Spaces:
Sleeping
Sleeping
Hanna Hjelmeland
commited on
Commit
·
ad3a545
1
Parent(s):
b7fa0eb
Change app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,49 @@
|
|
| 1 |
__all__ = ['is_flower', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
| 2 |
|
| 3 |
-
# Cell
|
| 4 |
from fastai.vision.all import *
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
def is_cat(x): return x[0].isupper()
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
-
def classify_image(img):
|
| 16 |
-
pred,idx,probs = learn.predict(img)
|
| 17 |
-
return dict(zip(categories, map(float,probs)))
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
intf.launch(inline=False)
|
|
|
|
| 1 |
__all__ = ['is_flower', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
| 2 |
|
|
|
|
| 3 |
from fastai.vision.all import *
|
| 4 |
import gradio as gr
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 6 |
+
import torch
|
| 7 |
|
|
|
|
| 8 |
|
| 9 |
+
model_name = "NbAiLab/nb-bert-base"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
|
| 12 |
+
model_path = "/models/first_model"
|
| 13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
def classify_text(test_text):
|
| 17 |
+
inputs = tokenizer(test_text, return_tensors="pt")
|
| 18 |
+
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
outputs = model(**inputs)
|
| 21 |
+
logits = outputs.logits
|
| 22 |
+
probabilities = torch.softmax(logits, dim=1)
|
| 23 |
+
|
| 24 |
+
predicted_class = torch.argmax(probabilities, dim=1).item()
|
| 25 |
+
class_labels = model.config.id2label
|
| 26 |
+
predicted_label = class_labels[predicted_class]
|
| 27 |
+
probabilities = probabilities[0].tolist()
|
| 28 |
|
| 29 |
+
categories = ['Kvinner 30-40', 'Kvinner 40-55', 'Menn 30-40', 'Menn 40-55']
|
| 30 |
|
| 31 |
+
category_probabilities = list(zip(categories, probabilities))
|
| 32 |
+
|
| 33 |
+
max_category = max(category_probabilities, key=lambda x: x[1])
|
| 34 |
+
|
| 35 |
+
#print('The model predicts that this text lead would have a majority of readers in the target group', max_category[0])
|
| 36 |
+
|
| 37 |
+
return dict(zip(categories, map(float,probabilities)))
|
| 38 |
+
|
| 39 |
+
# Cell
|
| 40 |
+
label = gr.outputs.Label()
|
| 41 |
+
categories = ('Kvinner 30-40', 'Kvinner 40-55', 'Menn 30-40', 'Menn 40-55')
|
| 42 |
+
app_title = "Target group classifier"
|
| 43 |
+
|
| 44 |
+
examples = ["Moren leter etter sønnen i et ihjelbombet leilighetskompleks.",
|
| 45 |
+
"De første månedene av krigen gikk så som så. Nå har Putin skiftet strategi."
|
| 46 |
+
"Fotballstadion tok fyr i helgen"
|
| 47 |
+
]
|
| 48 |
+
intf = gr.Interface(fn=classify_text, inputs="text", outputs=label, examples=examples, title=app_title)
|
| 49 |
intf.launch(inline=False)
|