Spaces:
Sleeping
Sleeping
imabackstabber
commited on
Commit
·
3a34d98
1
Parent(s):
bc30f4c
test frontend
Browse files- app.py +121 -4
- assets/01.jpg +0 -0
- assets/02.jpg +0 -0
- assets/03.jpg +0 -0
app.py
CHANGED
|
@@ -1,7 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import os.path as osp
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import cv2
|
| 6 |
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import math
|
| 9 |
+
import spaces
|
| 10 |
|
| 11 |
+
try:
|
| 12 |
+
import mmpose
|
| 13 |
+
except:
|
| 14 |
+
os.system('pip install /home/user/app/main/transformer_utils')
|
| 15 |
|
| 16 |
+
os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
|
| 17 |
+
DEFAULT_MODEL='smpler_x_h32'
|
| 18 |
+
OUT_FOLDER = '/home/user/app/demo_out'
|
| 19 |
+
os.makedirs(OUT_FOLDER, exist_ok=True)
|
| 20 |
+
# num_gpus = 1 if torch.cuda.is_available() else -1
|
| 21 |
+
# print("!!!", torch.cuda.is_available())
|
| 22 |
+
# print(torch.cuda.device_count())
|
| 23 |
+
# print(torch.version.cuda)
|
| 24 |
+
# index = torch.cuda.current_device()
|
| 25 |
+
# print(index)
|
| 26 |
+
# print(torch.cuda.get_device_name(index))
|
| 27 |
+
# from main.inference import Inferer
|
| 28 |
+
# inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
| 29 |
+
|
| 30 |
+
@spaces.GPU(enable_queue=True)
|
| 31 |
+
def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
|
| 32 |
+
# num_gpus = 1 if torch.cuda.is_available() else -1
|
| 33 |
+
# print("!!!", torch.cuda.is_available())
|
| 34 |
+
# print(torch.cuda.device_count())
|
| 35 |
+
# print(torch.version.cuda)
|
| 36 |
+
# index = torch.cuda.current_device()
|
| 37 |
+
# print(index)
|
| 38 |
+
# print(torch.cuda.get_device_name(index))
|
| 39 |
+
# from main.inference import Inferer
|
| 40 |
+
# inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
|
| 41 |
+
# os.system(f'rm -rf {OUT_FOLDER}/*')
|
| 42 |
+
# multi_person = False if (num_people == "Single person") else True
|
| 43 |
+
# cap = cv2.VideoCapture(video_input)
|
| 44 |
+
# fps = math.ceil(cap.get(5))
|
| 45 |
+
# width = int(cap.get(3))
|
| 46 |
+
# height = int(cap.get(4))
|
| 47 |
+
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 48 |
+
# video_path = osp.join(OUT_FOLDER, f'out.m4v')
|
| 49 |
+
# final_video_path = osp.join(OUT_FOLDER, f'out.mp4')
|
| 50 |
+
# video_output = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
|
| 51 |
+
# success = 1
|
| 52 |
+
# frame = 0
|
| 53 |
+
# while success:
|
| 54 |
+
# success, original_img = cap.read()
|
| 55 |
+
# if not success:
|
| 56 |
+
# break
|
| 57 |
+
# frame += 1
|
| 58 |
+
# img, mesh_paths, smplx_paths = inferer.infer(original_img, in_threshold, frame, multi_person, not(render_mesh))
|
| 59 |
+
# video_output.write(img)
|
| 60 |
+
# yield img, None, None, None
|
| 61 |
+
# cap.release()
|
| 62 |
+
# video_output.release()
|
| 63 |
+
# cv2.destroyAllWindows()
|
| 64 |
+
# os.system(f'ffmpeg -i {video_path} -c copy {final_video_path}')
|
| 65 |
+
|
| 66 |
+
# #Compress mesh and smplx files
|
| 67 |
+
# save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
|
| 68 |
+
# save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
|
| 69 |
+
# os.makedirs(save_path_mesh, exist_ok= True)
|
| 70 |
+
# save_path_smplx = os.path.join(OUT_FOLDER, 'smplx')
|
| 71 |
+
# save_smplx_file = os.path.join(OUT_FOLDER, 'smplx.zip')
|
| 72 |
+
# os.makedirs(save_path_smplx, exist_ok= True)
|
| 73 |
+
# os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
|
| 74 |
+
# os.system(f'zip -r {save_smplx_file} {save_path_smplx}')
|
| 75 |
+
# yield img, video_path, save_mesh_file, save_smplx_file
|
| 76 |
+
return image_input, "success"
|
| 77 |
+
|
| 78 |
+
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
|
| 79 |
+
DESCRIPTION = '''
|
| 80 |
+
<b>Official Gradio demo</b> for <b>PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</b>.<br>
|
| 81 |
+
<p>
|
| 82 |
+
Note: You can drop a image at the panel (or select one of the examples)
|
| 83 |
+
to obtain the 3D parametric reconstructions of the detected humans.
|
| 84 |
+
</p>
|
| 85 |
+
'''
|
| 86 |
+
|
| 87 |
+
with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
|
| 88 |
+
|
| 89 |
+
gr.Markdown(TITLE)
|
| 90 |
+
gr.Markdown(DESCRIPTION)
|
| 91 |
+
|
| 92 |
+
with gr.Row():
|
| 93 |
+
with gr.Column():
|
| 94 |
+
image_input = gr.Image(label="Input image", elem_classes="Image")
|
| 95 |
+
threshold = gr.Slider(0, 1.0, value=0.5, label='BBox detection threshold')
|
| 96 |
+
num_people = gr.Radio(
|
| 97 |
+
choices=["Single person", "Multiple people"],
|
| 98 |
+
value="Single person",
|
| 99 |
+
label="Number of people",
|
| 100 |
+
info="Choose how many people are there in the video. Choose 'single person' for faster inference.",
|
| 101 |
+
interactive=True,
|
| 102 |
+
scale=1,)
|
| 103 |
+
mesh_as_vertices = gr.Checkbox(
|
| 104 |
+
label="Render as mesh",
|
| 105 |
+
info="By default, the estimated SMPL-X parameters are rendered as vertices for faster visualization. Check this option if you want to visualize meshes instead.",
|
| 106 |
+
interactive=True,
|
| 107 |
+
scale=1,)
|
| 108 |
+
send_button = gr.Button("Infer")
|
| 109 |
+
with gr.Column():
|
| 110 |
+
processed_frames = gr.Image(label="Last processed frame")
|
| 111 |
+
debug_textbox = gr.Textbox(label="Debug information")
|
| 112 |
+
|
| 113 |
+
# example_images = gr.Examples([])
|
| 114 |
+
send_button.click(fn=infer, inputs=[image_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, debug_textbox])
|
| 115 |
+
# with gr.Row():
|
| 116 |
+
example_images = gr.Examples([
|
| 117 |
+
['/home/user/app/assets/01.jpg'],
|
| 118 |
+
['/home/user/app/assets/02.jpg'],
|
| 119 |
+
['/home/user/app/assets/03.jpg'],
|
| 120 |
+
],
|
| 121 |
+
inputs=[image_input, 0.5])
|
| 122 |
+
|
| 123 |
+
#demo.queue()
|
| 124 |
+
demo.queue().launch(debug=True)
|
assets/01.jpg
ADDED
|
assets/02.jpg
ADDED
|
assets/03.jpg
ADDED
|