |
+
" <td>CHANEL Black cotton bodycon tank dress with zi...</td>\n",
|
| 683 |
+
" <td>[1.0761135, 0.18927886, -0.007131472, 0.625682...</td>\n",
|
| 684 |
+
" <td>[0.07516122, -0.1886161, 0.1334078, -0.2829321...</td>\n",
|
| 685 |
+
" <td>[-0.12297699, 0.026368856, 0.04415588, 0.26031...</td>\n",
|
| 686 |
+
" </tr>\n",
|
| 687 |
+
" <tr>\n",
|
| 688 |
+
" <th>328</th>\n",
|
| 689 |
+
" <td>Reformation X Veda Women's Bad Leather Jacket ...</td>\n",
|
| 690 |
+
" <td>[0.79690784, 1.2895226, 0.22802149, -0.2736021...</td>\n",
|
| 691 |
+
" <td>[-0.12224964, -0.38734418, 0.35824925, 0.95855...</td>\n",
|
| 692 |
+
" <td>[0.6507246, 0.27751687, 0.36114892, -0.0831387...</td>\n",
|
| 693 |
+
" </tr>\n",
|
| 694 |
+
" <tr>\n",
|
| 695 |
+
" <th>329</th>\n",
|
| 696 |
+
" <td>DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua...</td>\n",
|
| 697 |
+
" <td>[1.1617887, 0.19193622, 0.046035454, 0.4334900...</td>\n",
|
| 698 |
+
" <td>[-0.20762922, 0.1754938, -0.7334341, -0.106492...</td>\n",
|
| 699 |
+
" <td>[-0.31946087, 0.19534132, 0.37351555, -0.09741...</td>\n",
|
| 700 |
+
" </tr>\n",
|
| 701 |
+
" <tr>\n",
|
| 702 |
+
" <th>330</th>\n",
|
| 703 |
+
" <td>PATAGONIA Nano Puff Jacket Zip Primaloft Insul...</td>\n",
|
| 704 |
+
" <td>[0.2912089, 0.72192264, -0.01620815, 0.0022971...</td>\n",
|
| 705 |
+
" <td>[0.0026952028, -1.6660439, 0.03839147, -0.2164...</td>\n",
|
| 706 |
+
" <td>[0.12799336, 0.75828236, 0.10943861, -0.036647...</td>\n",
|
| 707 |
+
" </tr>\n",
|
| 708 |
+
" </tbody>\n",
|
| 709 |
+
"</table>\n",
|
| 710 |
+
"<p>331 rows × 4 columns</p>\n",
|
| 711 |
+
"</div>"
|
| 712 |
+
],
|
| 713 |
+
"text/plain": [
|
| 714 |
+
" name \\\n",
|
| 715 |
+
"0 Women's Under Armour Hustle Fleece Hoodie pull... \n",
|
| 716 |
+
"1 Patagonia Los Gatos Fleece Grey Pullover.jpg \n",
|
| 717 |
+
"2 REI Women's Down With It Quilted Hooded Parka ... \n",
|
| 718 |
+
"3 Chanel Haute Couture Navy Blue Dress Semi Shee... \n",
|
| 719 |
+
"4 Patagonia Women’s S Los Gatos Quarter-Zip Flee... \n",
|
| 720 |
+
".. ... \n",
|
| 721 |
+
"326 Women's REI Elements Jacket Size M.jpg \n",
|
| 722 |
+
"327 CHANEL Black cotton bodycon tank dress with zi... \n",
|
| 723 |
+
"328 Reformation X Veda Women's Bad Leather Jacket ... \n",
|
| 724 |
+
"329 DISNEY HER UNIVERSE LILO AND STICH Rainbow Qua... \n",
|
| 725 |
+
"330 PATAGONIA Nano Puff Jacket Zip Primaloft Insul... \n",
|
| 726 |
+
"\n",
|
| 727 |
+
" sentence-transformer-clip-ViT-L-14-embedding \\\n",
|
| 728 |
+
"0 [1.0734258, 0.99022365, 0.32032806, 0.2895219,... \n",
|
| 729 |
+
"1 [0.6227796, 0.026531212, 0.45240527, -0.488214... \n",
|
| 730 |
+
"2 [0.8497103, 1.2925782, -0.21685322, 0.24116844... \n",
|
| 731 |
+
