feat: implement LLM chat functionality with Modal
Browse files- README.md +9 -1
- app.py +43 -10
- src/unpredictable_lord/__init__.py +0 -2
- src/unpredictable_lord/chat.py +104 -0
- src/unpredictable_lord/modal_main.py +203 -0
README.md
CHANGED
|
@@ -9,7 +9,7 @@ python_version: 3.10
|
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
license: mit
|
| 12 |
-
short_description: A strategy game
|
| 13 |
tags:
|
| 14 |
- mcp-in-action-track-creative
|
| 15 |
---
|
|
@@ -24,6 +24,14 @@ Check out the configuration reference at <https://huggingface.co/docs/hub/spaces
|
|
| 24 |
uv sync --frozen
|
| 25 |
```
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
### Run locally
|
| 28 |
|
| 29 |
```sh
|
|
|
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
license: mit
|
| 12 |
+
short_description: A strategy game. Advise, but don't command, the AI Lord.
|
| 13 |
tags:
|
| 14 |
- mcp-in-action-track-creative
|
| 15 |
---
|
|
|
|
| 24 |
uv sync --frozen
|
| 25 |
```
|
| 26 |
|
| 27 |
+
### Modal
|
| 28 |
+
|
| 29 |
+
If your local GPU is not powerful enough to run the model, you can deploy it to Modal 🚀
|
| 30 |
+
|
| 31 |
+
```sh
|
| 32 |
+
uv run modal deploy src/unpredictable_lord/modal_main.py
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
### Run locally
|
| 36 |
|
| 37 |
```sh
|
app.py
CHANGED
|
@@ -1,16 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
-
import torch
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
-
|
| 16 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
# Add src directory to Python path for Hugging Face Spaces compatibility
|
| 5 |
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src"))
|
| 6 |
+
|
| 7 |
import gradio as gr
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
from unpredictable_lord.chat import chat_with_llm_stream
|
| 10 |
+
|
| 11 |
+
print("ZERO_GPU:", os.environ.get("ZERO_GPU"))
|
| 12 |
+
|
| 13 |
+
# Gradio UI
|
| 14 |
+
with gr.Blocks(title="Unpredictable Lord") as demo:
|
| 15 |
+
gr.Markdown("# Unpredictable Lord\nLord Advisor AI Simulation")
|
| 16 |
+
|
| 17 |
+
chatbot = gr.Chatbot(label="Lord AI", height=600, type="messages")
|
| 18 |
+
|
| 19 |
+
with gr.Row():
|
| 20 |
+
msg = gr.Textbox(
|
| 21 |
+
label="Your Advice", placeholder="My Lord, I have a proposal...", scale=4
|
| 22 |
+
)
|
| 23 |
+
submit_btn = gr.Button("Submit", scale=1)
|
| 24 |
+
|
| 25 |
+
clear = gr.Button("Clear History")
|
| 26 |
+
|
| 27 |
+
def user(user_message, history):
|
| 28 |
+
# Append user message to history in messages format
|
| 29 |
+
return "", history + [{"role": "user", "content": user_message}]
|
| 30 |
+
|
| 31 |
+
def bot(history):
|
| 32 |
+
# The last message is the user's message
|
| 33 |
+
user_message = history[-1]["content"]
|
| 34 |
+
history_for_model = history[:-1]
|
| 35 |
|
| 36 |
+
for updated_history in chat_with_llm_stream(user_message, history_for_model):
|
| 37 |
+
yield updated_history
|
| 38 |
|
| 39 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 40 |
+
bot, chatbot, chatbot
|
| 41 |
+
)
|
| 42 |
+
submit_btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 43 |
+
bot, chatbot, chatbot
|
| 44 |
+
)
|
| 45 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 46 |
|
| 47 |
|
| 48 |
+
if __name__ == "__main__":
|
| 49 |
+
demo.launch()
|
src/unpredictable_lord/__init__.py
CHANGED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
def main() -> None:
|
| 2 |
-
print("Hello from unpredictable-lord!")
|
|
|
|
|
|
|
|
|
src/unpredictable_lord/chat.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AI chat functionality implementation
|
| 3 |
+
|
| 4 |
+
Provides chat functionality by calling the LLM endpoint on Modal.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import modal
|
| 8 |
+
import openai_harmony as oh
|
| 9 |
+
|
| 10 |
+
APP_NAME = "unpredictable-lord"
|
| 11 |
+
LLMModel = modal.Cls.from_name(APP_NAME, "LLMModel")
|
| 12 |
+
model = LLMModel()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def chat_with_llm_stream(
|
| 16 |
+
user_message: str,
|
| 17 |
+
chat_history: list[dict[str, str]],
|
| 18 |
+
):
|
| 19 |
+
"""
|
| 20 |
+
Chat with LLM (streaming version)
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
user_message: User's message
|
| 24 |
+
chat_history: Past chat history (list of dictionaries in Gradio format)
|
| 25 |
+
[{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}, ...]
