Spaces:
Runtime error
Runtime error
Darshan
commited on
Commit
·
bae6852
1
Parent(s):
023a520
permissions issue fix
Browse files- Dockerfile +5 -3
- app.py +71 -39
- app/main.py +79 -0
- requirements.txt +6 -6
Dockerfile
CHANGED
|
@@ -2,13 +2,15 @@
|
|
| 2 |
FROM python:3.10.9
|
| 3 |
|
| 4 |
# Copy the current directory contents into the container at .
|
| 5 |
-
COPY
|
| 6 |
|
| 7 |
# Set the working directory to /
|
| 8 |
-
WORKDIR /
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Install requirements.txt
|
| 11 |
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
| 12 |
|
| 13 |
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
| 14 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 2 |
FROM python:3.10.9
|
| 3 |
|
| 4 |
# Copy the current directory contents into the container at .
|
| 5 |
+
COPY ./app ./app
|
| 6 |
|
| 7 |
# Set the working directory to /
|
| 8 |
+
WORKDIR /trans
|
| 9 |
+
|
| 10 |
+
EXPOSE 7860
|
| 11 |
|
| 12 |
# Install requirements.txt
|
| 13 |
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
| 14 |
|
| 15 |
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
| 16 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
|
@@ -1,35 +1,17 @@
|
|
| 1 |
-
from
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
|
| 6 |
-
|
| 7 |
-
from langchain.chains import LLMChain
|
| 8 |
-
from langchain.prompts import PromptTemplate
|
| 9 |
-
from TextGen import app
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class Generate(BaseModel):
|
| 13 |
-
text: str
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def generate_text(prompt: str):
|
| 17 |
-
if prompt == "":
|
| 18 |
-
return {"detail": "Please provide a prompt."}
|
| 19 |
-
else:
|
| 20 |
-
prompt = PromptTemplate(template=prompt, input_variables=["Prompt"])
|
| 21 |
-
llm = Clarifai(
|
| 22 |
-
pat=config.CLARIFAI_PAT,
|
| 23 |
-
user_id=config.USER_ID,
|
| 24 |
-
app_id=config.APP_ID,
|
| 25 |
-
model_id=config.MODEL_ID,
|
| 26 |
-
model_version_id=config.MODEL_VERSION_ID,
|
| 27 |
-
)
|
| 28 |
-
llmchain = LLMChain(prompt=prompt, llm=llm)
|
| 29 |
-
llm_response = llmchain.run({"Prompt": prompt})
|
| 30 |
-
return Generate(text=llm_response)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
| 33 |
app.add_middleware(
|
| 34 |
CORSMiddleware,
|
| 35 |
allow_origins=["*"],
|
|
@@ -38,17 +20,67 @@ app.add_middleware(
|
|
| 38 |
allow_headers=["*"],
|
| 39 |
)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from typing import List
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 5 |
+
from IndicTransToolkit import IndicProcessor
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
|
| 8 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
os.environ["HF_HOME"] = "/.cache"
|
| 11 |
+
# Initialize FastAPI
|
| 12 |
+
app = FastAPI()
|
| 13 |
|
| 14 |
+
# Add CORS middleware
|
| 15 |
app.add_middleware(
|
| 16 |
CORSMiddleware,
|
| 17 |
allow_origins=["*"],
|
|
|
|
| 20 |
allow_headers=["*"],
|
| 21 |
)
|
| 22 |
|
| 23 |
+
# Initialize models and processors
|
| 24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 25 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
| 26 |
+
)
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 28 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
| 29 |
+
)
|
| 30 |
+
ip = IndicProcessor(inference=True)
|
| 31 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
model = model.to(DEVICE)
|
| 33 |
+
|
| 34 |
|
| 35 |
+
def translate_text(sentences: List[str], target_lang: str):
|
| 36 |
+
try:
|
| 37 |
+
src_lang = "eng_Latn"
|
| 38 |
+
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang)
|
| 39 |
+
inputs = tokenizer(
|
| 40 |
+
batch,
|
| 41 |
+
truncation=True,
|
| 42 |
+
padding="longest",
|
| 43 |
+
return_tensors="pt",
|
| 44 |
+
return_attention_mask=True,
|
| 45 |
+
).to(DEVICE)
|
| 46 |
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
generated_tokens = model.generate(
|
| 49 |
+
**inputs,
|
| 50 |
+
use_cache=True,
|
| 51 |
+
min_length=0,