"3 [0.536018, 0.60787296, -0.2751825, 1.0325747, ... \n",
|
| 732 |
+
"4 [0.79398394, 1.3899276, -0.21383175, 0.0109823... \n",
|
| 733 |
+
".. ... \n",
|
| 734 |
+
"326 [0.6310029, 0.9942212, 0.009293936, 0.7862729,... \n",
|
| 735 |
+
"327 [1.0761135, 0.18927886, -0.007131472, 0.625682... \n",
|
| 736 |
+
"328 [0.79690784, 1.2895226, 0.22802149, -0.2736021... \n",
|
| 737 |
+
"329 [1.1617887, 0.19193622, 0.046035454, 0.4334900... \n",
|
| 738 |
+
"330 [0.2912089, 0.72192264, -0.01620815, 0.0022971... \n",
|
| 739 |
+
"\n",
|
| 740 |
+
" fashion-embedding \\\n",
|
| 741 |
+
"0 [0.23177437, -1.9268938, 0.273342, -0.02474568... \n",
|
| 742 |
+
"1 [0.38133767, -1.3040155, 1.1697398, -0.3085520... \n",
|
| 743 |
+
"2 [-0.30043703, -1.3144073, -0.33848628, 0.24008... \n",
|
| 744 |
+
"3 [-0.101031125, 0.033914, -0.44531134, -0.64656... \n",
|
| 745 |
+
"4 [0.60070944, -1.1051046, 1.0572466, 0.47092092... \n",
|
| 746 |
+
".. ... \n",
|
| 747 |
+
"326 [0.19858713, -1.8665266, -0.3323754, 0.0465058... \n",
|
| 748 |
+
"327 [0.07516122, -0.1886161, 0.1334078, -0.2829321... \n",
|
| 749 |
+
"328 [-0.12224964, -0.38734418, 0.35824925, 0.95855... \n",
|
| 750 |
+
"329 [-0.20762922, 0.1754938, -0.7334341, -0.106492... \n",
|
| 751 |
+
"330 [0.0026952028, -1.6660439, 0.03839147, -0.2164... \n",
|
| 752 |
+
"\n",
|
| 753 |
+
" openai-clip-embedding \n",
|
| 754 |
+
"0 [-0.32902592, -0.09434131, 0.3055967, 0.229937... \n",
|
| 755 |
+
"1 [-0.1695469, 0.5067289, 0.31120676, -0.0083701... \n",
|
| 756 |
+
"2 [-0.24841668, 0.4876942, 0.39810008, -0.141552... \n",
|
| 757 |
+
"3 [-0.08328074, 0.19443086, 0.14361368, 0.259305... \n",
|
| 758 |
+
"4 [-0.27894062, -0.09589732, 0.5556799, -0.13458... \n",
|
| 759 |
+
".. ... \n",
|
| 760 |
+
"326 [-0.0952643, 0.8016211, 0.08129032, 0.15187423... \n",
|
| 761 |
+
"327 [-0.12297699, 0.026368856, 0.04415588, 0.26031... \n",
|
| 762 |
+
"328 [0.6507246, 0.27751687, 0.36114892, -0.0831387... \n",
|
| 763 |
+
"329 [-0.31946087, 0.19534132, 0.37351555, -0.09741... \n",
|
| 764 |
+
"330 [0.12799336, 0.75828236, 0.10943861, -0.036647... \n",
|
| 765 |
+
"\n",
|
| 766 |
+
"[331 rows x 4 columns]"
|
| 767 |
+
]
|
| 768 |
+
},
|
| 769 |
+
"execution_count": 68,
|
| 770 |
+
"metadata": {},
|
| 771 |
+
"output_type": "execute_result"
|
| 772 |
+
}
|
| 773 |
+
],
|
| 774 |
+
"source": [
|
| 775 |
+
"embeddings_df"
|
| 776 |
+
]
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"cell_type": "code",
|
| 780 |
+
"execution_count": 8,
|
| 781 |
+
"metadata": {},
|
| 782 |
+
"outputs": [],
|
| 783 |
+
"source": [
|
| 784 |
+
"import os\n",
|
| 785 |
+
"\n",
|
| 786 |
+
"for fp in os.listdir(data_path + 'images/'):\n",
|
| 787 |
+
" if '?' in fp:\n",
|
| 788 |
+
" print(fp)"
|