|
| 26 |
+
|
| 27 |
+
Yields:
|
| 28 |
+
updated_chat_history: Updated chat history (Gradio format)
|
| 29 |
+
"""
|
| 30 |
+
try:
|
| 31 |
+
# 1. Build message list for LLM request (openai-harmony format)
|
| 32 |
+
messages = []
|
| 33 |
+
|
| 34 |
+
# System message
|
| 35 |
+
system_content = (
|
| 36 |
+
oh.SystemContent.new()
|
| 37 |
+
.with_model_identity(
|
| 38 |
+
"You are a lord of a medieval fantasy kingdom. The user is your advisor."
|
| 39 |
+
"Listen to your advisor's advice and act for the development of your territory and the maintenance of your authority."
|
| 40 |
+
"Speak in an arrogant tone."
|
| 41 |
+
)
|
| 42 |
+
.with_reasoning_effort(oh.ReasoningEffort.LOW)
|
| 43 |
+
# .with_conversation_start_date("2025-11-21")
|
| 44 |
+
)
|
| 45 |
+
messages.append(
|
| 46 |
+
oh.Message.from_role_and_content(oh.Role.SYSTEM, system_content)
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Convert past history to openai-harmony format and add
|
| 50 |
+
for msg in chat_history:
|
| 51 |
+
if msg["role"] == "user":
|
| 52 |
+
messages.append(
|
| 53 |
+
oh.Message.from_role_and_content(oh.Role.USER, msg["content"])
|
| 54 |
+
)
|
| 55 |
+
elif msg["role"] == "assistant":
|
| 56 |
+
messages.append(
|
| 57 |
+
oh.Message.from_role_and_content(oh.Role.ASSISTANT, msg["content"])
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Add current user message
|
| 61 |
+
messages.append(oh.Message.from_role_and_content(oh.Role.USER, user_message))
|
| 62 |
+
|
| 63 |
+
# Encode message
|
| 64 |
+
convo = oh.Conversation.from_messages(messages)
|
| 65 |
+
encoding = oh.load_harmony_encoding(oh.HarmonyEncodingName.HARMONY_GPT_OSS)
|
| 66 |
+
input_tokens = encoding.render_conversation_for_completion(
|
| 67 |
+
convo, oh.Role.ASSISTANT
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
parser = oh.StreamableParser(encoding, role=oh.Role.ASSISTANT)
|
| 71 |
+
|
| 72 |
+
# 2. Build history list for UI display (Gradio format)
|
| 73 |
+
# Add user message and empty assistant message to be generated
|
| 74 |
+
partial_history = chat_history + [
|
| 75 |
+
{"role": "user", "content": user_message},
|
| 76 |
+
{"role": "assistant", "content": ""},
|
| 77 |
+
]
|
| 78 |
+
|
| 79 |
+
# Streaming generation
|
| 80 |
+
generater = model.generate_stream.remote_gen(input_tokens)
|
| 81 |
+
|
| 82 |
+
response_text = ""
|
| 83 |
+
for token in generater:
|
| 84 |
+
if token is None:
|
| 85 |
+
continue
|
| 86 |
+
parser.process(token)
|
| 87 |
+
|
| 88 |
+
# Get content only from final channel
|
| 89 |
+
if parser.current_channel == "final":
|
| 90 |
+
delta = parser.last_content_delta
|
| 91 |
+
if delta:
|
| 92 |
+
response_text += delta
|
| 93 |
+
# Update history and yield
|
| 94 |
+
partial_history[-1]["content"] = response_text
|
| 95 |
+
yield partial_history
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
error_message = f"An error occurred: {str(e)}"
|
| 99 |
+
print(error_message)
|
| 100 |
+
updated_history = chat_history + [
|
| 101 |
+
{"role": "user", "content": user_message},
|
