""" Pip - Your Emotional AI Companion A Gradio app with MCP server for emotional support and creative expression. """ import gradio as gr import asyncio import base64 import os import uuid import tempfile import httpx from typing import Optional from dotenv import load_dotenv # Load environment variables load_dotenv() # Enable nested event loops for Gradio + asyncio compatibility import nest_asyncio nest_asyncio.apply() from pip_character import get_pip_svg, get_all_states_preview, PipState from pip_brain import PipBrain, get_brain, PipResponse from pip_voice import PipVoice, PipEars # ============================================================================= # GLOBAL STATE # ============================================================================= brain = get_brain() voice = PipVoice() ears = PipEars() # Gallery storage - stores (image_path, caption) tuples gallery_images: list[tuple[str, str]] = [] # ============================================================================= # CORE FUNCTIONS # ============================================================================= async def process_message( message: str, history: list, session_id: str, mode: str, generate_voice: bool ) -> tuple: """ Process a user message and return Pip's response. NOTE: No longer generates images automatically - use Visualize button. Returns: (updated_history, pip_svg, audio_data, status) """ if not message.strip(): return history, get_pip_svg("neutral"), None, "Please say something!" # Set mode brain.set_mode(session_id, mode.lower() if mode != "Auto" else "auto") # Initialize history history = history or [] # Add user message immediately history.append({"role": "user", "content": message}) # Process through brain response = await brain.process( user_input=message, session_id=session_id, generate_voice=generate_voice ) # Add Pip's response (with acknowledgment context) full_response = response.response_text history.append({"role": "assistant", "content": full_response}) # Prepare audio - save to temp file for Gradio audio_data = None if response.audio and response.audio.audio_bytes: with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f: f.write(response.audio.audio_bytes) audio_data = f.name # Get Pip SVG for current state pip_svg = get_pip_svg(response.pip_state) # Status with emotions emotions = response.emotion_state.get('primary_emotions', ['neutral']) action = response.action.get('action', 'reflect') status = f"💭 {', '.join(emotions)} | 🎯 {action}" return history, pip_svg, audio_data, status async def visualize_mood(session_id: str) -> tuple: """ Generate an image based on current conversation context. Called when user clicks "Visualize" button. Returns: (image_data, explanation, pip_svg, status) """ global gallery_images try: # Generate image using full conversation context image, explanation = await brain.visualize_current_mood(session_id) if image and image.image_data: # Save image to temp file if image.is_url: img_response = httpx.get(image.image_data, timeout=30) if img_response.status_code == 200: with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f: f.write(img_response.content) image_data = f.name else: return None, "", get_pip_svg("confused"), "Couldn't download image" else: img_bytes = base64.b64decode(image.image_data) with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f: f.write(img_bytes) image_data = f.name # Save to gallery import datetime timestamp = datetime.datetime.now().strftime("%I:%M %p") short_explanation = explanation[:50] + "..." if len(explanation) > 50 else explanation caption = f"Visualization • {timestamp}" gallery_images.append((image_data, caption)) print(f"Added to gallery: {caption}") return image_data, explanation, get_pip_svg("happy"), f"✨ Created with {image.provider}!" else: return None, "", get_pip_svg("confused"), "Couldn't generate image. Try again?" except Exception as e: print(f"Visualize error: {e}") import traceback traceback.print_exc() return None, "", get_pip_svg("confused"), f"Error: {str(e)[:50]}" def visualize_mood_sync(session_id): """Synchronous wrapper for visualize_mood.""" try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(visualize_mood(session_id)) def process_message_sync(message, history, session_id, mode, generate_voice): """Synchronous wrapper for async process_message.""" try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Returns: (history, pip_svg, audio_data, status) - NO image return loop.run_until_complete(process_message(message, history, session_id, mode, generate_voice)) async def process_voice_input(audio_data, history, session_id, mode): """ Process voice input - transcribe and respond. """ if audio_data is None: return history, get_pip_svg("neutral"), None, None, "No audio received" try: # Transcribe audio sample_rate, audio_array = audio_data # Convert to bytes for Whisper import io import soundfile as sf import numpy as np # Handle different audio formats if len(audio_array.shape) > 1: # Stereo to mono audio_array = audio_array.mean(axis=1) # Normalize audio to float32 if audio_array.dtype == np.int16: audio_array = audio_array.astype(np.float32) / 32768.0 elif audio_array.dtype == np.int32: audio_array = audio_array.astype(np.float32) / 2147483648.0 elif audio_array.dtype != np.float32: audio_array = audio_array.astype(np.float32) # Ensure values are in valid range audio_array = np.clip(audio_array, -1.0, 1.0) # Write to bytes buffer as WAV buffer = io.BytesIO() sf.write(buffer, audio_array, sample_rate, format='WAV', subtype='PCM_16') buffer.seek(0) # Reset buffer position to start audio_bytes = buffer.getvalue() print(f"Voice input: {len(audio_bytes)} bytes, sample rate: {sample_rate}") # Transcribe transcription = await ears.listen_bytes(audio_bytes) if not transcription: return history, get_pip_svg("confused"), None, "Couldn't understand audio. Try speaking clearly." print(f"Transcription: {transcription}") # Process the transcribed text (no image - returns: history, pip_svg, audio, status) return await process_message(transcription, history, session_id, mode, True) except Exception as e: print(f"Voice processing error: {e}") import traceback traceback.print_exc() return history, get_pip_svg("confused"), None, f"Voice processing error: {str(e)[:100]}" def process_voice_sync(audio_data, history, session_id, mode): """Synchronous wrapper for voice processing.""" try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(process_voice_input(audio_data, history, session_id, mode)) def create_session_id(): """Generate a new session ID.""" return str(uuid.uuid4())[:8] async def create_memory(session_id: str, history: list) -> tuple: """ Create a memory artifact from the conversation. Returns: (summary_text, image_data, explanation, audio_data, pip_svg, status) """ global gallery_images if not history: return "No conversation to summarize yet!", None, "", None, get_pip_svg("neutral"), "Start a conversation first!" try: # Get memory summary from brain result = await brain.summarize_conversation(session_id, generate_voice=True) # Create explanation from the analysis analysis = result.get("analysis", {}) emotions = result.get("emotions_journey", ["reflection"]) explanation = "" if analysis: visual_metaphor = analysis.get("visual_metaphor", "") if visual_metaphor: explanation = f"This captures your journey: {visual_metaphor[:100]}..." else: explanation = f"A visual embrace of your {', '.join(emotions[:2])} today." else: explanation = f"A memory of our conversation, holding your {emotions[0] if emotions else 'feelings'}." # Prepare image - save to temp file image_data = None if result.get("image") and result["image"].image_data: try: if result["image"].is_url: img_response = httpx.get(result["image"].image_data, timeout=30) if img_response.status_code == 200: with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f: f.write(img_response.content) image_data = f.name else: img_bytes = base64.b64decode(result["image"].image_data) with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f: f.write(img_bytes) image_data = f.name except Exception as e: print(f"Error processing memory image: {e}") image_data = None # Save to gallery if we have an image if image_data: import datetime timestamp = datetime.datetime.now().strftime("%I:%M %p") caption = f"Memory • {timestamp} • {', '.join(emotions[:2])}" gallery_images.append((image_data, caption)) print(f"Added to gallery: {caption}") # Prepare audio audio_data = None if result.get("audio") and result["audio"].audio_bytes: with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f: f.write(result["audio"].audio_bytes) audio_data = f.name emotions_str = ", ".join(result.get("emotions_journey", ["reflection"])) status = f"✨ Memory created! Emotions: {emotions_str}" # Return: summary, image, explanation, audio, pip_svg, status return result.get("summary", ""), image_data, explanation, audio_data, get_pip_svg("happy"), status except Exception as e: print(f"Error creating memory: {e}") import traceback traceback.print_exc() return "Something went wrong creating your memory.", None, "", None, get_pip_svg("concerned"), f"Error: {str(e)[:50]}" def create_memory_sync(session_id, history): """Synchronous wrapper for create_memory.""" try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(create_memory(session_id, history)) def clear_conversation(session_id): """Clear conversation history.""" brain.clear_history(session_id) # Returns: chatbot, pip_svg, mood_image, image_explanation, audio_output, memory_summary visibility, status return [], get_pip_svg("neutral"), None, gr.update(visible=False), None, gr.update(visible=False), "Ready to listen..." def update_pip_state(state: str): """Update Pip's visual state.""" return get_pip_svg(state) def get_gallery_images(): """Get all images in the gallery.""" global gallery_images if not gallery_images: return [] # Return list of (image_path, caption) for Gradio Gallery return [(img, cap) for img, cap in gallery_images if img] def refresh_gallery(): """Refresh the gallery display.""" return get_gallery_images() # ============================================================================= # MCP TOOLS (Exposed via Gradio MCP Server) # ============================================================================= def chat_with_pip(message: str, session_id: str = "mcp_default") -> dict: """ Talk to Pip about how you're feeling. Pip is an emotional companion who understands your feelings and responds with warmth, images, and optional voice. Args: message: What you want to tell Pip session_id: Optional session ID for conversation continuity Returns: Pip's response including text and generated image """ try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) response = loop.run_until_complete(brain.process( user_input=message, session_id=session_id, generate_voice=False )) return { "response": response.response_text, "emotions_detected": response.emotion_state.get("primary_emotions", []), "action": response.action.get("action", "reflect"), "pip_state": response.pip_state, "image_generated": response.image is not None, "image_prompt": response.image_prompt } def generate_mood_artifact(emotion: str, context: str) -> dict: """ Generate a visual artifact that captures an emotional state. Creates an image that represents or responds to the given emotion and context. Args: emotion: The primary emotion (happy, sad, anxious, excited, etc.) context: Additional context about the emotional state Returns: Generated image and metadata """ from pip_artist import PipArtist from pip_prompts import PROMPT_ENHANCER_PROMPT from services.sambanova_client import SambanovaClient async def _generate(): sambanova = SambanovaClient() artist = PipArtist() emotion_state = { "primary_emotions": [emotion], "intensity": 7 } # Generate image prompt image_prompt = await sambanova.enhance_prompt( context, emotion_state, "alchemist", PROMPT_ENHANCER_PROMPT ) # Generate image image = await artist.generate_for_mood(image_prompt, "warm", "reflect") return { "prompt_used": image_prompt, "provider": image.provider