| 789 |
+
]
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"cell_type": "code",
|
| 793 |
+
"execution_count": 7,
|
| 794 |
+
"metadata": {
|
| 795 |
+
"tags": []
|
| 796 |
+
},
|
| 797 |
+
"outputs": [
|
| 798 |
+
{
|
| 799 |
+
"data": {
|
| 800 |
+
"text/plain": [
|
| 801 |
+
"2"
|
| 802 |
+
]
|
| 803 |
+
},
|
| 804 |
+
"execution_count": 7,
|
| 805 |
+
"metadata": {},
|
| 806 |
+
"output_type": "execute_result"
|
| 807 |
+
}
|
| 808 |
+
],
|
| 809 |
+
"source": [
|
| 810 |
+
"1+1"
|
| 811 |
+
]
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"cell_type": "code",
|
| 815 |
+
"execution_count": 2,
|
| 816 |
+
"metadata": {
|
| 817 |
+
"tags": []
|
| 818 |
+
},
|
| 819 |
+
"outputs": [],
|
| 820 |
+
"source": [
|
| 821 |
+
"%reload_ext autoreload\n",
|
| 822 |
+
"%autoreload 2"
|
| 823 |
+
]
|
| 824 |
+
},
|
| 825 |
+
{
|
| 826 |
+
"cell_type": "code",
|
| 827 |
+
"execution_count": 7,
|
| 828 |
+
"metadata": {
|
| 829 |
+
"tags": []
|
| 830 |
+
},
|
| 831 |
+
"outputs": [],
|
| 832 |
+
"source": [
|
| 833 |
+
"df.to_csv('random.tsv', sep='\\t')"
|
| 834 |
+
]
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"cell_type": "code",
|
| 838 |
+
"execution_count": 1,
|
| 839 |
+
"metadata": {
|
| 840 |
+
"tags": []
|
| 841 |
+
},
|
| 842 |
+
"outputs": [
|
| 843 |
+
{
|
| 844 |
+
"name": "stdout",
|
| 845 |
+
"output_type": "stream",
|
| 846 |
+
"text": [
|
| 847 |
+
"disco-io/data\n"
|
| 848 |
+
]
|
| 849 |
+
}
|
| 850 |
+
],
|
| 851 |
+
"source": [
|
| 852 |
+
"import utils\n"
|
| 853 |
+
]
|
| 854 |
+
},
|
| 855 |
+
{
|
| 856 |
+
"cell_type": "code",
|
| 857 |
+
"execution_count": 4,
|
| 858 |
+
"metadata": {
|
| 859 |
+
"tags": []
|
| 860 |
+
},
|
| 861 |
+
"outputs": [],
|
| 862 |
+
"source": [
|
| 863 |
+
"from utils import get_immediate_subdirectories"
|
| 864 |
+
]
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"cell_type": "code",
|
| 868 |
+
"execution_count": 10,
|
| 869 |
+
"metadata": {
|
| 870 |
+
"tags": []
|
| 871 |
+
},
|
| 872 |
+
"outputs": [
|
| 873 |
+
{
|
| 874 |
+
"name": "stdout",
|
| 875 |
+
"output_type": "stream",
|
| 876 |
+
"text": [
|
| 877 |
+
"disco-io/data\n",
|
| 878 |
+
"Refreshing all datasets: ['test']\n"
|
| 879 |
+
]
|
| 880 |
+
}
|
| 881 |
+
],
|
| 882 |
+
"source": [
|
| 883 |
+
"utils.refresh_all_datasets()"
|
| 884 |
+
]
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"cell_type": "code",
|
| 888 |
+
"execution_count": 3,
|
| 889 |
+
"metadata": {
|
| 890 |
+
"tags": []
|
| 891 |
+
},
|
| 892 |
+
"outputs": [
|
| 893 |
+
{
|
| 894 |
+
"data": {
|
| 895 |
+
"text/plain": [
|
| 896 |
+
"'test'"
|
| 897 |
+
]
|
| 898 |
+
},
|
| 899 |
+
"execution_count": 3,
|
| 900 |
+
"metadata": {},
|
| 901 |
+
"output_type": "execute_result"
