File size: 18,647 Bytes
4a653e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0467062
4a653e3
 
 
 
 
 
 
 
 
 
 
0467062
4a653e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0467062
4a653e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0467062
 
 
 
 
 
 
4a653e3
0467062
4a653e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0467062
4a653e3
 
 
 
 
 
 
0467062
4a653e3
 
 
 
 
 
 
 
 
 
 
 
 
0467062
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
"""LlamaIndex RAG service for evidence retrieval and indexing.

Requires optional dependencies: uv sync --extra modal
"""

from typing import Any

import structlog

from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import Evidence

logger = structlog.get_logger()


class LlamaIndexRAGService:
    """RAG service using LlamaIndex with ChromaDB vector store.

    Supports multiple embedding providers:
    - OpenAI embeddings (requires OPENAI_API_KEY)
    - Local sentence-transformers (no API key required)
    - Hugging Face embeddings (uses local sentence-transformers)

    Supports multiple LLM providers for query synthesis:
    - HuggingFace LLM (preferred, requires HF_TOKEN or HUGGINGFACE_API_KEY)
    - OpenAI LLM (fallback, requires OPENAI_API_KEY)
    - None (embedding-only mode, no query synthesis)

    Note:
        HuggingFace is the default LLM provider. OpenAI is used as fallback
        if HuggingFace LLM is not available or no HF token is configured.
    """

    def __init__(
        self,
        collection_name: str = "deepcritical_evidence",
        persist_dir: str | None = None,
        embedding_model: str | None = None,
        similarity_top_k: int = 5,
        use_openai_embeddings: bool | None = None,
        use_in_memory: bool = False,
        oauth_token: str | None = None,
    ) -> None:
        """
        Initialize LlamaIndex RAG service.

        Args:
            collection_name: Name of the ChromaDB collection
            persist_dir: Directory to persist ChromaDB data
            embedding_model: Embedding model name (defaults based on provider)
            similarity_top_k: Number of top results to retrieve
            use_openai_embeddings: Force OpenAI embeddings (None = auto-detect)
            use_in_memory: Use in-memory ChromaDB client (useful for tests)
            oauth_token: Optional OAuth token from HuggingFace login (takes priority over env vars)
        """
        # Import dependencies and store references
        deps = self._import_dependencies()
        self._chromadb = deps["chromadb"]
        self._Document = deps["Document"]
        self._Settings = deps["Settings"]
        self._StorageContext = deps["StorageContext"]
        self._VectorStoreIndex = deps["VectorStoreIndex"]
        self._VectorIndexRetriever = deps["VectorIndexRetriever"]
        self._ChromaVectorStore = deps["ChromaVectorStore"]
        huggingface_embedding = deps["huggingface_embedding"]
        huggingface_llm = deps["huggingface_llm"]
        openai_embedding = deps["OpenAIEmbedding"]
        openai_llm = deps["OpenAI"]

        # Store basic configuration
        self.collection_name = collection_name
        self.persist_dir = persist_dir or settings.chroma_db_path
        self.similarity_top_k = similarity_top_k
        self.use_in_memory = use_in_memory
        self.oauth_token = oauth_token

        # Configure embeddings and LLM
        use_openai = use_openai_embeddings if use_openai_embeddings is not None else False
        self._configure_embeddings(
            use_openai, embedding_model, huggingface_embedding, openai_embedding
        )
        self._configure_llm(huggingface_llm, openai_llm)

        # Initialize ChromaDB and index
        self._initialize_chromadb()

    def _import_dependencies(self) -> dict[str, Any]:
        """Import LlamaIndex dependencies and return as dict."""
        try:
            import chromadb
            from llama_index.core import Document, Settings, StorageContext, VectorStoreIndex
            from llama_index.core.retrievers import VectorIndexRetriever
            from llama_index.embeddings.openai import OpenAIEmbedding
            from llama_index.llms.openai import OpenAI
            from llama_index.vector_stores.chroma import ChromaVectorStore

            # Try to import Hugging Face embeddings (may not be available in all versions)
            try:
                from llama_index.embeddings.huggingface import (
                    HuggingFaceEmbedding as _HuggingFaceEmbedding,  # type: ignore[import-untyped]
                )

                huggingface_embedding = _HuggingFaceEmbedding
            except ImportError:
                huggingface_embedding = None  # type: ignore[assignment]