| 102 |
+
{"role": "assistant", "content": error_message},
|
| 103 |
+
]
|
| 104 |
+
yield updated_history
|
src/unpredictable_lord/modal_main.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
from queue import Queue
|
| 3 |
+
from threading import Thread
|
| 4 |
+
|
| 5 |
+
import modal
|
| 6 |
+
import openai_harmony as oh
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 9 |
+
from transformers.generation.streamers import BaseStreamer
|
| 10 |
+
|
| 11 |
+
APP_NAME = "unpredictable-lord"
|
| 12 |
+
VOLUME_NAME = APP_NAME + "-volume"
|
| 13 |
+
MOUNT_VOLUME = modal.Volume.from_name(VOLUME_NAME, create_if_missing=True)
|
| 14 |
+
MOUNT_DIR = "/data"
|
| 15 |
+
|
| 16 |
+
# https://huggingface.co/openai/gpt-oss-20b
|
| 17 |
+
MODEL_IDENTIFIER = "openai/gpt-oss-20b"
|
| 18 |
+
# https://huggingface.co/openai/gpt-oss-120b
|
| 19 |
+
# MODEL_IDENTIFIER = "openai/gpt-oss-120b"
|
| 20 |
+
|
| 21 |
+
# https://modal.com/docs/guide/gpu#specifying-gpu-type
|
| 22 |
+
GPU_NAME = "L4"
|
| 23 |
+
GPU_NUM = 1 # Number of GPUs to use
|
| 24 |
+
GPU = f"{GPU_NAME}:{GPU_NUM}"
|
| 25 |
+
|
| 26 |
+
# https://modal.com/pricing
|
| 27 |
+
# | GPU | Memory | Price |
|
| 28 |
+
# |-----------|--------|----------|
|
| 29 |
+
# | B200 | 180 GB | $6.25 /h |
|
| 30 |
+
# | H200 | 141 GB | $4.54 /h |
|
| 31 |
+
# | H100 | 80 GB | $3.95 /h |
|
| 32 |
+
# | A100-80GB | 80 GB | $2.50 /h |
|
| 33 |
+
# | A100-40GB | 40 GB | $2.10 /h |
|
| 34 |
+
# | L40S | 48 GB | $1.95 /h |
|
| 35 |
+
# | A10G | 24 GB | $1.10 /h |
|
| 36 |
+
# | L4 | 24 GB | $0.80 /h |
|
| 37 |
+
# | T4 | 16 GB | $0.59 /h |
|
| 38 |
+
|
| 39 |
+
# MAX_MODEL_TOKENS >= Input + Output
|
| 40 |
+
MAX_MODEL_TOKENS = 64 * 1024 # gpt-oss models support up to 128k(128*1024) tokens
|
| 41 |
+
MAX_OUTPUT_TOKENS = 512
|
| 42 |
+
|
| 43 |
+
image = (
|
| 44 |
+
# https://hub.docker.com/r/nvidia/cuda/tags?name=12.8
|
| 45 |
+
# https://hub.docker.com/layers/nvidia/cuda/12.8.1-devel-ubuntu24.04
|
| 46 |
+
modal.Image.from_registry("nvidia/cuda:12.8.1-devel-ubuntu24.04", add_python="3.12")
|
| 47 |
+
.pip_install(
|
| 48 |
+
[
|
| 49 |
+
"accelerate>=1.12.0",
|
| 50 |
+
"kernels>=0.11.1",
|
| 51 |
+
"openai-harmony>=0.0.8",
|
| 52 |
+
"torch>=2.9.0",
|
| 53 |
+
"transformers>=4.57.1",
|
| 54 |
+
]
|
| 55 |
+
)
|
| 56 |
+
.env(
|
| 57 |
+
{
|
| 58 |
+
"HF_HOME": MOUNT_DIR + "/huggingface",
|
| 59 |
+
}
|
| 60 |
+
)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
app = modal.App(APP_NAME, image=image)
|
| 64 |
+
|
| 65 |
+
# NOTE: `@app.cls`, `@modal.enter()`, and `@modal.method()` are used like `@app.function()`
|
| 66 |
+
# https://modal.com/docs/guide/lifecycle-functions
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class TokenStreamer(BaseStreamer):
|
| 70 |
+
"""
|
| 71 |
+
Streamer that queues token IDs directly.
|
| 72 |
+
|
| 73 |
+
NOTE: transformers' TextStreamer returns decoded text, but
|
| 74 |
+
OpenAI Harmony's parser requires token IDs, so it cannot be used.
|
| 75 |
+
Therefore, I implemented a custom streamer that queues token IDs directly.