if image else "none", "image_generated": image.image_data is not None if image else False } try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(_generate()) def get_pip_gallery(session_id: str = "mcp_default") -> list: """ Get the conversation history with Pip. Returns the emotional journey of your conversation. Args: session_id: Session to retrieve history for Returns: List of conversation messages """ return brain.get_history(session_id) def set_pip_mode(mode: str, session_id: str = "mcp_default") -> str: """ Set Pip's interaction mode. Modes: - auto: Pip decides the best mode based on context - alchemist: Transforms emotions into magical artifacts - artist: Creates day summaries as art - dream: Visualizes thoughts in surreal imagery - night: Calming companion for late-night moments Args: mode: One of auto, alchemist, artist, dream, night session_id: Session to set mode for Returns: Confirmation message """ valid_modes = ["auto", "alchemist", "artist", "dream", "night"] mode_lower = mode.lower() if mode_lower not in valid_modes: return f"Invalid mode. Choose from: {', '.join(valid_modes)}" brain.set_mode(session_id, mode_lower) return f"Pip is now in {mode} mode" # ============================================================================= # GRADIO UI # ============================================================================= # Custom CSS for styling CUSTOM_CSS = """ /* Force Dark Theme Defaults */ body, .gradio-container { background-color: #1a1a2e !important; color: #e0e0e0 !important; } /* Pip avatar container */ .pip-container { display: flex; justify-content: center; align-items: center; min-height: 200px; max-height: 250px; background: linear-gradient(135deg, #1e2a4a 0%, #16213e 100%); border-radius: 20px; box-shadow: 0 4px 20px rgba(0,0,0,0.3); margin-bottom: 12px; transition: transform 0.3s ease; padding: 16px; border: 1px solid rgba(255,255,255,0.05); } .pip-container:hover { transform: translateY(-2px); box-shadow: 0 6px 24px rgba(108, 92, 231, 0.15); } .pip-container svg { max-width: 180px; max-height: 180px; filter: drop-shadow(0 0 10px rgba(108, 92, 231, 0.3)); } /* Chat container */ .chatbot-container { border-radius: 20px !important; box-shadow: 0 4px 20px rgba(0,0,0,0.2) !important; border: 1px solid rgba(255,255,255,0.08) !important; background: #16213e !important; } /* Mood image */ .mood-image { border-radius: 16px !important; box-shadow: 0 4px 16px rgba(0,0,0,0.2) !important; overflow: hidden; transition: transform 0.3s ease; border: 1px solid rgba(255,255,255,0.05); background-color: #16213e; } .mood-image:hover { transform: scale(1.01); } /* Image explanation */ .image-explanation { text-align: center; font-style: italic; color: #b0b0b0; font-size: 0.9em; padding: 10px 14px; margin-top: 8px; background: linear-gradient(135deg, rgba(108, 92, 231, 0.12) 0%, rgba(168, 230, 207, 0.12) 100%); border-radius: 10px; border-left: 3px solid #6c5ce7; } /* Status bar */ .status-bar { font-size: 0.85em; color: #b0b0b0; padding: 10px 14px; background: #1e2a4a; border-radius: 12px; border: 1px solid #2d3a5a; box-shadow: 0 2px 6px rgba(0,0,0,0.1); } /* Voice Toggle */ .voice-toggle { background: rgba(108, 92, 231, 0.1); padding: 8px 12px; border-radius: 10px; border: 1px solid rgba(108, 92, 231, 0.2); margin-bottom: 10px; } /* Header */ .header-title { text-align: center; margin-bottom: 4px; font-size: 2.2em !important; font-weight: 800 !important; background: linear-gradient(135deg, #6c5ce7, #a8e6cf); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; text-shadow: 0 0 30px rgba(108, 92, 231, 0.3); } .header-subtitle { text-align: center; color: #888; font-size: 1.1em; margin-top: 0; margin-bottom: 20px; font-weight: 300; } /* Buttons */ button.primary { background: linear-gradient(135deg, #6c5ce7 0%, #a8e6cf 100%) !important; border: none !important; color: white !important; font-weight: 600 !important; transition: all 0.3s ease !important; } button.primary:hover { transform: translateY(-1px); box-shadow: 