|
| 902 |
+
}
|
| 903 |
+
],
|
| 904 |
+
"source": [
|
| 905 |
+
"utils.cur_dataset"
|
| 906 |
+
]
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"cell_type": "code",
|
| 910 |
+
"execution_count": 2,
|
| 911 |
+
"metadata": {
|
| 912 |
+
"tags": []
|
| 913 |
+
},
|
| 914 |
+
"outputs": [
|
| 915 |
+
{
|
| 916 |
+
"name": "stdout",
|
| 917 |
+
"output_type": "stream",
|
| 918 |
+
"text": [
|
| 919 |
+
"disco-io/data\n"
|
| 920 |
+
]
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"data": {
|
| 924 |
+
"text/plain": [
|
| 925 |
+
"['test']"
|
| 926 |
+
]
|
| 927 |
+
},
|
| 928 |
+
"execution_count": 2,
|
| 929 |
+
"metadata": {},
|
| 930 |
+
"output_type": "execute_result"
|
| 931 |
+
}
|
| 932 |
+
],
|
| 933 |
+
"source": [
|
| 934 |
+
"get_immediate_subdirectories('data')\n"
|
| 935 |
+
]
|
| 936 |
+
},
|
| 937 |
+
{
|
| 938 |
+
"cell_type": "code",
|
| 939 |
+
"execution_count": 20,
|
| 940 |
+
"metadata": {},
|
| 941 |
+
"outputs": [],
|
| 942 |
+
"source": [
|
| 943 |
+
"import utils"
|
| 944 |
+
]
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"cell_type": "code",
|
| 948 |
+
"execution_count": 21,
|
| 949 |
+
"metadata": {},
|
| 950 |
+
"outputs": [],
|
| 951 |
+
"source": [
|
| 952 |
+
"from utils import fs"
|
| 953 |
+
]
|
| 954 |
+
},
|
| 955 |
+
{
|
| 956 |
+
"cell_type": "code",
|
| 957 |
+
"execution_count": 22,
|
| 958 |
+
"metadata": {},
|
| 959 |
+
"outputs": [],
|
| 960 |
+
"source": [
|
| 961 |
+
"s3_path = 'data'"
|
| 962 |
+
]
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"cell_type": "code",
|
| 966 |
+
"execution_count": 23,
|
| 967 |
+
"metadata": {},
|
| 968 |
+
"outputs": [],
|
| 969 |
+
"source": [
|
| 970 |
+
"s3_full_path = f\"{utils.S3_BUCKET}/{s3_path}\""
|
| 971 |
+
]
|
| 972 |
+
},
|
| 973 |
+
{
|
| 974 |
+
"cell_type": "code",
|
| 975 |
+
"execution_count": 24,
|
| 976 |
+
"metadata": {},
|
| 977 |
+
"outputs": [
|
| 978 |
+
{
|
| 979 |
+
"data": {
|
| 980 |
+
"text/plain": [
|
| 981 |
+
"['disco-io/data/Cvlsntdjgrnuyrlf.jpg', 'disco-io/data/test']"
|
| 982 |
+
]
|
| 983 |
+
},
|
| 984 |
+
"execution_count": 24,
|
| 985 |
+
"metadata": {},
|
| 986 |
+
"output_type": "execute_result"
|
| 987 |
+
}
|
| 988 |
+
],
|
| 989 |
+
"source": [
|
| 990 |
+
"fs.glob(f\"{s3_full_path}/*\")"
|
| 991 |
+
]
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"cell_type": "code",
|
| 995 |
+
"execution_count": 25,
|
| 996 |
+
"metadata": {},
|
| 997 |
+
"outputs": [
|
| 998 |
+
{
|
| 999 |
+
"data": {
|
| 1000 |
+
"text/plain": [
|
| 1001 |
+
"True"
|
| 1002 |
+
]
|
| 1003 |
+
},
|
| 1004 |
+
"execution_count": 25,
|
| 1005 |
+
"metadata": {},
|
| 1006 |
+
"output_type": "execute_result"
|
| 1007 |
+
}
|
| 1008 |
+
],
|
