Spaces:
Running
Running
some updates
Browse files- services/__pycache__/__init__.cpython-311.pyc +0 -0
- services/__pycache__/anthropic_client.cpython-311.pyc +0 -0
- services/__pycache__/elevenlabs_client.cpython-311.pyc +0 -0
- services/__pycache__/gemini_client.cpython-311.pyc +0 -0
- services/__pycache__/modal_flux.cpython-311.pyc +0 -0
- services/__pycache__/openai_client.cpython-311.pyc +0 -0
- services/__pycache__/sambanova_client.cpython-311.pyc +0 -0
- services/anthropic_client.py +40 -2
- services/elevenlabs_client.py +22 -3
- services/gemini_client.py +26 -1
- services/modal_flux.py +8 -0
- services/openai_client.py +9 -0
- services/sambanova_client.py +37 -16
services/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (647 Bytes). View file
|
|
|
services/__pycache__/anthropic_client.cpython-311.pyc
ADDED
|
Binary file (8.49 kB). View file
|
|
|
services/__pycache__/elevenlabs_client.cpython-311.pyc
ADDED
|
Binary file (5.94 kB). View file
|
|
|
services/__pycache__/gemini_client.cpython-311.pyc
ADDED
|
Binary file (15.2 kB). View file
|
|
|
services/__pycache__/modal_flux.cpython-311.pyc
ADDED
|
Binary file (8.71 kB). View file
|
|
|
services/__pycache__/openai_client.cpython-311.pyc
ADDED
|
Binary file (5.17 kB). View file
|
|
|
services/__pycache__/sambanova_client.cpython-311.pyc
ADDED
|
Binary file (9.99 kB). View file
|
|
|
services/anthropic_client.py
CHANGED
|
@@ -15,15 +15,35 @@ class AnthropicClient:
|
|
| 15 |
def __init__(self, api_key: str = None):
|
| 16 |
"""Initialize with optional custom API key."""
|
| 17 |
self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
|
| 18 |
-
self.
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
self.model = "claude-sonnet-4-20250514"
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
async def analyze_emotion(self, user_input: str, system_prompt: str) -> dict:
|
| 23 |
"""
|
| 24 |
Analyze user's emotional state with nuance.
|
| 25 |
Returns structured emotion data.
|
| 26 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
response = await self.async_client.messages.create(
|
| 28 |
model=self.model,
|
| 29 |
max_tokens=1024,
|
|
@@ -58,6 +78,13 @@ class AnthropicClient:
|
|
| 58 |
"""
|
| 59 |
Decide what action Pip should take based on emotional state.
|
| 60 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
response = await self.async_client.messages.create(
|
| 62 |
model=self.model,
|
| 63 |
max_tokens=512,
|
|
@@ -93,6 +120,10 @@ class AnthropicClient:
|
|
| 93 |
"""
|
| 94 |
Generate Pip's conversational response with streaming.
|
| 95 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
messages = conversation_history or []
|
| 97 |
|
| 98 |
# Add context about current emotional state
|
|
@@ -126,6 +157,10 @@ Voice tone: {action.get('voice_tone', 'warm')}
|
|
| 126 |
"""
|
| 127 |
Generate a gentle intervention response for concerning emotional states.
|
| 128 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
context = f"""
|
| 130 |
[INTERVENTION NEEDED]
|
| 131 |
User message: {user_input}
|
|
@@ -151,6 +186,9 @@ Do NOT be preachy or clinical.
|
|
| 151 |
Generate text response for a given prompt.
|
| 152 |
Used for summaries and other text generation needs.
|
| 153 |
"""
|
|
|
|
|
|
|
|
|
|
| 154 |
try:
|
| 155 |
response = await self.async_client.messages.create(
|
| 156 |
model=self.model,
|
|
|
|
| 15 |
def __init__(self, api_key: str = None):
|
| 16 |
"""Initialize with optional custom API key."""
|
| 17 |
self.api_key = api_key or os.getenv("ANTHROPIC_API_KEY")
|
| 18 |
+
self.available = bool(self.api_key)
|
| 19 |
+
|
| 20 |
+
if self.available:
|
| 21 |
+
self.client = anthropic.Anthropic(api_key=self.api_key)
|
| 22 |
+
self.async_client = anthropic.AsyncAnthropic(api_key=self.api_key)
|
| 23 |
+
else:
|
| 24 |
+
self.client = None
|
| 25 |
+
self.async_client = None
|
| 26 |
+
print("⚠️ Anthropic: No API key found - service disabled")
|
| 27 |
+
|
| 28 |
self.model = "claude-sonnet-4-20250514"
|
| 29 |
|
| 30 |
+
def is_available(self) -> bool:
|
| 31 |
+
"""Check if the client is available."""