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(self, timeout=None):
|
| 79 |
+
self.token_queue = Queue()
|
| 80 |
+
self.stop_signal = None
|
| 81 |
+
self.timeout = timeout
|
| 82 |
+
|
| 83 |
+
def put(self, value):
|
| 84 |
+
if value.ndim > 1:
|
| 85 |
+
value = value.flatten()
|
| 86 |
+
for token in value:
|
| 87 |
+
self.token_queue.put(token.item())
|
| 88 |
+
|
| 89 |
+
def end(self):
|
| 90 |
+
self.token_queue.put(self.stop_signal)
|
| 91 |
+
|
| 92 |
+
def __iter__(self):
|
| 93 |
+
return self
|
| 94 |
+
|
| 95 |
+
def __next__(self):
|
| 96 |
+
value = self.token_queue.get(timeout=self.timeout)
|
| 97 |
+
if value == self.stop_signal:
|
| 98 |
+
raise StopIteration()
|
| 99 |
+
return value
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@app.cls(
|
| 103 |
+
gpu=GPU,
|
| 104 |
+
image=image,
|
| 105 |
+
volumes={MOUNT_DIR: MOUNT_VOLUME},
|
| 106 |
+
# secrets=[modal.Secret.from_name("huggingface-secret")],
|
| 107 |
+
# scaledown_window=15 * 60,
|
| 108 |
+
# timeout=30 * 60,
|
| 109 |
+
)
|
| 110 |
+
class LLMModel:
|
| 111 |
+
@modal.enter()
|
| 112 |
+
def setup(self):
|
| 113 |
+
# Ensure the cache volume is the latest
|
| 114 |
+
MOUNT_VOLUME.reload()
|
| 115 |
+
|
| 116 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_IDENTIFIER)
|
| 117 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 118 |
+
MODEL_IDENTIFIER,
|
| 119 |
+
dtype="auto",
|
| 120 |
+
device_map="auto",
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Commit the volume to ensure the model is saved
|
| 124 |
+
MOUNT_VOLUME.commit()
|
| 125 |
+
|
| 126 |
+
self.encoding = oh.load_harmony_encoding(oh.HarmonyEncodingName.HARMONY_GPT_OSS)
|
| 127 |
+
self.stop_token_ids = self.encoding.stop_tokens_for_assistant_actions()
|
| 128 |
+
|
| 129 |
+
# Show GPU information
|
| 130 |
+
subprocess.run(["nvidia-smi"])
|
| 131 |
+
|
| 132 |
+
@modal.method()
|
| 133 |
+
def generate_stream(self, input_tokens, _=None):
|
| 134 |
+
"""
|
| 135 |
+
Generate a streaming response
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
input_tokens (list[int]): Input token IDs
|
| 139 |
+
_ : Dummy parameter for compatibility
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
if len(input_tokens) + MAX_OUTPUT_TOKENS > MAX_MODEL_TOKENS:
|
| 143 |
+
raise ValueError(
|
| 144 |
+
f"Input length exceeds the maximum allowed tokens: {MAX_MODEL_TOKENS}. "
|
| 145 |
+
f"Current input length: {len(input_tokens)} tokens."
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
input_ids = torch.tensor([input_tokens], dtype=torch.long).to(self.model.device)
|
| 149 |
+
|
| 150 |
+
streamer = TokenStreamer()
|
| 151 |
+
generation_kwargs = {
|
| 152 |
+
"input_ids": input_ids,
|
| 153 |
+
"max_new_tokens": MAX_OUTPUT_TOKENS,
|
| 154 |
+
"eos_token_id": self.stop_token_ids,
|
| 155 |
+
"streamer": streamer,
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
# Start generation in a separate thread
|
| 159 |
+
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
|
| 160 |
+
thread.start()
|
| 161 |
+
|
| 162 |
+
while True:
|
| 163 |
+
token_id = streamer.token_queue.get()
|
| 164 |
+
if token_id == streamer.stop_signal:
|
| 165 |
+
break
|
| 166 |
+
yield token_id
|
| 167 |
+
|
| 168 |
+
thread.join()
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@app.local_entrypoint()
|
| 172 |
+
def main():
|
| 173 |
+
# https://cookbook.openai.com/articles/openai-harmony#harmony-renderer-library
|
| 174 |
+
convo = oh.Conversation.from_messages(
|
| 175 |
+
[
|
| 176 |
+
oh.Message.from_role_and_content(oh.Role.SYSTEM, oh.SystemContent.new()),
|
| 177 |
+
oh.Message.from_role_and_content(
|
| 178 |
+
oh.Role.DEVELOPER,
|
| 179 |
+
oh.DeveloperContent.new().with_instructions(
|
| 180 |
+
"Always respond in the same language as the user."
|
| 181 |
+
),
|
| 182 |
+
),
|
| 183 |
+
oh.Message.from_role_and_content(
|
| 184 |
+
oh.Role.USER, "Hi. How is the weather today?"
|
| 185 |
+
),
|
| 186 |
+
]
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
model = LLMModel()
|
| 190 |
+
|
| 191 |
+
encoding = oh.load_harmony_encoding(oh.HarmonyEncodingName.HARMONY_GPT_OSS)
|
| 192 |
+
input_tokens = encoding.render_conversation_for_completion(convo, oh.Role.ASSISTANT)
|
| 193 |
+
|
| 194 |
+
print("AI: ", end="", flush=True)
|
| 195 |
+
|
| 196 |
+
parser = oh.StreamableParser(encoding, role=oh.Role.ASSISTANT)
|
| 197 |
+
|
| 198 |
+
for token in model.generate_stream.remote_gen(input_tokens):
|
| 199 |
+
parser.process(token)
|
| 200 |
+
delta = parser.last_content_delta
|
| 201 |
+
if delta:
|
| 202 |
+
print(delta, end="", flush=True)
|
| 203 |
+
print()
|