| 1009 |
+
"source": [
|
| 1010 |
+
"fs.isdir('disco-io/data/test')"
|
| 1011 |
+
]
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"cell_type": "code",
|
| 1015 |
+
"execution_count": null,
|
| 1016 |
+
"metadata": {},
|
| 1017 |
+
"outputs": [],
|
| 1018 |
+
"source": []
|
| 1019 |
+
}
|
| 1020 |
+
],
|
| 1021 |
+
"metadata": {
|
| 1022 |
+
"kernelspec": {
|
| 1023 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1024 |
+
"language": "python",
|
| 1025 |
+
"name": "python3"
|
| 1026 |
+
},
|
| 1027 |
+
"language_info": {
|
| 1028 |
+
"codemirror_mode": {
|
| 1029 |
+
"name": "ipython",
|
| 1030 |
+
"version": 3
|
| 1031 |
+
},
|
| 1032 |
+
"file_extension": ".py",
|
| 1033 |
+
"mimetype": "text/x-python",
|
| 1034 |
+
"name": "python",
|
| 1035 |
+
"nbconvert_exporter": "python",
|
| 1036 |
+
"pygments_lexer": "ipython3",
|
| 1037 |
+
"version": "3.10.0"
|
| 1038 |
+
},
|
| 1039 |
+
"vscode": {
|
| 1040 |
+
"interpreter": {
|
| 1041 |
+
"hash": "e85fcd8d0dbb45c39d3e544566c77318961c8114425a16ff4cb5c14067743b34"
|
| 1042 |
+
}
|
| 1043 |
+
}
|
| 1044 |
+
},
|
| 1045 |
+
"nbformat": 4,
|
| 1046 |
+
"nbformat_minor": 4
|
| 1047 |
+
}
|
misc.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
# Function to generate random text for titles
|
| 5 |
+
|
| 6 |
+
def generate_random_images_df(filename):
|
| 7 |
+
def generate_title():
|
| 8 |
+
title_length = random.randint(5, 20)
|
| 9 |
+
title = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz', k=title_length))
|
| 10 |
+
return title.capitalize()
|
| 11 |
+
|
| 12 |
+
# Function to generate random image URLs
|
| 13 |
+
def generate_image_url():
|
| 14 |
+
url = "https://picsum.photos/200/300" # Change the size of the image as per your requirement
|
| 15 |
+
return url
|
| 16 |
+
|
| 17 |
+
# Create a list of dictionaries with random titles and image URLs
|
| 18 |
+
data = []
|
| 19 |
+
for i in range(10):
|
| 20 |
+
data.append({'title': generate_title(), 'IMG_URL': generate_image_url()})
|
| 21 |
+
|
| 22 |
+
# Convert the list of dictionaries to a Pandas DataFrame
|
| 23 |
+
df = pd.DataFrame(data)
|
| 24 |
+
df.to_csv(filename, sep='\t', index=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.30.0
|
| 2 |
+
numpy==1.23.5
|
| 3 |
+
pandas==1.5.3
|
| 4 |
+
pandas_stubs==1.2.0.35
|
| 5 |
+
Pillow==9.5.0
|
| 6 |
+
sentence_transformers==2.2.2
|
| 7 |
+
pyarrow
|
| 8 |
+
transformers~=4.26.1
|
| 9 |
+
tqdm
|
| 10 |
+
streamlit
|
| 11 |
+
s3fs
|
| 12 |
+
requests
|
| 13 |
+
pinecone-client
|
run.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
with gr.Blocks() as demo:
|
| 4 |
+
gr.Markdown(
|
| 5 |
+
"""
|
| 6 |
+
# Animal Generator
|
| 7 |
+
Once you select a species, the detail panel should be visible.