|
| 32 |
+
return self.available
|
| 33 |
+
|
| 34 |
async def analyze_emotion(self, user_input: str, system_prompt: str) -> dict:
|
| 35 |
"""
|
| 36 |
Analyze user's emotional state with nuance.
|
| 37 |
Returns structured emotion data.
|
| 38 |
"""
|
| 39 |
+
if not self.available or not self.async_client:
|
| 40 |
+
return {
|
| 41 |
+
"primary_emotions": ["neutral"],
|
| 42 |
+
"intensity": 5,
|
| 43 |
+
"pip_expression": "neutral",
|
| 44 |
+
"intervention_needed": False
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
response = await self.async_client.messages.create(
|
| 48 |
model=self.model,
|
| 49 |
max_tokens=1024,
|
|
|
|
| 78 |
"""
|
| 79 |
Decide what action Pip should take based on emotional state.
|
| 80 |
"""
|
| 81 |
+
if not self.available or not self.async_client:
|
| 82 |
+
return {
|
| 83 |
+
"action": "reflect",
|
| 84 |
+
"image_style": "gentle",
|
| 85 |
+
"voice_tone": "warm"
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
response = await self.async_client.messages.create(
|
| 89 |
model=self.model,
|
| 90 |
max_tokens=512,
|
|
|
|
| 120 |
"""
|
| 121 |
Generate Pip's conversational response with streaming.
|
| 122 |
"""
|
| 123 |
+
if not self.available or not self.async_client:
|
| 124 |
+
yield "I'm here with you. Let me think about what you shared..."
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
messages = conversation_history or []
|
| 128 |
|
| 129 |
# Add context about current emotional state
|
|
|
|
| 157 |
"""
|
| 158 |
Generate a gentle intervention response for concerning emotional states.
|
| 159 |
"""
|
| 160 |
+
if not self.available or not self.async_client:
|
| 161 |
+
yield "I hear you, and I want you to know that what you're feeling matters. Take a moment to breathe..."
|
| 162 |
+
return
|
| 163 |
+
|
| 164 |
context = f"""
|
| 165 |
[INTERVENTION NEEDED]
|
| 166 |
User message: {user_input}
|
|
|
|
| 186 |
Generate text response for a given prompt.
|
| 187 |
Used for summaries and other text generation needs.
|
| 188 |
"""
|
| 189 |
+
if not self.available or not self.async_client:
|
| 190 |
+
return ""
|
| 191 |
+
|
| 192 |
try:
|
| 193 |
response = await self.async_client.messages.create(
|
| 194 |
model=self.model,
|
services/elevenlabs_client.py
CHANGED
|
@@ -54,13 +54,23 @@ class ElevenLabsClient:
|
|
| 54 |
}
|
| 55 |
|
| 56 |
def __init__(self):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
# Default voice - can be customized or created via Voice Design
|
| 61 |
self.default_voice_id = "21m00Tcm4TlvDq8ikWAM" # Rachel - warm, friendly
|
| 62 |
self.pip_voice_id = None # Will be set if custom voice is created
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
async def speak(
|
| 65 |
self,
|
| 66 |
text: str,
|
|
@@ -71,6 +81,9 @@ class ElevenLabsClient:
|
|
| 71 |
Generate speech from text with emotional tone matching.
|
| 72 |
Returns audio bytes (mp3).
|
| 73 |
"""
|
|
|
|
|
|
|
|
|
|
| 74 |
try:
|
| 75 |
model = self.MODELS["flash"] if use_fast_model else self.MODELS["expressive"]
|
| 76 |
voice_settings = self.TONE_SETTINGS.get(tone, self.TONE_SETTINGS["warm"])
|
|
@@ -106,6 +119,9 @@ class ElevenLabsClient:
|
|
| 106 |
Stream audio generation for lower latency.
|
| 107 |
Yields audio chunks as they're generated.
