angelperedo01 commited on
Commit
68c0f61
·
verified ·
1 Parent(s): 5411fe1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +128 -0
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from datasets import load_dataset
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
+ from sklearn.metrics import accuracy_score, f1_score
6
+ import numpy as np
7
+
8
+ # --- CONFIGURATION ---
9
+ # REPLACE THIS WITH YOUR UPLOADED MODEL NAME!
10
+ MODEL_REPO = "angelperedo01/proj2"
11
+ DATASET_NAME = "nvidia/Aegis-AI-Content-Safety-Dataset-2.0"
12
+ MAX_SAMPLES = 200 # Limit samples for the demo so it doesn't take hours
13
+
14
+ def get_text_and_label(example):
15
+ """
16
+ Your custom logic to parse the NVIDIA dataset labels.
17
+ """
18
+ text = example.get('prompt', '')
19
+ label = None
20
+
21
+ # Try 'prompt_label' first
22
+ if 'prompt_label' in example:
23
+ raw_label = example['prompt_label']
24
+ if isinstance(raw_label, str):
25
+ raw_lower = raw_label.lower()
26
+ if any(x in raw_lower for x in ['unsafe', 'harmful', 'toxic', 'attack']):
27
+ label = 1
28
+ elif any(x in raw_lower for x in ['safe', 'benign']):
29
+ label = 0
30
+ else:
31
+ try: label = int(raw_label)
32
+ except: label = 1 if 'unsafe' in raw_lower else 0
33
+ else:
34
+ label = int(raw_label)
35
+
36
+ # Default to Safe (0) if we really can't find it
37
+ if label is None: label = 0
38
+ return text, label
39
+
40
+ def run_live_evaluation(progress=gr.Progress()):
41
+ # 1. Load Model & Data
42
+ yield "Loading Model from Hub...", "-", "-", []
43
+
44
+ try:
45
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO)
46
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
47
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
48
+ model.to(device)
49
+ model.eval()
50
+ except Exception as e:
51
+ yield f"Error loading model: {str(e)}", "Error", "Error", []
52
+ return
53
+
54
+ # Load Dataset (Streaming or small slice for speed)
55
+ yield "Loading NVIDIA Dataset...", "-", "-", []
56
+ try:
57
+ # Try test split, fallback to train
58
+ ds = load_dataset(DATASET_NAME, split="test")
59
+ except:
60
+ ds = load_dataset(DATASET_NAME, split="train")
61
+
62
+ # Shuffle and select subset for the demo
63
+ ds = ds.shuffle(seed=42).select(range(MAX_SAMPLES))
64
+
65
+ true_labels = []
66
+ predictions = []
67
+ logs = [] # To store misclassifications
68
+
69
+ # 2. The Evaluation Loop
70
+ for i, item in enumerate(progress.tqdm(ds, desc="Evaluating...")):
71
+ text, true_label = get_text_and_label(item)
72
+ true_labels.append(true_label)
73
+
74
+ # Tokenize
75
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256).to(device)
76
+
77
+ # Predict
78
+ with torch.no_grad():
79
+ logits = model(**inputs).logits
80
+ pred = torch.argmax(logits, dim=-1).item()
81
+ predictions.append(pred)
82
+
83
+ # Log Errors (If prediction is wrong)
84
+ if pred != true_label:
85
+ status = "🔴 MISS"
86
+ logs.insert(0, [status, text[:80] + "...", "Safe" if true_label==0 else "Unsafe", "Safe" if pred==0 else "Unsafe"])
87
+ else:
88
+ # Optional: Log successes too if you want, but it clutters the view
89
+ pass
90
+
91
+ # Update UI every 5 steps
92
+ if i % 5 == 0 or i == len(ds)-1:
93
+ acc = accuracy_score(true_labels, predictions)
94
+ f1 = f1_score(true_labels, predictions, zero_division=0)
95
+
96
+ status_msg = f"Processed {i+1}/{MAX_SAMPLES}"
97
+ yield status_msg, f"{acc:.2%}", f"{f1:.2f}", logs[:10] # Show last 10 errors
98
+
99
+ # --- UI LAYOUT ---
100
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
101
+ gr.Markdown(f"## 🛡️ Live Safety Model Evaluation")
102
+ gr.Markdown(f"Running `{MODEL_REPO}` on `{DATASET_NAME}` (Live Inference)")
103
+
104
+ with gr.Row():
105
+ start_btn = gr.Button("▶️ Start Live Test", variant="primary")
106
+
107
+ with gr.Row():
108
+ with gr.Column():
109
+ status_box = gr.Label(value="Ready", label="Status")
110
+ with gr.Column():
111
+ acc_box = gr.Label(value="-", label="Current Accuracy")
112
+ with gr.Column():
113
+ f1_box = gr.Label(value="-", label="Current F1 Score")
114
+
115
+ gr.Markdown("### 🚨 Recent Misclassifications (Live Feed)")
116
+ log_table = gr.Dataframe(
117
+ headers=["Status", "Text Snippet", "True Label", "Predicted"],
118
+ datatype=["str", "str", "str", "str"],
119
+ row_count=10
120
+ )
121
+
122
+ start_btn.click(
123
+ fn=run_live_evaluation,
124
+ inputs=None,
125
+ outputs=[status_box, acc_box, f1_box, log_table]
126
+ )
127
+
128
+ demo.queue().launch()