|
| 8 |
+
"""
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
species = gr.Radio(label="Animal Class", choices=["Mammal", "Fish", "Bird"])
|
| 12 |
+
animal = gr.Dropdown(label="Animal", choices=[])
|
| 13 |
+
|
| 14 |
+
with gr.Column(visible=False) as details_col:
|
| 15 |
+
weight = gr.Slider(0, 20)
|
| 16 |
+
details = gr.Textbox(label="Extra Details")
|
| 17 |
+
generate_btn = gr.Button("Generate")
|
| 18 |
+
output = gr.Textbox(label="Output")
|
| 19 |
+
|
| 20 |
+
species_map = {
|
| 21 |
+
"Mammal": ["Elephant", "Giraffe", "Hamster"],
|
| 22 |
+
"Fish": ["Shark", "Salmon", "Tuna"],
|
| 23 |
+
"Bird": ["Chicken", "Eagle", "Hawk"],
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
def filter_species(species):
|
| 27 |
+
return gr.Dropdown.update(
|
| 28 |
+
choices=species_map[species], value=species_map[species][1]
|
| 29 |
+
), gr.update(visible=True)
|
| 30 |
+
|
| 31 |
+
species.change(filter_species, species, [animal, details_col])
|
| 32 |
+
|
| 33 |
+
def filter_weight(animal):
|
| 34 |
+
if animal in ("Elephant", "Shark", "Giraffe"):
|
| 35 |
+
return gr.update(maximum=100)
|
| 36 |
+
else:
|
| 37 |
+
return gr.update(maximum=20)
|
| 38 |
+
|
| 39 |
+
animal.change(filter_weight, animal, weight)
|
| 40 |
+
weight.change(lambda w: gr.update(lines=int(w / 10) + 1), weight, details)
|
| 41 |
+
|
| 42 |
+
generate_btn.click(lambda x: x, details, output)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
|
| 47 |
+
from tqdm import tqdm
|
| 48 |
+
|
| 49 |
+
for i in tqdm(range(int(9e6))):
|
| 50 |
+
pass
|
| 51 |
+
#demo.launch()
|
streamlit_app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
def process_image(input_image):
|
| 6 |
+
# Your image processing function goes here
|
| 7 |
+
output_image = input_image.copy()
|
| 8 |
+
return output_image
|
| 9 |
+
|
| 10 |
+
# Set the title of the web application
|
| 11 |
+
st.title('Multiple Input and Output Images Interface')
|
| 12 |
+
|
| 13 |
+
# Create a sidebar for image inputs
|
| 14 |
+
st.sidebar.title('Input Images')
|
| 15 |
+
|
| 16 |
+
# Set up a file uploader in the sidebar for each input image
|
| 17 |
+
uploaded_images = []
|
| 18 |
+
num_images = 3 # The number of input images
|
| 19 |
+
for i in range(num_images):
|
| 20 |
+
uploaded_image = st.sidebar.file_uploader(f'Upload Image {i+1}', type=['png', 'jpg', 'jpeg'])
|
| 21 |
+
if uploaded_image is not None:
|
| 22 |
+
uploaded_images.append(uploaded_image)
|
| 23 |
+
|
| 24 |
+
# Display input images and process them
|
| 25 |
+
if uploaded_images:
|
| 26 |
+
st.header('Input Images')
|
| 27 |
+
input_images = []
|
| 28 |
+
for img in uploaded_images:
|
| 29 |
+
input_img = Image.open(img)
|
| 30 |
+
input_images.append(input_img)
|
| 31 |
+
st.image(input_img, width=200, caption='Uploaded Image')
|
| 32 |
+
|
| 33 |
+
# Process input images and display output images
|
| 34 |
+
st.header('Output Images')
|
| 35 |
+
for input_img in input_images:
|
| 36 |
+
output_img = process_image(input_img)
|
| 37 |
+
st.image(output_img, width=200, caption='Processed Image')
|
| 38 |
+
else:
|
| 39 |
+
st.warning('Please upload images in the sidebar.')
|
utils.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer, util as st_util
|
| 2 |
+
from transformers import CLIPModel, CLIPProcessor
|
| 3 |
+
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
import os
|
| 7 |
+
import torch
|
| 8 |
+
torch.set_printoptions(precision=10)
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import s3fs
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
import vector_db
|
| 13 |
+
|
| 14 |
+
"sentence-transformer-clip-ViT-L-14"
|
| 15 |
+
"openai-clip"
|
| 16 |
+
model_names = ["fashion"]
|
| 17 |
+
|
| 18 |
+
model_name_to_ids = {
|
| 19 |
+
"sentence-transformer-clip-ViT-L-14": "clip-ViT-L-14",
|
| 20 |
+
"fashion": "patrickjohncyh/fashion-clip",
|
| 21 |
+
"openai-clip": "openai/clip-vit-base-patch32",
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
AWS_ACCESS_KEY_ID = os.environ["AWS_ACCESS_KEY_ID"]
|
| 25 |
+
AWS_SECRET_ACCESS_KEY = os.environ["AWS_SECRET_ACCESS_KEY"]