|
| 52 |
+
max_length=256,
|
| 53 |
+
num_beams=5,
|
| 54 |
+
num_return_sequences=1,
|
| 55 |
+
)
|
| 56 |
|
| 57 |
+
with tokenizer.as_target_tokenizer():
|
| 58 |
+
generated_tokens = tokenizer.batch_decode(
|
| 59 |
+
generated_tokens.detach().cpu().tolist(),
|
| 60 |
+
skip_special_tokens=True,
|
| 61 |
+
clean_up_tokenization_spaces=True,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
translations = ip.postprocess_batch(generated_tokens, lang=target_lang)
|
| 65 |
+
return {
|
| 66 |
+
"translations": translations,
|
| 67 |
+
"source_language": src_lang,
|
| 68 |
+
"target_language": target_lang,
|
| 69 |
+
}
|
| 70 |
+
except Exception as e:
|
| 71 |
+
raise Exception(f"Translation failed: {str(e)}")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# FastAPI routes
|
| 75 |
+
@app.get("/health")
|
| 76 |
+
async def health_check():
|
| 77 |
+
return {"status": "healthy"}
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@app.post("/translate")
|
| 81 |
+
async def translate_endpoint(sentences: List[str], target_lang: str):
|
| 82 |
+
try:
|
| 83 |
+
result = translate_text(sentences=sentences, target_lang=target_lang)
|
| 84 |
+
return result
|
| 85 |
+
except Exception as e:
|
| 86 |
+
raise HTTPException(status_code=500, detail=str(e))
|
app/main.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from typing import List
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 5 |
+
from IndicTransToolkit import IndicProcessor
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
app.add_middleware(
|
| 11 |
+
CORSMiddleware,
|
| 12 |
+
allow_origins=["*"],
|
| 13 |
+
allow_credentials=True,
|
| 14 |
+
allow_methods=["*"],
|
| 15 |
+
allow_headers=["*"],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 19 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
| 20 |
+
)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 22 |
+
"ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
ip = IndicProcessor(inference=True)
|
| 26 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
model = model.to(DEVICE)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def translate_text(sentences: List[str], target_lang: str):
|
| 31 |
+
try:
|
| 32 |
+
src_lang = "eng_Latn"
|
| 33 |
+
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang)
|
| 34 |
+
inputs = tokenizer(
|
| 35 |
+
batch,
|
| 36 |
+
truncation=True,
|
| 37 |
+
padding="longest",
|
| 38 |
+
return_tensors="pt",
|
| 39 |
+
return_attention_mask=True,
|
| 40 |
+
).to(DEVICE)
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
generated_tokens = model.generate(
|
| 44 |
+
**inputs,
|
| 45 |
+
use_cache=True,
|
| 46 |
+
min_length=0,
|
| 47 |
+
max_length=256,
|
| 48 |
+
num_beams=5,
|
| 49 |
+
num_return_sequences=1,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
with tokenizer.as_target_tokenizer():
|
| 53 |
+
generated_tokens = tokenizer.batch_decode(
|
| 54 |
+
generated_tokens.detach().cpu().tolist(),
|
| 55 |
+
skip_special_tokens=True,
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
return generated_tokens
|
| 59 |
+
except Exception as e:
|
| 60 |
+
return str(e)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@app.get("/")
|
| 64 |
+
def read_root():
|
| 65 |
+
return {"Hello": "World"}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class TranslateRequest(BaseModel):
|
| 69 |
+
sentences: List[str]
|
| 70 |
+
target_lang: str
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@app.post("/translate/")
|
| 74 |
+
def translate(request: TranslateRequest):
|
| 75 |
+
try:
|
| 76 |
+
result = translate_text(request.sentences, request.target_lang)
|
| 77 |
+
return result
|
| 78 |
+
except Exception as e:
|
| 79 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
-
fastapi
|
| 2 |
uvicorn
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
uvicorn
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
git+https://github.com/VarunGumma/IndicTransToolkit.git
|
| 6 |
+
python-multipart
|
| 7 |
+
pydantic
|