#============================================================================================ # https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Loops-Mixer #============================================================================================ print('=' * 70) print('Advanced MIDI Loops Mixer Gradio App') print('=' * 70) print('Loading core Advanced MIDI Loops Mixer modules...') import os import copy import time as reqtime import datetime from pytz import timezone print('=' * 70) print('Loading main Advanced MIDI Loops Mixer modules...') from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio import numpy as np import random import tqdm print('=' * 70) print('Loading aux Advanced MIDI Loops Mixer modules...') import matplotlib.pyplot as plt import gradio as gr print('=' * 70) print('Done!') print('Enjoy! :)') print('=' * 70) #================================================================================== SOUNDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' #================================================================================== print('=' * 70) print('Loading data...') print('=' * 70) sequences_data = hf_hub_download(repo_id='asigalov61/Advanced-MIDI-Loops', filename='Advanced_MIDI_Loops_Sequences_CC_BY_NC_SA.npy', repo_type='dataset' ) print('=' * 70) labels_data = hf_hub_download(repo_id='asigalov61/Advanced-MIDI-Loops', filename='Advanced_MIDI_Loops_Labels_CC_BY_NC_SA.pickle', repo_type='dataset' ) print('=' * 70) sims_indexes_data = hf_hub_download(repo_id='asigalov61/Advanced-MIDI-Loops', filename='Advanced_MIDI_Loops_Sims_Indexes_CC_BY_NC_SA.npy', repo_type='dataset' ) print('=' * 70) print('Done!') print('=' * 70) #================================================================================== print('=' * 70) print('Loading Advanced MIDI Loops dataset...') print('=' * 70) print('Loading loops sequences...') loops_sequences = np.load(sequences_data, mmap_mode="r") print(loops_sequences.shape) print('=' * 70) print('Loading loops labels...') loops_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader(labels_data, verbose=False) print('=' * 70) print('Loading loops sims indexes...') loops_sims_indexes = np.load(sims_indexes_data) print('=' * 70) print('Done!') print('=' * 70) print('Loaded', len(loops_sequences), 'loops') print('=' * 70) #================================================================================== def tokens_to_score(tokens, abs_time): song_f = [] time = abs_time dur = 1 vel = 90 pitch = 60 channel = 0 patch = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in tokens: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 16768: patch = (ss-256) // 128 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-256) % 128 if 16768 <= ss < 18816: dur = ((ss-16768) // 8) * 16 vel = (((ss-16768) % 8)+1) * 15 song_f.append(['note', time, dur, channel, pitch, vel, patch]) return song_f, time #================================================================================== def Mix_MIDI_Loops(num_loops_to_mix, use_one_loop, model_temperature, model_sampling_top_k ): #=============================================================================== print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) print('=' * 70) print('Requested settings:') print('=' * 70) print('Num loops to mix:', num_loops_to_mix) print('Use one loop:', use_one_loop) print('Model temperature:', model_temperature) print('Model top k:', model_sampling_top_k) print('=' * 70) #================================================================== print('Generating...') song = [] song_indexes = [] song_titles = [] song_parts = [] while len(song) <= 512: lidx = random.randint(0, len(loops_data)-1) song = loops_data[lidx][1] song_indexes.append(lidx) song_titles.append(loops_data[lidx][0]) song_parts.append(loops_data[lidx][1]) for i in tqdm.tqdm(range(num_loops_to_mix-1)): left_chunk = [1] + loops_data[lidx][1][2:] if use_one_loop: right_chunk = [1] + loops_data[lidx][1][2:] else: right_chunk = [] ridx = [-1] rlen = -1 while ridx and rlen <= 512: rlen = len(loops_data[ridx[0]][1]) ridx = [l for l in loops_data[lidx][2] if l not in song_indexes] if ridx: ridx = ridx[0] right_chunk = [1] + loops_data[ridx][1][2:] lidx = ridx song_titles.append(loops_data[lidx][0]) song_indexes.append(lidx) else: break seq = [18815] + left_chunk[-512:] + [18816] + right_chunk[:512] + [18817] + left_chunk[-64:] x = torch.LongTensor(seq).cuda() y_val = [] rcount = 0 while y_val != right_chunk[:64]: with ctx: out = model.generate(x, 576, temperature=model_temperature, filter_logits_fn=top_k, filter_kwargs={'k': model_sampling_top_k}, eos_token=18818, return_prime=False, verbose=False) y = out.tolist() y_val = y[-64:] if y_val != right_chunk[:64]: rcount += 1 print('Regenerating attempt #', rcount) if rcount == 3: break song = song + y[:-64] + right_chunk song_parts.append(y[:-64]) song_parts.append(right_chunk) #================================================================== print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') used_loops_titles = 'Composition used ' + str(len(song_titles)) + ' loops from the following titles:\n\n' for i, t in enumerate(song_titles): used_loops_titles += 'Loop #' + str(i+1) + ': ' + str(t) + '\n' #=============================================================================== print('=' * 70) print('Sample INTs', song[:15]) print('=' * 70) output_score = [] abs_time = 1000 for i, part in enumerate(song_parts): if i == 0: part = part[1:] if not use_one_loop: part_idx = song_indexes[i // 2] else: part_idx = song_indexes[0] if i % 2 == 0: if not use_one_loop: part_title = song_titles[i // 2] else: part_title = song_titles[0] output_score.append(['text_event', abs_time + (part[0] * 16), 'Loop #' + str((i // 2)+1) + ' / IDX #' + str(part_idx) + ' / ' + part_title]) else: tidx = [i for i in range(20) if part[i] < 256][0] output_score.append(['text_event', abs_time + (part[tidx] * 16), 'AI-generated bridge']) score, abs_time= tokens_to_score(part, abs_time) output_score.extend(score) #=============================================================================== patched_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score) fn1 = "Advanced-MIDI-Loops-Mixer-Composition" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(patched_score, output_signature = 'Advanced MIDI Loops Mixer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) #=============================================================================== new_fn = fn1+'.mid' #=============================================================================== audio = midi_to_colab_audio(new_fn, soundfont_path=SOUDFONT_PATH, sample_rate=16000, volume_scale=10, output_for_gradio=True ) #=============================================================================== print('Done!') print('=' * 70) #======================================================== output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(patched_score, plot_title=output_midi, return_plt=True ) #=============================================================================== print(used_loops_titles) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return used_loops_titles, output_audio, output_plot, output_midi #================================================================================== PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #================================================================================== with gr.Blocks() as demo: #================================================================================== gr.Markdown("