|
| 108 |
"""
|
|
|
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
model = self.MODELS["flash"]
|
| 111 |
voice_settings = self.TONE_SETTINGS.get(tone, self.TONE_SETTINGS["warm"])
|
|
@@ -130,6 +146,9 @@ class ElevenLabsClient:
|
|
| 130 |
"""
|
| 131 |
Get list of available voices.
|
| 132 |
"""
|
|
|
|
|
|
|
|
|
|
| 133 |
try:
|
| 134 |
voices = await self.client.voices.get_all()
|
| 135 |
return [{"id": v.voice_id, "name": v.name} for v in voices.voices]
|
|
|
|
| 54 |
}
|
| 55 |
|
| 56 |
def __init__(self):
|
| 57 |
+
api_key = os.getenv("ELEVENLABS_API_KEY")
|
| 58 |
+
self.available = bool(api_key)
|
| 59 |
+
|
| 60 |
+
if self.available:
|
| 61 |
+
self.client = AsyncElevenLabs(api_key=api_key)
|
| 62 |
+
else:
|
| 63 |
+
self.client = None
|
| 64 |
+
print("⚠️ ElevenLabs: No API key found - voice disabled")
|
| 65 |
+
|
| 66 |
# Default voice - can be customized or created via Voice Design
|
| 67 |
self.default_voice_id = "21m00Tcm4TlvDq8ikWAM" # Rachel - warm, friendly
|
| 68 |
self.pip_voice_id = None # Will be set if custom voice is created
|
| 69 |
|
| 70 |
+
def is_available(self) -> bool:
|
| 71 |
+
"""Check if the client is available."""
|
| 72 |
+
return self.available
|
| 73 |
+
|
| 74 |
async def speak(
|
| 75 |
self,
|
| 76 |
text: str,
|
|
|
|
| 81 |
Generate speech from text with emotional tone matching.
|
| 82 |
Returns audio bytes (mp3).
|
| 83 |
"""
|
| 84 |
+
if not self.available or not self.client:
|
| 85 |
+
return None
|
| 86 |
+
|
| 87 |
try:
|
| 88 |
model = self.MODELS["flash"] if use_fast_model else self.MODELS["expressive"]
|
| 89 |
voice_settings = self.TONE_SETTINGS.get(tone, self.TONE_SETTINGS["warm"])
|
|
|
|
| 119 |
Stream audio generation for lower latency.
|
| 120 |
Yields audio chunks as they're generated.
|
| 121 |
"""
|
| 122 |
+
if not self.available or not self.client:
|
| 123 |
+
return
|
| 124 |
+
|
| 125 |
try:
|
| 126 |
model = self.MODELS["flash"]
|
| 127 |
voice_settings = self.TONE_SETTINGS.get(tone, self.TONE_SETTINGS["warm"])
|
|
|
|
| 146 |
"""
|
| 147 |
Get list of available voices.
|
| 148 |
"""
|
| 149 |
+
if not self.available or not self.client:
|
| 150 |
+
return []
|
| 151 |
+
|
| 152 |
try:
|
| 153 |
voices = await self.client.voices.get_all()
|
| 154 |
return [{"id": v.voice_id, "name": v.name} for v in voices.voices]
|
services/gemini_client.py
CHANGED
|
@@ -27,14 +27,22 @@ class GeminiClient:
|
|
| 27 |
def __init__(self, api_key: str = None):
|
| 28 |
"""Initialize with optional custom API key."""
|
| 29 |
self.api_key = api_key or os.getenv("GOOGLE_API_KEY")
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
genai.configure(api_key=self.api_key)
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Model instances (lazy loaded)
|
| 34 |
self._fast_model = None
|
| 35 |
self._pro_model = None
|
| 36 |
self._image_model = None
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def _get_fast_model(self):
|
| 39 |
"""Get fast model for quick responses."""
|
| 40 |
if self._fast_model is None:
|
|
@@ -62,6 +70,14 @@ class GeminiClient:
|
|
| 62 |
Analyze emotional content of user input.
|
| 63 |
Returns structured emotion analysis.
|
| 64 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
try:
|
| 66 |
model = self._get_pro_model()
|
| 67 |
|
|
@@ -149,6 +165,9 @@ Respond with ONLY valid JSON, no markdown."""
|
|
| 149 |
Generate a quick acknowledgment (< 500ms target).
|
| 150 |
Uses the fastest available model.
|
| 151 |
"""
|
|
|
|
|
|
|
|
|
|
| 152 |
try:
|
| 153 |
model = self._get_fast_model()
|
| 154 |
|
|
@@ -269,6 +288,9 @@ Respond with care, warmth, and appropriate resources if needed."""