0 4px 12px rgba(108, 92, 231, 0.3) !important; } /* Footer */ .footer { text-align: center; margin-top: 40px; color: #555; font-size: 0.8em; } """ # Build the Gradio app demo = gr.Blocks() with demo: # Inject CSS and force dark mode gr.HTML(f""" """) # Session state session_id = gr.State(create_session_id) # Header gr.Markdown("# 🫧 Pip", elem_classes=["header-title"]) gr.Markdown("*Your emotional AI companion*", elem_classes=["header-subtitle"]) with gr.Tabs(): # ================================================================= # MAIN CHAT TAB # ================================================================= with gr.Tab("Chat with Pip"): with gr.Row(equal_height=True): # Left column - Pip and Controls (40%) with gr.Column(scale=2, min_width=350): # Pip Avatar pip_display = gr.HTML( get_pip_svg("neutral"), label="Pip", elem_classes=["pip-container"] ) # Status status_display = gr.Textbox( value="Ready to listen...", label="Current Vibe", interactive=False, elem_classes=["status-bar"], show_label=True ) # Voice Toggle (Visible now!) voice_toggle = gr.Checkbox( value=False, label="🗣️ Enable Voice Response", info="Pip will speak back to you", elem_classes=["voice-toggle"] ) # Mood Image (moved up - more prominent) mood_image = gr.Image( label="Pip's Visualization", type="filepath", elem_classes=["mood-image"], show_label=True, interactive=False, height=250 ) # Image Explanation - Why this image? image_explanation = gr.Markdown( value="", visible=False, elem_classes=["image-explanation"] ) # Controls Group (moved below image) with gr.Accordion("⚙️ Advanced Settings", open=False): mode_selector = gr.Radio( ["Auto", "Alchemist", "Artist", "Dream", "Night"], value="Auto", label="Interaction Mode", info="How should Pip visualize your feelings?" ) # Audio Output audio_output = gr.Audio( label="Pip's Voice", autoplay=True, visible=False ) # Right column - Conversation (60%) with gr.Column(scale=3): chatbot = gr.Chatbot( label="Conversation", height=450, elem_classes=["chatbot-container"], avatar_images=(None, "https://api.dicebear.com/7.x/bottts/svg?seed=Pip&backgroundColor=transparent") ) with gr.Group(): with gr.Row(): msg_input = gr.Textbox( placeholder="How are you feeling today?", label="Your Message", scale=8, lines=1, max_lines=4, autofocus=True ) send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100) with gr.Row(): audio_input = gr.Audio( label="Voice Input", sources=["microphone"], type="numpy", show_label=False, container=False ) voice_send_btn = gr.Button("🎤 Send Voice", variant="secondary") # Action Buttons - Three rows for different actions with gr.Row(): visualize_btn = gr.Button("🎨 Visualize", variant="secondary", scale=1) memory_btn = gr.Button("✨ Create Memory", variant="primary", scale=2) clear_btn = gr.Button("🗑️ Clear", variant="stop", scale=1) # Memory Summary memory_summary = gr.Textbox( label="✨ Memory Summary", visible=False, lines=3, interactive=False, elem_classes=["status-bar"] ) # Event handlers # Send message - NO image generated (returns: history, pip_svg, audio, status) send_btn.click( fn=process_message_sync, inputs=[msg_input, chatbot, session_id, mode_selector, voice_toggle], outputs=[chatbot, pip_display, audio_output, status_display] ).then( fn=lambda: "", outputs=[msg_input] ) msg_input.submit( fn=process_message_sync, inputs=[msg_input, chatbot, session_id, mode_selector, voice_toggle], outputs=[chatbot, pip_display, audio_output, status_display] ).then( fn=lambda: "", outputs=[msg_input] ) # Voice input - also no auto image voice_send_btn.click( fn=process_voice_sync, inputs=[audio_input, chatbot, session_id, mode_selector], outputs=[chatbot, pip_display, audio_output, status_display] ) # Clear conversation - use the function defined earlier clear_btn.click( fn=clear_conversation, inputs=[session_id], outputs=[chatbot, pip_display, mood_image, image_explanation, audio_output, memory_summary, status_display] ) # Visualize button - generates image based on conversation context def