Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# Load the model and feature extractor
|
| 6 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
| 7 |
+
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224")
|
| 8 |
+
|
| 9 |
+
# Define prediction function
|
| 10 |
+
def classify_image(image):
|
| 11 |
+
image = Image.fromarray(image).convert("RGB")
|
| 12 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 13 |
+
outputs = model(**inputs)
|
| 14 |
+
predicted_class = outputs.logits.argmax(-1).item()
|
| 15 |
+
return model.config.id2label[predicted_class]
|
| 16 |
+
|
| 17 |
+
# Create a Gradio app
|
| 18 |
+
app = gr.Interface(
|
| 19 |
+
fn=classify_image,
|
| 20 |
+
inputs=gr.Image(type="numpy"),
|
| 21 |
+
outputs="text",
|
| 22 |
+
title="Image Classifier"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
app.launch()
|