|
|
| 269 |
"""
|
| 270 |
Generate text (for prompts, summaries, etc).
|
| 271 |
"""
|
|
|
|
|
|
|
|
|
|
| 272 |
try:
|
| 273 |
model = self._get_pro_model()
|
| 274 |
response = await model.generate_content_async(
|
|
@@ -323,6 +345,9 @@ Generate the enhanced image prompt only, no explanation."""
|
|
| 323 |
Generate an image using Gemini's image generation model.
|
| 324 |
Returns base64 encoded image.
|
| 325 |
"""
|
|
|
|
|
|
|
|
|
|
| 326 |
try:
|
| 327 |
model = self._get_image_model()
|
| 328 |
|
|
|
|
| 27 |
def __init__(self, api_key: str = None):
|
| 28 |
"""Initialize with optional custom API key."""
|
| 29 |
self.api_key = api_key or os.getenv("GOOGLE_API_KEY")
|
| 30 |
+
self.available = bool(self.api_key)
|
| 31 |
+
|
| 32 |
+
if self.available:
|
| 33 |
genai.configure(api_key=self.api_key)
|
| 34 |
+
else:
|
| 35 |
+
print("⚠️ Gemini: No API key found - service disabled")
|
| 36 |
|
| 37 |
# Model instances (lazy loaded)
|
| 38 |
self._fast_model = None
|
| 39 |
self._pro_model = None
|
| 40 |
self._image_model = None
|
| 41 |
|
| 42 |
+
def is_available(self) -> bool:
|
| 43 |
+
"""Check if the client is available."""
|
| 44 |
+
return self.available
|
| 45 |
+
|
| 46 |
def _get_fast_model(self):
|
| 47 |
"""Get fast model for quick responses."""
|
| 48 |
if self._fast_model is None:
|
|
|
|
| 70 |
Analyze emotional content of user input.
|
| 71 |
Returns structured emotion analysis.
|
| 72 |
"""
|
| 73 |
+
if not self.available:
|
| 74 |
+
return {
|
| 75 |
+
"primary_emotions": ["neutral"],
|
| 76 |
+
"intensity": 5,
|
| 77 |
+
"pip_expression": "neutral",
|
| 78 |
+
"intervention_needed": False
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
try:
|
| 82 |
model = self._get_pro_model()
|
| 83 |
|
|
|
|
| 165 |
Generate a quick acknowledgment (< 500ms target).
|
| 166 |
Uses the fastest available model.
|
| 167 |
"""
|
| 168 |
+
if not self.available:
|
| 169 |
+
return "I hear you..."
|
| 170 |
+
|
| 171 |
try:
|
| 172 |
model = self._get_fast_model()
|
| 173 |
|
|
|
|
| 288 |
"""
|
| 289 |
Generate text (for prompts, summaries, etc).
|
| 290 |
"""
|
| 291 |
+
if not self.available:
|
| 292 |
+
return None
|
| 293 |
+
|
| 294 |
try:
|
| 295 |
model = self._get_pro_model()
|
| 296 |
response = await model.generate_content_async(
|
|
|
|
| 345 |
Generate an image using Gemini's image generation model.
|
| 346 |
Returns base64 encoded image.
|
| 347 |
"""
|
| 348 |
+
if not self.available:
|
| 349 |
+
return None
|
| 350 |
+
|
| 351 |
try:
|
| 352 |
model = self._get_image_model()
|
| 353 |
|
services/modal_flux.py
CHANGED
|
@@ -34,6 +34,14 @@ class ModalFluxClient:
|
|
| 34 |
def __init__(self):
|
| 35 |
self.hf_token = os.getenv("HF_TOKEN")
|
| 36 |
self.modal_endpoint = os.getenv("MODAL_FLUX_ENDPOINT") # If deployed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
async def generate_image(
|
| 39 |
self,
|
|
|
|
| 34 |
def __init__(self):
|
| 35 |
self.hf_token = os.getenv("HF_TOKEN")
|
| 36 |
self.modal_endpoint = os.getenv("MODAL_FLUX_ENDPOINT") # If deployed
|
| 37 |
+
self.available = bool(self.hf_token) or bool(self.modal_endpoint)
|
| 38 |
+
|
| 39 |
+
if not self.available:
|
| 40 |
+
print("⚠️ HuggingFace/Modal: No tokens found - image generation limited")
|
| 41 |
+
|
| 42 |
+
def is_available(self) -> bool:
|
| 43 |
+
"""Check if the client is available."""
