Spaces:
Runtime error
Runtime error
Commit
·
0d78964
1
Parent(s):
bbe9324
query sgpt
Browse files- app.py +42 -2
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -2,7 +2,10 @@ import os
|
|
| 2 |
|
| 3 |
import cohere
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
import pinecone
|
|
|
|
|
|
|
| 6 |
|
| 7 |
co = cohere.Client(os.environ.get('COHERE_API', ''))
|
| 8 |
pinecone.init(
|
|
@@ -10,6 +13,10 @@ pinecone.init(
|
|
| 10 |
environment=os.environ.get('PINECONE_ENV', '')
|
| 11 |
)
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def list_me(matches):
|
| 14 |
result = ''
|
| 15 |
for match in matches:
|
|
@@ -19,10 +26,11 @@ def list_me(matches):
|
|
| 19 |
if 'body' in match['metadata']:
|
| 20 |
result += '<br/>' + match['metadata']['body']
|
| 21 |
result += '</li>'
|
| 22 |
-
return result
|
| 23 |
|
| 24 |
|
| 25 |
def query(question):
|
|
|
|
| 26 |
response = co.embed(
|
| 27 |
model='large',
|
| 28 |
texts=[question],
|
|
@@ -34,7 +42,39 @@ def query(question):
|
|
| 34 |
vector=response.embeddings[0],
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
iface = gr.Interface(
|
|
|
|
| 2 |
|
| 3 |
import cohere
|
| 4 |
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
import pinecone
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import AutoModel, AutoTokenizer
|
| 9 |
|
| 10 |
co = cohere.Client(os.environ.get('COHERE_API', ''))
|
| 11 |
pinecone.init(
|
|
|
|
| 13 |
environment=os.environ.get('PINECONE_ENV', '')
|
| 14 |
)
|
| 15 |
|
| 16 |
+
model = AutoModel.from_pretrained('monsoon-nlp/gpt-nyc')
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained('monsoon-nlp/gpt-nyc')
|
| 18 |
+
zos = np.zeros(4096-1024).tolist()
|
| 19 |
+
|
| 20 |
def list_me(matches):
|
| 21 |
result = ''
|
| 22 |
for match in matches:
|
|
|
|
| 26 |
if 'body' in match['metadata']:
|
| 27 |
result += '<br/>' + match['metadata']['body']
|
| 28 |
result += '</li>'
|
| 29 |
+
return result.replace('/mini', '/')
|
| 30 |
|
| 31 |
|
| 32 |
def query(question):
|
| 33 |
+
# Cohere search
|
| 34 |
response = co.embed(
|
| 35 |
model='large',
|
| 36 |
texts=[question],
|
|
|
|
| 42 |
vector=response.embeddings[0],
|
| 43 |
)
|
| 44 |
|
| 45 |
+
# SGPT search
|
| 46 |
+
batch_tokens = tokenizer(
|
| 47 |
+
[question],
|
| 48 |
+
padding=True,
|
| 49 |
+
truncation=True,
|
| 50 |
+
return_tensors="pt"
|
| 51 |
+
)
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
last_hidden_state = model(**batch_tokens, output_hidden_states=True, return_dict=True).last_hidden_state
|
| 54 |
+
weights = (
|
| 55 |
+
torch.arange(start=1, end=last_hidden_state.shape[1] + 1)
|
| 56 |
+
.unsqueeze(0)
|
| 57 |
+
.unsqueeze(-1)
|
| 58 |
+
.expand(last_hidden_state.size())
|
| 59 |
+
.float().to(last_hidden_state.device)
|
| 60 |
+
)
|
| 61 |
+
input_mask_expanded = (
|
| 62 |
+
batch_tokens["attention_mask"]
|
| 63 |
+
.unsqueeze(-1)
|
| 64 |
+
.expand(last_hidden_state.size())
|
| 65 |
+
.float()
|
| 66 |
+
)
|
| 67 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded * weights, dim=1)
|
| 68 |
+
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
|
| 69 |
+
embeddings = sum_embeddings / sum_mask
|
| 70 |
+
closest_sgpt = index.query(
|
| 71 |
+
top_k=2,
|
| 72 |
+
include_metadata=True,
|
| 73 |
+
namespace="mini",
|
| 74 |
+
vector=embeddings[0].tolist() + zos,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
return '<h3>Cohere</h3><ul>' + list_me(closest['matches']) + '</ul><h3>SGPT</h3><ul>' + list_me(closest_sgpt['matches']) + '</ul>'
|
| 78 |
|
| 79 |
|
| 80 |
iface = gr.Interface(
|
requirements.txt
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
cohere==3.10.0
|
| 2 |
pinecone-client==2.2.1
|
|
|
|
|
|
|
|
|
| 1 |
cohere==3.10.0
|
| 2 |
pinecone-client==2.2.1
|
| 3 |
+
torch
|
| 4 |
+
transformers==4.26.1
|