""" ProVerBs Ultimate Brain with Complete Voice Cloning Integrates Supertonic voice cloning with all controls """ # Import everything from app_ultimate_brain import sys import os sys.path.append(os.path.dirname(__file__)) import gradio as gr from huggingface_hub import InferenceClient import json import os from datetime import datetime from typing import Dict, List, Optional import requests # Import Unified Brain from unified_brain import UnifiedBrain, ReasoningContext # Import Performance & Analytics from performance_optimizer import performance_cache, performance_monitor, with_caching from analytics_seo import analytics_tracker, SEOOptimizer # Import Voice Cloning from supertonic_voice_module import create_supertonic_interface # Import Document Processor from document_processor import DocumentProcessor # Define class FIRST class UltimateLegalBrain: def __init__(self): self.brain = UnifiedBrain() self.legal_modes = { "navigation": "πŸ“ Navigation Guide", "general": "πŸ’¬ General Legal", "document_validation": "πŸ“„ Document Validator", "legal_research": "πŸ” Legal Research", "etymology": "πŸ“š Etymology Expert", "case_management": "πŸ’Ό Case Management", "regulatory_updates": "πŸ“‹ Regulatory Updates" } async def process_legal_query(self, query: str, mode: str, ai_provider: str = "huggingface", use_reasoning_protocols: bool = True, **kwargs) -> Dict: reasoning_result = None if use_reasoning_protocols: preferences = {'use_reflection': mode in ['document_validation', 'legal_research'], 'multi_agent': False} reasoning_result = await self.brain.process(query=query, preferences=preferences, execution_mode='sequential') legal_prompt = self.get_legal_system_prompt(mode) if reasoning_result and reasoning_result['success']: reasoning_trace = "\n".join([f"🧠 {r['protocol']}: {', '.join(r['trace'][:2])}" for r in reasoning_result['results']]) enhanced_query = f"{legal_prompt}\n\nReasoning Analysis:\n{reasoning_trace}\n\nUser Query: {query}" else: enhanced_query = f"{legal_prompt}\n\nUser Query: {query}" return {"enhanced_query": enhanced_query, "reasoning_result": reasoning_result, "mode": mode, "ai_provider": ai_provider} def get_legal_system_prompt(self, mode: str) -> str: prompts = { "navigation": "You are a ProVerBs Legal AI Navigation Guide with advanced reasoning capabilities.", "general": "You are a General Legal Assistant powered by ADAPPT-Iβ„’ reasoning technology.", "document_validation": "You are a Document Validator using Chain-of-Thought and Self-Consistency protocols.", "legal_research": "You are a Legal Research Assistant with RAG and Tree-of-Thoughts capabilities.", "etymology": "You are a Legal Etymology Expert with multi-step reasoning.", "case_management": "You are a Case Management Helper with ReAct protocol integration.", "regulatory_updates": "You are a Regulatory Monitor with real-time analysis capabilities." } return prompts.get(mode, prompts["general"]) async def respond_with_ultimate_brain(message, history: list, mode: str, ai_provider: str, use_reasoning: bool, max_tokens: int, temperature: float, top_p: float, hf_token = None): import time start_time = time.time() brain_result = await ultimate_brain.process_legal_query(query=message, mode=mode, ai_provider=ai_provider, use_reasoning_protocols=use_reasoning) if use_reasoning and brain_result['reasoning_result']: reasoning_info = "🧠 **Reasoning Protocols Applied:**\n" for r in brain_result['reasoning_result']['results']: reasoning_info += f"- {r['protocol']}: βœ… {r['status']}\n" yield reasoning_info + "\n\n" if ai_provider == "huggingface": token = hf_token.token if hf_token else None client = InferenceClient(token=token, model="meta-llama/Llama-3.3-70B-Instruct") messages = [{"role": "system", "content": brain_result['enhanced_query']}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = reasoning_info if use_reasoning and brain_result['reasoning_result'] else "" try: for chunk in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): if chunk.choices and chunk.choices[0].delta.content: response += chunk.choices[0].delta.content yield response except Exception as e: yield f"{response}\n\n❌ Error: {str(e)}" # Custom CSS - Simplified with logo styling # Custom CSS - Futuristic Gold and Blue Theme custom_css = """ .gradio-container { max-width: 1400px !important; background-color: #0a0e17 !important; } .header-section { text-align: center; padding: 40px 20px; background: linear-gradient(135deg, #001529 0%, #003366 50%, #8a6e14 100%); color: #ffffff; border-radius: 12px; margin-bottom: 20px; border: 1px solid #D4AF37; box-shadow: 0 4px 20px rgba(212, 175, 55, 0.2); } .header-section h1 { font-size: 3rem; margin-bottom: 10px; font-weight: 700; text-shadow: 2px 2px 4px rgba(0,0,0,0.5); background: linear-gradient(to right, #ffffff, #FFD700); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .header-section p { color: #FFD700; font-weight: 700; font-size: 1.2rem; text-shadow: 1px 1px 1px #000000; } .brain-badge { display: inline-block; background: linear-gradient(45deg, #FFD700, #FDB931); color: #000000; padding: 8px 16px; border-radius: 20px; font-weight: 800; margin: 10px 5px; border: 2px solid #FFFFFF; box-shadow: 0 0 15px rgba(255, 215, 0, 0.6); } .logo-circle img { border-radius: 50% !important; box-shadow: 0 8px 32px rgba(255, 215, 0, 0.4) !important; border: 4px solid #FFD700 !important; object-fit: cover !important; image-rendering: high-quality !important; } /* Tab Styling */ .tabs button.selected { color: #FFD700 !important; border_bottom: 2px solid #FFD700 !important; font-weight: bold; } /* Global Text Color Override for visibility - AGGRESSIVE */ body, .gradio-container, .prose, .prose * { color: #FFD700 !important; } /* Specific overrides for common Gradio elements that might be stubborn */ p, span, div, label, button, input, textarea, select, h1, h2, h3, h4, h5, h6, li, ul, ol, th, td, blockquote { color: #FFD700 !important; text-shadow: 1px 1px 1px #000000; } /* Ensure links are distinct but visible */ a { color: #FFC125 !important; text-decoration: underline; } """ # SEO seo_meta = SEOOptimizer.get_meta_tags() seo_structured = SEOOptimizer.get_structured_data() # Initialize AFTER class definition ultimate_brain = UltimateLegalBrain() document_processor = DocumentProcessor() # Override the demo with voice cloning integrated demo_with_voice = gr.Blocks(title="ProVerBs Ultimate Legal AI Brain") with demo_with_voice: gr.HTML(f"") # Add SEO tags gr.HTML(seo_meta + seo_structured) # Header with Rotating Logos - Using Gradio Image components (Method 3 - WORKS!) assets_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets") logo_paths = [ os.path.join(assets_dir, 'logo_1.jpg'), os.path.join(assets_dir, 'logo_2.jpg'), os.path.join(assets_dir, 'logo_3.jpg') ] gr.HTML("""

