alexander-potemkin commited on
Commit
fa8f9a3
·
verified ·
1 Parent(s): cc8e701

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -47
app.py CHANGED
@@ -1,53 +1,18 @@
1
  import gradio as gr
2
- import spaces
3
- import torch
4
- import os
5
- from compel import Compel, ReturnedEmbeddingsType
6
- from diffusers import DiffusionPipeline
7
 
 
8
 
9
- model_name = os.environ.get('MODEL_NAME', 'UnfilteredAI/NSFW-gen-v2')
10
- pipe = DiffusionPipeline.from_pretrained(
11
- model_name,
12
- torch_dtype=torch.float16
13
- )
14
- pipe.to('cuda')
15
 
16
- compel = Compel(
17
- tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
18
- text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
19
- returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
20
- requires_pooled=[False, True]
21
  )
22
 
23
-
24
- @spaces.GPU(duration=120)
25
- def generate(prompt, negative_prompt, num_inference_steps, guidance_scale, width, height, num_samples):
26
- embeds, pooled = compel(prompt)
27
- neg_embeds, neg_pooled = compel(negative_prompt)
28
- return pipe(
29
- prompt_embeds=embeds,
30
- pooled_prompt_embeds=pooled,
31
- negative_prompt_embeds=neg_embeds,
32
- negative_pooled_prompt_embeds=neg_pooled,
33
- num_inference_steps=num_inference_steps,
34
- guidance_scale=guidance_scale,
35
- width=width,
36
- height=height,
37
- num_images_per_prompt=num_samples
38
- ).images
39
-
40
-
41
- gr.Interface(
42
- fn=generate,
43
- inputs=[
44
- gr.Text(label="Prompt"),
45
- gr.Text("", label="Negative Prompt"),
46
- gr.Number(7, label="Number inference steps"),
47
- gr.Number(3, label="Guidance scale"),
48
- gr.Number(512, label="Width"),
49
- gr.Number(512, label="Height"),
50
- gr.Number(1, label="# images"),
51
- ],
52
- outputs=gr.Gallery(),
53
- ).launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
 
 
 
 
3
 
4
+ pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
5
 
6
+ def predict(input_img):
7
+ predictions = pipeline(input_img)
8
+ return input_img, {p["label"]: p["score"] for p in predictions}
 
 
 
9
 
10
+ gradio_app = gr.Interface(
11
+ predict,
12
+ inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
13
+ outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
14
+ title="Hot Dog? Or Not?",
15
  )
16
 
17
+ if __name__ == "__main__":
18
+ gradio_app.launch()