visualize_wrapper(session_id): image, explanation, pip_svg, status = visualize_mood_sync(session_id) print(f"[DEBUG] Visualize - explanation: '{explanation}' (len={len(explanation) if explanation else 0})") # Show explanation as markdown if explanation and len(explanation.strip()) > 0: formatted_explanation = f'*"{explanation}"*' print(f"[DEBUG] Formatted: {formatted_explanation}") return image, gr.update(value=formatted_explanation, visible=True), pip_svg, status print("[DEBUG] No explanation - hiding") return image, gr.update(value="", visible=False), pip_svg, status visualize_btn.click( fn=visualize_wrapper, inputs=[session_id], outputs=[mood_image, image_explanation, pip_display, status_display] ) # Memory button - creates summary with image + audio + explanation def create_memory_wrapper(session_id, history): # Returns: summary, image, explanation, audio, pip_svg, status summary, image, explanation, audio, pip_svg, status = create_memory_sync(session_id, history) print(f"[DEBUG] Memory - explanation: '{explanation}'") # Format explanation as italic markdown if explanation and len(explanation.strip()) > 0: formatted_explanation = f'*"{explanation}"*' explanation_update = gr.update(value=formatted_explanation, visible=True) else: explanation_update = gr.update(value="", visible=False) return ( gr.update(value=summary, visible=True), # memory_summary image, # mood_image explanation_update, # image_explanation audio, # audio_output gr.update(visible=True if audio else False), # audio visibility pip_svg, # pip_display status # status_display ) memory_btn.click( fn=create_memory_wrapper, inputs=[session_id, chatbot], outputs=[memory_summary, mood_image, image_explanation, audio_output, audio_output, pip_display, status_display] ) voice_toggle.change( fn=lambda x: gr.update(visible=x), inputs=[voice_toggle], outputs=[audio_output] ) # ================================================================= # GALLERY TAB # ================================================================= with gr.Tab("Your Gallery") as gallery_tab: gr.Markdown("### 🎨 Your Emotional Artifacts") gr.Markdown("*Every visualization and memory Pip creates is saved here*") gallery_display = gr.Gallery( label="Mood Artifacts", columns=3, height="auto", object_fit="cover", show_label=False ) with gr.Row(): refresh_gallery_btn = gr.Button("🔄 Refresh Gallery", variant="secondary") gallery_count = gr.Markdown("*No images yet*") def refresh_and_count(): images = get_gallery_images() count_text = f"*{len(images)} artifact{'s' if len(images) != 1 else ''} in your gallery*" return images, count_text refresh_gallery_btn.click( fn=refresh_and_count, outputs=[gallery_display, gallery_count] ) # Auto-refresh when tab is selected gallery_tab.select( fn=refresh_and_count, outputs=[gallery_display, gallery_count] ) # ================================================================= # PIP STATES PREVIEW # ================================================================= with gr.Tab("Meet Pip"): gr.Markdown("### Pip's Expressions") gr.Markdown("*Pip has different expressions for different emotions*") gr.HTML(get_all_states_preview()) # ================================================================= # MCP INTEGRATION TAB # ================================================================= with gr.Tab("Connect Your AI"): gr.Markdown("### Use Pip with Your AI Agent") gr.Markdown(""" Pip is available as an MCP (Model Context Protocol) server. Connect your AI agent to Pip and let them chat! """) gr.Markdown("#### For clients that support SSE (Cursor, Windsurf, Cline):") gr.Code( '''{ "mcpServers": { "Pip": { "url": "https://YOUR-SPACE.hf.space/gradio_api/mcp/" } } }''', language="json" ) gr.Markdown("#### For clients that only support stdio (Claude Desktop):") gr.Code( '''{ "mcpServers": { "Pip": { "command": "npx", "args": [ "mcp-remote", "https://YOUR-SPACE.hf.space/gradio_api/mcp/sse", "--transport", "sse-only" ] } } }''', language="json" ) gr.Markdown("#### Available MCP Tools:") gr.Markdown(""" - **chat_with_pip**: Talk to Pip about how you're feeling - **generate_mood_artifact**: Create visual art from emotions - **get_pip_gallery**: View conversation history - **set_pip_mode**: Change Pip's interaction mode """) # ================================================================= # SETTINGS TAB - User API Keys # ================================================================= with gr.Tab("⚙️ Settings"): gr.Markdown("### 🔑 Use Your Own API Keys") gr.Markdown(""" *Want to use your own API credits? Enter your keys below.