βš–οΈ ProVerBs Ultimate Legal AI Brain

Powered by Pro'VerBsβ„’ & ADAPPT-Iβ„’ Technology

""") # Single rotating logo display gr.HTML('

Our Brand Identity

') with gr.Row(): rotating_logo = gr.Image( value=logo_paths[0], label="", show_label=False, height=180, width=180, container=False, elem_classes="logo-circle", elem_id="main_rotating_logo" ) # Hidden state to track current logo index logo_index_state = gr.State(0) # Function to rotate logo def rotate_logo(current_index): import time time.sleep(60) # Wait 60 seconds next_index = (current_index + 1) % 3 return logo_paths[next_index], next_index # Function to get random logo on load def get_random_logo(): import random return random.choice(logo_paths), 0 # Set up automatic rotation on load (pick random) demo_with_voice.load( fn=get_random_logo, outputs=[rotating_logo, logo_index_state] ) gr.HTML("""
🧠 100+ Reasoning Protocols πŸ€– 6 AI Models βš–οΈ 7 Legal Modes πŸŽ™οΈ Voice Cloning

Chain-of-Thought β€’ Self-Consistency β€’ Tree-of-Thoughts β€’ ReAct β€’ Reflexion β€’ RAG
Quantum Reasoning β€’ Multi-Agent β€’ Voice Cloning β€’ Audio Processing