|
| 44 |
+
return self.available
|
| 45 |
|
| 46 |
async def generate_image(
|
| 47 |
self,
|
services/openai_client.py
CHANGED
|
@@ -23,6 +23,9 @@ class OpenAIClient:
|
|
| 23 |
Generate an image using GPT-4o / DALL-E 3.
|
| 24 |
Returns base64 encoded image or URL.
|
| 25 |
"""
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
response = await self.client.images.generate(
|
| 28 |
model="dall-e-3",
|
|
@@ -42,6 +45,9 @@ class OpenAIClient:
|
|
| 42 |
"""
|
| 43 |
Transcribe audio using Whisper.
|
| 44 |
"""
|
|
|
|
|
|
|
|
|
|
| 45 |
try:
|
| 46 |
with open(audio_file_path, "rb") as audio_file:
|
| 47 |
response = await self.client.audio.transcriptions.create(
|
|
@@ -58,6 +64,9 @@ class OpenAIClient:
|
|
| 58 |
"""
|
| 59 |
Transcribe audio from bytes using Whisper.
|
| 60 |
"""
|
|
|
|
|
|
|
|
|
|
| 61 |
try:
|
| 62 |
# Create a file-like object from bytes
|
| 63 |
response = await self.client.audio.transcriptions.create(
|
|
|
|
| 23 |
Generate an image using GPT-4o / DALL-E 3.
|
| 24 |
Returns base64 encoded image or URL.
|
| 25 |
"""
|
| 26 |
+
if not self.available or not self.client:
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
try:
|
| 30 |
response = await self.client.images.generate(
|
| 31 |
model="dall-e-3",
|
|
|
|
| 45 |
"""
|
| 46 |
Transcribe audio using Whisper.
|
| 47 |
"""
|
| 48 |
+
if not self.available or not self.client:
|
| 49 |
+
return ""
|
| 50 |
+
|
| 51 |
try:
|
| 52 |
with open(audio_file_path, "rb") as audio_file:
|
| 53 |
response = await self.client.audio.transcriptions.create(
|
|
|
|
| 64 |
"""
|
| 65 |
Transcribe audio from bytes using Whisper.
|
| 66 |
"""
|
| 67 |
+
if not self.available or not self.client:
|
| 68 |
+
return ""
|
| 69 |
+
|
| 70 |
try:
|
| 71 |
# Create a file-like object from bytes
|
| 72 |
response = await self.client.audio.transcriptions.create(
|
services/sambanova_client.py
CHANGED
|
@@ -14,10 +14,18 @@ class SambanovaClient:
|
|
| 14 |
"""SambaNova-powered fast inference for Pip."""
|
| 15 |
|
| 16 |
def __init__(self):
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# Using Llama 3.1 or DeepSeek on SambaNova
|
| 22 |
self.model = "Meta-Llama-3.1-8B-Instruct"
|
| 23 |
self._rate_limited = False
|
|
@@ -43,7 +51,9 @@ class SambanovaClient:
|
|
| 43 |
Generate a quick acknowledgment while heavier processing happens.
|
| 44 |
This should be FAST - just a brief "I hear you" type response.
|
| 45 |
"""
|
| 46 |
-
# If rate limited, return a fallback
|
|
|
|
|
|
|
| 47 |
if await self._check_rate_limit():
|
| 48 |
return "I hear you..."
|
| 49 |
|
|
@@ -75,10 +85,14 @@ class SambanovaClient:
|
|
| 75 |
Transform user context into a detailed, vivid image prompt.
|
| 76 |
This is where user-specific imagery is crafted.
|
| 77 |
"""
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
if await self._check_rate_limit():
|
| 80 |
-
|
| 81 |
-
return f"A beautiful, calming scene representing {emotions[0] if emotions else 'peace'}, soft colors, dreamy atmosphere"
|
| 82 |
|
| 83 |
context = f"""
|
| 84 |
User said: "{user_input}"
|
|
@@ -119,7 +133,10 @@ Generate a vivid, specific image prompt based on THIS user's context.
|
|
| 119 |
Generate conversational response with streaming.
|
| 120 |
Used for load-balanced conversation when Claude is busy.