|
| 26 |
+
|
| 27 |
+
# Define your bucket and dataset name.
|
| 28 |
+
S3_BUCKET = "s3://disco-io"
|
| 29 |
+
|
| 30 |
+
fs = s3fs.S3FileSystem(
|
| 31 |
+
key=AWS_ACCESS_KEY_ID,
|
| 32 |
+
secret=AWS_SECRET_ACCESS_KEY,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
ROOT_DATA_PATH = os.path.join(S3_BUCKET, 'data')
|
| 36 |
+
|
| 37 |
+
def get_data_path():
|
| 38 |
+
return os.path.join(ROOT_DATA_PATH, cur_dataset)
|
| 39 |
+
|
| 40 |
+
def get_image_path():
|
| 41 |
+
return os.path.join(get_data_path(), 'images')
|
| 42 |
+
|
| 43 |
+
def get_metadata_path():
|
| 44 |
+
return os.path.join(get_data_path(), 'metadata')
|
| 45 |
+
|
| 46 |
+
def get_embeddings_path():
|
| 47 |
+
return os.path.join(get_metadata_path(), cur_dataset + '_embeddings.pq')
|
| 48 |
+
|
| 49 |
+
model_dict = dict()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def download_to_s3(url, s3_path):
|
| 53 |
+
# Download the file from the URL
|
| 54 |
+
response = requests.get(url, stream=True)
|
| 55 |
+
response.raise_for_status()
|
| 56 |
+
|
| 57 |
+
# Upload the file to the S3 path
|
| 58 |
+
with fs.open(s3_path, "wb") as s3_file:
|
| 59 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 60 |
+
s3_file.write(chunk)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def remove_all_files_from_s3_directory(s3_directory):
|
| 64 |
+
# List all objects in the S3 directory
|
| 65 |
+
objects = fs.ls(s3_directory)
|
| 66 |
+
|
| 67 |
+
# Remove each object
|
| 68 |
+
for obj in objects:
|
| 69 |
+
try:
|
| 70 |
+
fs.rm(obj)
|
| 71 |
+
except:
|
| 72 |
+
print('Error removing file: ' + obj)
|
| 73 |
+
|
| 74 |
+
def download_images(df, img_folder):
|
| 75 |
+
remove_all_files_from_s3_directory(img_folder)
|
| 76 |
+
for index, row in df.iterrows():
|
| 77 |
+
try:
|
| 78 |
+
download_to_s3(row['IMG_URL'], os.path.join(img_folder,
|
| 79 |
+
row['title'].replace('/', '_').replace('\n', '') + '.jpg'))
|
| 80 |
+
except:
|
| 81 |
+
print('Error downloading image: ' + str(index) + row['title'])
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def load_models():
|
| 85 |
+
for model_name in model_name_to_ids:
|
| 86 |
+
if model_name not in model_dict:
|
| 87 |
+
model_dict[model_name] = dict()
|
| 88 |
+
if model_name.startswith('sentence-transformer'):
|
| 89 |
+
model_dict[model_name]['model'] = SentenceTransformer(model_name_to_ids[model_name])
|
| 90 |
+
else:
|
| 91 |
+
model_dict[model_name]['hf_dir'] = model_name_to_ids[model_name]
|
| 92 |
+
model_dict[model_name]['model'] = CLIPModel.from_pretrained(model_name_to_ids[model_name])
|
| 93 |
+
model_dict[model_name]['processor'] = CLIPProcessor.from_pretrained(model_name_to_ids[model_name])
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
if len(model_dict) == 0:
|
| 97 |
+
print('Loading models...')
|
| 98 |
+
load_models()
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def get_image_embedding(model_name, image):
|
| 102 |
+
"""
|
| 103 |
+
Takes an image as input and returns an embedding vector.
|
| 104 |
+
"""
|
| 105 |
+
model = model_dict[model_name]['model']
|
| 106 |
+
if model_name.startswith('sentence-transformer'):
|
| 107 |
+
return model.encode(image)
|
| 108 |
+
else:
|
| 109 |
+
inputs = model_dict[model_name]['processor'](images=image, return_tensors="pt")
|
| 110 |
+
image_features = model.get_image_features(**inputs).detach().numpy()[0]
|
| 111 |
+
return image_features
|
| 112 |
+
|
| 113 |
+
def s3_path_to_image(fs, s3_path):
|
| 114 |
+
"""
|
| 115 |
+
Takes an S3 path as input and returns a PIL Image object.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
s3_path (str): The path to the image in the S3 bucket, including the bucket name (e.g., "bucket_name/path/to/image.jpg").