""") with gr.Tabs(): # Welcome Tab with gr.Tab("🏠 Welcome"): gr.Markdown(""" ## Welcome to the Ultimate ProVerBs Legal AI Brain ### 🧠 Unified Reasoning Brain (100+ Protocols) **Core Reasoning Protocols:** - Chain-of-Thought (CoT) - Step-by-step reasoning - Self-Consistency - Multiple reasoning paths - Tree-of-Thoughts (ToT) - Branching exploration - ReAct - Reason + Act cycles - Reflexion - Self-reflection with memory - RAG - Retrieval-Augmented Generation ### πŸ€– 6 AI Model Options: - πŸ€— HuggingFace Llama-3.3-70B (Free, always available) - 🧠 GPT-4 Turbo (OpenAI) - ✨ Gemini 3.0 (Google) - πŸ” Perplexity AI (Research) - πŸ₯· Ninja AI - πŸ’» LM Studio (Local) ### βš–οΈ 7 Specialized Legal Modes: - Navigation | General Legal | Document Validation - Legal Research | Etymology | Case Management | Regulatory Updates ### πŸŽ™οΈ **NEW! Supertonic Voice Cloning:** - Record voice samples - Clone voices with text-to-speech - Professional audio processing - Voice profile management - **Full controls**: Play, Record, Pause, Rewind, etc. **Get Started:** Click "πŸ€– AI Legal Chatbot" or "πŸŽ™οΈ Voice Cloning" tab! """) # AI Chatbot Tab (copy from original) with gr.Tab("πŸ€– AI Legal Chatbot"): gr.Markdown(""" ## Multi-AI Legal Chatbot Select your AI model and legal assistant mode below! """) with gr.Row(): ai_provider_selector = gr.Dropdown( choices=[ ("πŸ€— Llama-3.3-70B (Free)", "huggingface"), ("🧠 GPT-4 Turbo", "gpt4"), ("✨ Gemini 3.0", "gemini"), ("πŸ” Perplexity AI", "perplexity"), ("πŸ₯· Ninja AI", "ninjaai"), ("πŸ’» LM Studio", "lmstudio") ], value="huggingface", label="πŸ€– AI Model" ) mode_selector = gr.Dropdown( choices=[ ("πŸ“ Navigation", "navigation"), ("πŸ’¬ General Legal", "general"), ("πŸ“„ Document Validator", "document_validation"), ("πŸ” Legal Research", "legal_research"), ("πŸ“š Etymology", "etymology"), ("πŸ’Ό Case Management", "case_management"), ("πŸ“‹ Regulatory Updates", "regulatory_updates") ], value="general", label="βš–οΈ Legal Mode" ) use_reasoning_toggle = gr.Checkbox( label="🧠 Enable Reasoning Protocols", value=True, info="Use 100+ reasoning protocols for enhanced analysis" ) chatbot_interface = gr.ChatInterface( respond_with_ultimate_brain, chatbot=gr.Chatbot( height=550, placeholder="πŸ’¬ Ultimate Legal AI ready! Ask anything...", show_label=False ), textbox=gr.Textbox( placeholder="Ask your legal question here...", container=False, scale=7 ), additional_inputs=[ mode_selector, ai_provider_selector, use_reasoning_toggle, gr.Slider(128, 4096, value=2048, step=128, label="Max Tokens"), gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") ], examples=[ ["What reasoning protocols are available?"], ["Analyze this contract using Chain-of-Thought reasoning"], ["Research case law with Tree-of-Thoughts exploration"] ], cache_examples=False ) # Voice Cloning Tab - FULL SUPERTONIC INTERFACE with gr.Tab("πŸŽ™οΈ Voice Cloning"): create_supertonic_interface() # Document Processing Tab - NEW! with gr.Tab("πŸ“„ Document Processing"): gr.Markdown(""" ## πŸ“„ Document Processing & OCR Upload documents, images, or URLs to extract text and analyze with AI. **Supported formats:** - πŸ“„ PDF documents - πŸ–ΌοΈ Images (PNG, JPG, JPEG) with OCR - ✍️ Handwriting recognition - πŸ“ Text files (.txt) - πŸ“„ Word documents (.docx) - 🌐 Web URLs """) with gr.Tabs(): # File Upload Tab with gr.Tab("πŸ“ Upload File"): file_input = gr.File( label="Upload