* **Privacy:** Keys are stored only in your browser session and never saved on our servers. **Note:** If you don't provide keys, Pip will use the default (shared) keys when available. """) with gr.Group(): gr.Markdown("#### Primary LLM (Recommended)") user_google_key = gr.Textbox( label="Google API Key (Gemini)", placeholder="AIza...", type="password", info="Get from: https://aistudio.google.com/apikey" ) with gr.Group(): gr.Markdown("#### Fallback LLM") user_anthropic_key = gr.Textbox( label="Anthropic API Key (Claude)", placeholder="sk-ant-...", type="password", info="Get from: https://console.anthropic.com/" ) with gr.Group(): gr.Markdown("#### Image Generation") user_openai_key = gr.Textbox( label="OpenAI API Key (DALL-E)", placeholder="sk-...", type="password", info="Get from: https://platform.openai.com/api-keys" ) user_hf_token = gr.Textbox( label="HuggingFace Token (Flux)", placeholder="hf_...", type="password", info="Get from: https://huggingface.co/settings/tokens" ) with gr.Group(): gr.Markdown("#### Voice") user_elevenlabs_key = gr.Textbox( label="ElevenLabs API Key", placeholder="...", type="password", info="Get from: https://elevenlabs.io/app/settings/api-keys" ) save_keys_btn = gr.Button("💾 Save Keys & Restart Pip", variant="primary") keys_status = gr.Markdown("*Keys not configured - using default*") def save_user_keys(google_key, anthropic_key, openai_key, hf_token, elevenlabs_key, session_id): """Save user API keys and reinitialize brain.""" global brain # Store keys in environment for this session # (In production, you'd want proper session management) if google_key: os.environ["GOOGLE_API_KEY"] = google_key if anthropic_key: os.environ["ANTHROPIC_API_KEY"] = anthropic_key if openai_key: os.environ["OPENAI_API_KEY"] = openai_key if hf_token: os.environ["HUGGINGFACE_TOKEN"] = hf_token if elevenlabs_key: os.environ["ELEVENLABS_API_KEY"] = elevenlabs_key # Reinitialize brain with new keys from pip_brain import PipBrain, UserAPIKeys user_keys = UserAPIKeys( google_api_key=google_key if google_key else None, anthropic_api_key=anthropic_key if anthropic_key else None, openai_api_key=openai_key if openai_key else None, huggingface_token=hf_token if hf_token else None, elevenlabs_api_key=elevenlabs_key if elevenlabs_key else None ) brain = PipBrain(user_keys=user_keys) # Build status message configured = [] if google_key: configured.append("✅ Google/Gemini") if anthropic_key: configured.append("✅ Anthropic/Claude") if openai_key: configured.append("✅ OpenAI/DALL-E") if hf_token: configured.append("✅ HuggingFace/Flux") if elevenlabs_key: configured.append("✅ ElevenLabs") if configured: status = f"**Keys saved!** {', '.join(configured)}\n\n*Pip has been reinitialized with your keys.*" else: status = "*No keys provided - using default configuration*" return status save_keys_btn.click( fn=save_user_keys, inputs=[user_google_key, user_anthropic_key, user_openai_key, user_hf_token, user_elevenlabs_key, session_id], outputs=[keys_status] ) # Footer gr.Markdown("---") gr.Markdown( "*Built with 💙 for MCP's 1st Birthday Hackathon | " "Powered by Gemini, Anthropic, ElevenLabs, OpenAI, and HuggingFace*", elem_classes=["footer"] ) # ============================================================================= # LAUNCH # ============================================================================= if __name__ == "__main__": demo.launch( mcp_server=True, # Enable MCP server share=False, server_name="0.0.0.0", server_port=7860 )