# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat # Modified for trust game purposes import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # For Prompt Engineering import requests from huggingface_hub import AsyncInferenceClient from system_prompt_config import construct_input_prompt # Save chat history as JSON import json import atexit # From 70B code system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information." # Add this global variable to store the chat history global_chat_history = [] MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Llama-2 7B Chat This is your personal space to chat. You can ask anything from strategic questions regarding the game or just chat as you like. """ '''LICENSE = """

--- As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "meta-llama/Llama-2-13b-chat-hf" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False ''' #if not torch.cuda.is_available(): # DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "meta-llama/Llama-2-7b-chat-hf" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False # Add this function to store the chat history def save_chat_history(): """Save the chat history to a JSON file.""" with open("chat_history.json", "w") as json_file: json.dump(global_chat_history, json_file) @spaces.GPU # From 70B code # async def generate( def generate( message: str, chat_history: list[tuple[str, str]], # system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: # Use the global variable to store the chat history global global_chat_history conversation = [] #if system_prompt: # conversation.append({"role": "system", "content": system_prompt}) # Construct the input prompt using the functions from the system_prompt_config module input_prompt = construct_input_prompt(chat_history, message) # Convert input prompt to tensor input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) # Set up the TextIteratorStreamer streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) # Set up the generation arguments generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) # Start the model generation thread t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Yield generated text chunks outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Update the global_chat_history with the current conversation global_chat_history.append({ "message": message, "chat_history": chat_history, "system_prompt": system_prompt, "output": outputs[-1], # Assuming you want to save the latest model output }) # The modification above starting with "global_chat.history.append" introduces a global_chat_history variable to store the chat history globally. # The save_chat_history function is registered to be called when the program exits # using atexit.register(save_chat_history). # It saves the chat history to a JSON file named "chat_history.json". # The generate function is updated to append the current conversation to global_chat_history # after generating each response. chat_interface = gr.ChatInterface( fn=generate, theme="soft", retry_btn=None, clear_btn=None, undo_btn=None, chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = False), examples=[ ["How much should I invest in order to win?"], ["What happened in the last round?"], ["What is my probability to win if I do not invest anything?"], ["What is my probability to win if I do not share anything?"], ["Can you explain the rules very briefly again?"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) #gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() #gr.Markdown(LICENSE) if __name__ == "__main__": #demo.queue(max_size=20).launch() demo.queue(max_size=20) demo.launch(share=True, debug=True) # Register the function to be called when the program exits atexit.register(save_chat_history)