Document", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".txt", ".docx"], type="filepath" ) process_file_btn = gr.Button("πŸ” Process File", variant="primary") # URL Input Tab with gr.Tab("🌐 From URL"): url_input = gr.Textbox( label="Enter URL", placeholder="https://example.com/document.pdf", lines=1 ) process_url_btn = gr.Button("πŸ” Process URL", variant="primary") # Direct Text Tab with gr.Tab("✍️ Direct Text"): direct_text_input = gr.Textbox( label="Enter or Paste Text", placeholder="Paste your text here...", lines=10 ) process_text_btn = gr.Button("πŸ” Process Text", variant="primary") # Output Section gr.Markdown("### πŸ“Š Extracted Content") with gr.Row(): with gr.Column(scale=1): doc_info_output = gr.JSON( label="Document Info", visible=True ) with gr.Column(scale=2): extracted_text_output = gr.Textbox( label="Extracted Text", lines=15, max_lines=20, show_copy_button=True ) # AI Analysis Section gr.Markdown("### πŸ€– AI Analysis") analyze_btn = gr.Button("🧠 Analyze with AI", variant="secondary") analysis_output = gr.Textbox( label="AI Analysis", lines=10, show_copy_button=True ) # Processing functions def process_file_wrapper(file_path): if not file_path: return None, "Please upload a file first." result, error = document_processor.process_file(file_path) if error: return {"error": error}, "" if result: info = { "filename": result['filename'], "file_type": result['file_type'], "upload_date": result['upload_date'], "source": result['source_type'], "content_length": len(result['content']) } return info, result['content'] return {"error": "Failed to process file"}, "" def process_url_wrapper(url): if not url: return None, "Please enter a URL first." result, error = document_processor.process_url(url) if error: return {"error": error}, "" if result: info = { "source": result['source_url'], "filename": result['filename'], "file_type": result['file_type'], "upload_date": result['upload_date'], "content_length": len(result['content']) } return info, result['content'] return {"error": "Failed to process URL"}, "" def process_text_wrapper(text): if not text: return None, "Please enter some text first." result, error = document_processor.process_text(text) if error: return {"error": error}, "" if result: info = { "source": "Direct Input", "upload_date": result['upload_date'], "content_length": len(result['content']) } return info, result['content'] return {"error": "Failed to process text"}, "" async def analyze_with_ai(extracted_text): if not extracted_text: return "No text to analyze. Please process a document first." # Use the ultimate brain to analyze query = f"Please analyze this document and provide key insights:\n\n{extracted_text[:3000]}" result = await ultimate_brain.process_legal_query( query=query, mode="document_validation", ai_provider="huggingface", use_reasoning_protocols=True ) # Get AI response token = None client = InferenceClient(token=token, model="meta-llama/Llama-3.3-70B-Instruct") messages = [ {"role": "system", "content": result['enhanced_query']}, {"role": "user", "content": query} ] response = "" try: for chunk in client.chat_completion(messages, max_tokens=1024, stream=True, temperature=0.7, top_p=0.95): if chunk.choices and chunk.choices[0].delta.content: response += chunk.choices[0].delta.content except Exception as e: response = f"Error: {str(e)}" return response # Connect buttons