Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
| 5 |
+
import torch
|
| 6 |
+
import subprocess
|
| 7 |
+
|
| 8 |
+
def finetune(model_name, hf_token, upload_repo):
|
| 9 |
+
os.environ["HF_TOKEN"] = hf_token
|
| 10 |
+
|
| 11 |
+
# トークナイザとモデル準備
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
| 14 |
+
|
| 15 |
+
# データセット読み込み(日本語チャット)
|
| 16 |
+
dataset = load_dataset("rinna/llm-japanese-dataset-v1", split="train")
|
| 17 |
+
|
| 18 |
+
# 前処理
|
| 19 |
+
def tokenize_fn(example):
|
| 20 |
+
return tokenizer(example["text"], truncation=True, max_length=512)
|
| 21 |
+
|
| 22 |
+
tokenized_dataset = dataset.map(tokenize_fn, batched=True, remove_columns=dataset.column_names)
|
| 23 |
+
|
| 24 |
+
# データコラレータ
|
| 25 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
| 26 |
+
|
| 27 |
+
# トレーニング設定
|
| 28 |
+
training_args = TrainingArguments(
|
| 29 |
+
output_dir="./finetuned_model",
|
| 30 |
+
per_device_train_batch_size=2,
|
| 31 |
+
num_train_epochs=1,
|
| 32 |
+
save_total_limit=1,
|
| 33 |
+
logging_steps=10,
|
| 34 |
+
push_to_hub=True,
|
| 35 |
+
hub_model_id=upload_repo,
|
| 36 |
+
hub_token=hf_token
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Trainerセットアップ
|
| 40 |
+
trainer = Trainer(
|
| 41 |
+
model=model,
|
| 42 |
+
args=training_args,
|
| 43 |
+
train_dataset=tokenized_dataset,
|
| 44 |
+
data_collator=data_collator
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# 学習実行
|
| 48 |
+
trainer.train()
|
| 49 |
+
|
| 50 |
+
# モデルをHugging Face Hubへアップロード
|
| 51 |
+
trainer.push_to_hub()
|
| 52 |
+
|
| 53 |
+
return f"ファインチューニング完了!モデルは https://huggingface.co/{upload_repo} にアップロードされました。"
|
| 54 |
+
|
| 55 |
+
# Gradioインターフェース
|
| 56 |
+
with gr.Blocks() as demo:
|
| 57 |
+
gr.Markdown("# 日本語チャットモデル 簡易ファインチューニング")
|
| 58 |
+
|
| 59 |
+
model_name = gr.Textbox(label="元モデル名(例:rinna/japanese-gpt-neox-3.6b)")
|
| 60 |
+
hf_token = gr.Textbox(label="Hugging Face トークン", type="password")
|
| 61 |
+
upload_repo = gr.Textbox(label="アップロード先リポジトリ名(例:yourname/finetuned-chat-jp)")
|
| 62 |
+
|
| 63 |
+
start_btn = gr.Button("ファインチューニング開始")
|
| 64 |
+
output = gr.Textbox(label="実行結果")
|
| 65 |
+
|
| 66 |
+
start_btn.click(finetune, inputs=[model_name, hf_token, upload_repo], outputs=output)
|
| 67 |
+
|
| 68 |
+
demo.launch()
|