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
Image: A PIL Image object.
|
| 122 |
+
"""
|
| 123 |
+
with fs.open(s3_path, "rb") as f:
|
| 124 |
+
image_data = BytesIO(f.read())
|
| 125 |
+
img = Image.open(image_data)
|
| 126 |
+
return img
|
| 127 |
+
|
| 128 |
+
def generate_and_save_embeddings():
|
| 129 |
+
# Get image embeddings
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
for fp in tqdm(fs.ls(get_image_path()), desc="Generate embeddings for Images"):
|
| 132 |
+
if fp.endswith('.jpg'):
|
| 133 |
+
name = fp.split('/')[-1]
|
| 134 |
+
for model_name in model_name_to_ids.keys():
|
| 135 |
+
s3_path = 's3://' + fp
|
| 136 |
+
vector_db.add_image_embedding_to_db(
|
| 137 |
+
embedding=get_image_embedding(model_name, s3_path_to_image(fs, s3_path)),
|
| 138 |
+
model_name=model_name,
|
| 139 |
+
dataset_name=cur_dataset,
|
| 140 |
+
path_to_image=s3_path,
|
| 141 |
+
image_name=name,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def get_immediate_subdirectories(s3_path):
|
| 146 |
+
return [obj.split('/')[-1] for obj in fs.glob(f"{s3_path}/*") if fs.isdir(obj)]
|
| 147 |
+
|
| 148 |
+
all_datasets = get_immediate_subdirectories(ROOT_DATA_PATH)
|
| 149 |
+
cur_dataset = all_datasets[0]
|
| 150 |
+
|
| 151 |
+
def set_cur_dataset(dataset):
|
| 152 |
+
refresh_all_datasets()
|
| 153 |
+
print(f"Setting current dataset to {dataset}")
|
| 154 |
+
global cur_dataset
|
| 155 |
+
cur_dataset = dataset
|
| 156 |
+
|
| 157 |
+
def refresh_all_datasets():
|
| 158 |
+
global all_datasets
|
| 159 |
+
all_datasets = get_immediate_subdirectories(ROOT_DATA_PATH)
|
| 160 |
+
print(f"Refreshing all datasets: {all_datasets}")
|
| 161 |
+
|
| 162 |
+
def url_to_image(url):
|
| 163 |
+
try:
|
| 164 |
+
response = requests.get(url)
|
| 165 |
+
response.raise_for_status()
|
| 166 |
+
img = Image.open(BytesIO(response.content))
|
| 167 |
+
return img
|
| 168 |
+
except requests.exceptions.RequestException as e:
|
| 169 |
+
print(f"Error fetching image from URL: {url}")
|
| 170 |
+
return None
|
vector_db.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pinecone
|
| 2 |
+
import os
|
| 3 |
+
import uuid
|
| 4 |
+
|
| 5 |
+
pinecone.init(api_key=os.environ["PINECONE_API_KEY"], environment="us-west1-gcp")
|
| 6 |
+
|
| 7 |
+
INDEX_512_NAME = "images-512"
|
| 8 |
+
INDEX_768_NAME = "images-768"
|
| 9 |
+
|
| 10 |
+
index_512 = pinecone.Index(INDEX_512_NAME)
|
| 11 |
+
index_768 = pinecone.Index(INDEX_768_NAME)
|
| 12 |
+
|
| 13 |
+
DEV_NAMESPACE = 'disco-web-app-search-dev'
|
| 14 |
+
PROD_NAMESPACE = 'disco-web-app-search-prod'
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def add_image_embedding_to_db(embedding, model_name, dataset_name, path_to_image, image_name):
|
| 18 |
+
index = {
|
| 19 |
+
512: index_512,
|
| 20 |
+
768: index_768
|
| 21 |
+
}[embedding.shape[0]]
|
| 22 |
+
print (embedding.shape)
|
| 23 |
+
index.upsert([(str(uuid.uuid4()), embedding.tolist(), {'model': model_name,
|
| 24 |
+
'dataset': dataset_name,
|
| 25 |
+
'path': path_to_image,
|
| 26 |
+
'image_name': image_name})])
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def query_embeddings_db(query_embedding, dataset_name, model_name, top_k=4):
|
| 30 |
+
index = {
|
| 31 |
+
512: index_512,
|
| 32 |
+
768: index_768
|
| 33 |
+
}[len(query_embedding)]
|
| 34 |
+
return index.query(vector=query_embedding,
|
| 35 |
+
top_k=top_k,
|
| 36 |
+
namespace=DEV_NAMESPACE,
|
| 37 |
+
include_metadata=True)
|