|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
from diffusers import DiffusionPipeline |
|
|
import torch |
|
|
from PIL import Image |
|
|
import requests |
|
|
from io import BytesIO |
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
model_repo_id = "dalle-mini/dalle-mini" |
|
|
|
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(model_repo_id) |
|
|
pipe = pipe.to(device) |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
|
|
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
|
|
|
image = pipe( |
|
|
prompt=prompt, |
|
|
guidance_scale=guidance_scale, |
|
|
num_inference_steps=num_inference_steps, |
|
|
width=width, |
|
|
height=height, |
|
|
generator=generator |
|
|
).images[0] |
|
|
|
|
|
|
|
|
image.save("generated_image.png") |
|
|
|
|
|
|
|
|
return image, "generated_image.png", seed |
|
|
|
|
|
|
|
|
examples = [ |
|
|
"ジャングルの中の宇宙飛行士、寒色のパレット、 muted colors、詳細、8k", |
|
|
"緑の馬に乗った宇宙飛行士", |
|
|
"美味しそうなセビーチェチーズケーキスライス", |
|
|
] |
|
|
|
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 640px; |
|
|
} |
|
|
""" |
|
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
with gr.Column(elem_id="col-container"): |
|
|
|
|
|
gr.Markdown(f""" |
|
|
# テキストから画像への生成器 |
|
|
""") |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Textbox( |
|
|
label="プロンプト", |
|
|
show_label=False, |
|
|
max_lines=1, |
|
|
placeholder="プロンプトを入力してください", |
|
|
container=False, |
|
|
) |
|
|
|
|
|
run_button = gr.Button("生成", scale=0) |
|
|
|
|
|
result = gr.Image(label="結果", show_label=False) |
|
|
download_link = gr.File(label="生成された画像をダウンロード") |
|
|
|
|
|
|
|
|
with gr.Accordion("詳細設定", open=False): |
|
|
negative_prompt = gr.Textbox( |
|
|
label="ネガティブプロンプト", |
|
|
max_lines=1, |
|
|
placeholder="ネガティブプロンプトを入力してください", |
|
|
visible=False, |
|
|
) |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="シード", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="シードをランダム化", value=True) |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
width = gr.Slider( |
|
|
label="幅", |
|
|
minimum=256, |
|
|
maximum=1024, |
|
|
step=32, |
|
|
value=1024, |
|
|
) |
|
|
|
|
|
height = gr.Slider( |
|
|
label="高さ", |
|
|
minimum=256, |
|
|
maximum=1024, |
|
|
step=32, |
|
|
value=1024, |
|
|
) |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
guidance_scale = gr.Slider( |
|
|
label="ガイダンススケール", |
|
|
minimum=0.0, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=7.5, |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
|
label="推論ステップ数", |
|
|
minimum=1, |
|
|
maximum=50, |
|
|
step=1, |
|
|
value=20, |
|
|
) |
|
|
|
|
|
|
|
|
gr.Examples( |
|
|
examples=examples, |
|
|
inputs=[prompt] |
|
|
) |
|
|
|
|
|
|
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
|
outputs=[result, download_link, seed] |
|
|
) |
|
|
|
|
|
|
|
|
demo.queue().launch() |