process_file_btn.click( fn=process_file_wrapper, inputs=[file_input], outputs=[doc_info_output, extracted_text_output] ) process_url_btn.click( fn=process_url_wrapper, inputs=[url_input], outputs=[doc_info_output, extracted_text_output] ) process_text_btn.click( fn=process_text_wrapper, inputs=[direct_text_input], outputs=[doc_info_output, extracted_text_output] ) analyze_btn.click( fn=analyze_with_ai, inputs=[extracted_text_output], outputs=[analysis_output] ) # Analytics Tab with gr.Tab("πŸ“Š Analytics"): gr.Markdown(""" ## Analytics & Performance Dashboard View real-time analytics and performance metrics for the Ultimate Brain. """) with gr.Row(): analytics_btn = gr.Button("πŸ“Š Refresh Analytics", variant="primary") clear_cache_btn = gr.Button("πŸ—‘οΈ Clear Cache", variant="secondary") analytics_output = gr.JSON(label="Analytics Data") performance_output = gr.JSON(label="Performance Metrics") cache_stats_output = gr.JSON(label="Cache Statistics") def get_analytics(): return analytics_tracker.get_analytics() def get_performance(): return performance_monitor.get_metrics() def get_cache_stats(): return performance_cache.get_stats() def clear_cache_action(): performance_cache.clear() return {"status": "Cache cleared successfully"} analytics_btn.click( fn=lambda: (get_analytics(), get_performance(), get_cache_stats()), outputs=[analytics_output, performance_output, cache_stats_output] ) clear_cache_btn.click( fn=clear_cache_action, outputs=[cache_stats_output] ) # Reasoning Brain Tab with gr.Tab("🧠 Reasoning Brain"): gr.Markdown(""" ## Unified AI Reasoning Brain ### πŸ“Š Protocol Categories: #### Core Reasoning (Protocols 1-50) - Chain-of-Thought, Self-Consistency, Tree-of-Thoughts - ReAct, Reflexion, RAG, and more #### Quantum-Specific (Protocols 51-100) - Quantum Job Orchestration, VQE, QAOA - Circuit Transpilation, Error Mitigation #### Multi-Agent (Protocols 73-100) - Multi-Agent Coordination - Contract Net Protocol """) # About Tab with gr.Tab("ℹ️ About"): gr.Markdown(""" ## About ProVerBs Ultimate Legal AI Brain ### πŸš€ Revolutionary Features: - **100+ Reasoning Protocols** - Most advanced reasoning system - **6 AI Models** - Choose the best for your needs - **7 Legal Modes** - Specialized for different legal tasks - **Voice Cloning** - Professional Supertonic integration - **Audio Processing** - Complete recording and playback controls ### πŸŽ™οΈ Voice Cloning Features: - Record voice samples with full controls - Clone any voice with text-to-speech - Professional audio processing - Export voice profiles - Play, Pause, Record, Rewind, Stop controls ### πŸ“š Resources: - **Main Space**: https://huggingface.co/spaces/Solomon7890/ProVerbS_LaW_mAiN_PAgE - **Supertonic**: https://github.com/supertone-inc/supertonic - **Models**: https://huggingface.co/Supertone/supertonic ### ⚠️ Disclaimer: This platform provides general legal information only. Consult with a licensed attorney for specific legal matters. --- **Version 3.0.0 + Voice Cloning** | Built by Solomon7890 """) # Footer gr.Markdown(""" ---

βš–οΈ ProVerBs Ultimate Legal AI Brain v3.0 + Voice Cloning

Powered by Pro'VerBsβ„’ & ADAPPT-Iβ„’ | 100+ Protocols | 6 AI Models | Voice Cloning

© 2025 Solomon 8888 | Built with ❀️ for legal professionals worldwide

""") # Use the new demo with voice cloning demo = demo_with_voice if __name__ == "__main__": demo.queue(max_size=20) demo.launch(server_name="0.0.0.0", server_port=7860, share=False)