|
| 121 |
"""
|
| 122 |
-
# If rate limited, yield a fallback
|
|
|
|
|
|
|
|
|
|
| 123 |
if await self._check_rate_limit():
|
| 124 |
yield "I understand how you're feeling. Let me take a moment to think about this..."
|
| 125 |
return
|
|
@@ -159,14 +176,18 @@ User said: {user_input}
|
|
| 159 |
"""
|
| 160 |
import json
|
| 161 |
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if await self._check_rate_limit():
|
| 164 |
-
return
|
| 165 |
-
"primary_emotions": ["neutral"],
|
| 166 |
-
"intensity": 5,
|
| 167 |
-
"pip_expression": "neutral",
|
| 168 |
-
"intervention_needed": False
|
| 169 |
-
}
|
| 170 |
|
| 171 |
try:
|
| 172 |
response = await self.client.chat.completions.create(
|
|
|
|
| 14 |
"""SambaNova-powered fast inference for Pip."""
|
| 15 |
|
| 16 |
def __init__(self):
|
| 17 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
| 18 |
+
self.available = bool(api_key)
|
| 19 |
+
|
| 20 |
+
if self.available:
|
| 21 |
+
self.client = AsyncOpenAI(
|
| 22 |
+
api_key=api_key,
|
| 23 |
+
base_url=os.getenv("SAMBANOVA_BASE_URL", "https://api.sambanova.ai/v1")
|
| 24 |
+
)
|
| 25 |
+
else:
|
| 26 |
+
self.client = None
|
| 27 |
+
print("⚠️ SambaNova: No API key found - service disabled")
|
| 28 |
+
|
| 29 |
# Using Llama 3.1 or DeepSeek on SambaNova
|
| 30 |
self.model = "Meta-Llama-3.1-8B-Instruct"
|
| 31 |
self._rate_limited = False
|
|
|
|
| 51 |
Generate a quick acknowledgment while heavier processing happens.
|
| 52 |
This should be FAST - just a brief "I hear you" type response.
|
| 53 |
"""
|
| 54 |
+
# If not available or rate limited, return a fallback
|
| 55 |
+
if not self.available or not self.client:
|
| 56 |
+
return "I hear you..."
|
| 57 |
if await self._check_rate_limit():
|
| 58 |
return "I hear you..."
|
| 59 |
|
|
|
|
| 85 |
Transform user context into a detailed, vivid image prompt.
|
| 86 |
This is where user-specific imagery is crafted.
|
| 87 |
"""
|
| 88 |
+
emotions = emotion_state.get('primary_emotions', ['peaceful'])
|
| 89 |
+
fallback = f"A beautiful, calming scene representing {emotions[0] if emotions else 'peace'}, soft colors, dreamy atmosphere"
|
| 90 |
+
|
| 91 |
+
# If not available or rate limited, return a simple prompt
|
| 92 |
+
if not self.available or not self.client:
|
| 93 |
+
return fallback
|
| 94 |
if await self._check_rate_limit():
|
| 95 |
+
return fallback
|
|
|
|
| 96 |
|
| 97 |
context = f"""
|
| 98 |
User said: "{user_input}"
|
|
|
|
| 133 |
Generate conversational response with streaming.
|
| 134 |
Used for load-balanced conversation when Claude is busy.
|
| 135 |
"""
|
| 136 |
+
# If not available or rate limited, yield a fallback
|
| 137 |
+
if not self.available or not self.client:
|
| 138 |
+
yield "I understand how you're feeling. Let me take a moment to think about this..."
|
| 139 |
+
return
|
| 140 |
if await self._check_rate_limit():
|
| 141 |
yield "I understand how you're feeling. Let me take a moment to think about this..."
|
| 142 |
return
|
|
|
|
| 176 |
"""
|
| 177 |
import json
|
| 178 |
|
| 179 |
+
default_response = {
|
| 180 |
+
"primary_emotions": ["neutral"],
|
| 181 |
+
"intensity": 5,
|
| 182 |
+
"pip_expression": "neutral",
|
| 183 |
+
"intervention_needed": False
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
# If not available or rate limited, return basic analysis
|
| 187 |
+
if not self.available or not self.client:
|
| 188 |
+
return default_response
|
| 189 |
if await self._check_rate_limit():
|
| 190 |
+
return default_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
try:
|
| 193 |
response = await self.client.chat.completions.create(
|