            # Try to import Hugging Face Inference API LLM (for API-based models)
            # This is preferred over local HuggingFaceLLM for query synthesis
            try:
                from llama_index.llms.huggingface_api import (
                    HuggingFaceInferenceAPI as _HuggingFaceInferenceAPI,  # type: ignore[import-untyped]
                )

                huggingface_llm = _HuggingFaceInferenceAPI
            except ImportError:
                # Fallback to local HuggingFaceLLM if API version not available
                try:
                    from llama_index.llms.huggingface import (
                        HuggingFaceLLM as _HuggingFaceLLM,  # type: ignore[import-untyped]
                    )

                    huggingface_llm = _HuggingFaceLLM
                except ImportError:
                    huggingface_llm = None  # type: ignore[assignment]

            return {
                "chromadb": chromadb,
                "Document": Document,
                "Settings": Settings,
                "StorageContext": StorageContext,
                "VectorStoreIndex": VectorStoreIndex,
                "VectorIndexRetriever": VectorIndexRetriever,
                "ChromaVectorStore": ChromaVectorStore,
                "OpenAIEmbedding": OpenAIEmbedding,
                "OpenAI": OpenAI,
                "huggingface_embedding": huggingface_embedding,
                "huggingface_llm": huggingface_llm,
            }
        except ImportError as e:
            raise ImportError(
                "LlamaIndex dependencies not installed. Run: uv sync --extra modal"
            ) from e

    def _configure_embeddings(
        self,
        use_openai_embeddings: bool,
        embedding_model: str | None,
        huggingface_embedding: Any,
        openai_embedding: Any,
    ) -> None:
        """Configure embedding model."""
        if use_openai_embeddings:
            if not settings.openai_api_key:
                raise ConfigurationError("OPENAI_API_KEY required for OpenAI embeddings")
            self.embedding_model = embedding_model or settings.openai_embedding_model
            self._Settings.embed_model = openai_embedding(
                model=self.embedding_model,
                api_key=settings.openai_api_key,
            )
        else:
            model_name = embedding_model or settings.huggingface_embedding_model
            self.embedding_model = model_name
            if huggingface_embedding is not None:
                self._Settings.embed_model = huggingface_embedding(model_name=model_name)
            else:
                self._Settings.embed_model = self._create_sentence_transformer_embedding(model_name)

    def _create_sentence_transformer_embedding(self, model_name: str) -> Any:
        """Create sentence-transformer embedding wrapper."""
        from sentence_transformers import SentenceTransformer

        try:
            from llama_index.embeddings.base import (
                BaseEmbedding,  # type: ignore[import-untyped]
            )
        except ImportError:
            from llama_index.core.embeddings import (
                BaseEmbedding,  # type: ignore[import-untyped]
            )

        class SentenceTransformerEmbedding(BaseEmbedding):  # type: ignore[misc]
            """Simple wrapper for sentence-transformers."""

            def __init__(self, model_name: str):
                super().__init__()
                self._model = SentenceTransformer(model_name)

            def _get_query_embedding(self, query: str) -> list[float]:
                result = self._model.encode(query).tolist()
                return list(result)  # type: ignore[no-any-return]

            def _get_text_embedding(self, text: str) -> list[float]:
                result = self._model.encode(text).tolist()
                return list(result)  # type: ignore[no-any-return]

            async def _aget_query_embedding(self, query: str) -> list[float]:
                return self._get_query_embedding(query)

            async def _aget_text_embedding(self, text: str) -> list[float]:
                return self._get_text_embedding(text)

        return SentenceTransformerEmbedding(model_name)

    def _configure_llm(self, huggingface_llm: Any, openai_llm: Any) -> None:
        """Configure LLM for query synthesis."""
        # Priority: oauth_token > env vars
        effective_token = (
            self.oauth_token
            or settings.hf_token
            or settings.huggingface_api_key
        )
        if huggingface_llm is not None and effective_token:
            model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct"
            token = effective_token

            # Check if it's HuggingFaceInferenceAPI (API-based) or HuggingFaceLLM (local)
            llm_class_name = (
                huggingface_llm.__name__
                if hasattr(huggingface_llm, "__name__")
                else str(huggingface_llm)
            )

            if "InferenceAPI" in llm_class_name:
                # Use HuggingFace Inference API (supports token parameter)
                try:
                    self._Settings.llm = huggingface_llm(
                        model_name=model_name,
                        token=token,
                    )
                except Exception as e:
                    # If model is not available via inference API, log warning and continue without LLM
                    logger.warning(
                        "Failed to initialize HuggingFace Inference API LLM",
                        model=model_name,
                        error=str(e),
                    )
                    logger.info("Continuing without LLM - query synthesis will be unavailable")
                    self._Settings.llm = None
                    return
            else:
                # Use local HuggingFaceLLM (doesn't support token, uses model_name and tokenizer_name)
                self._Settings.llm = huggingface_llm(
                    model_name=model_name,
                    tokenizer_name=model_name,
                )
            logger.info("Using HuggingFace LLM for query synthesis", model=model_name)
        elif settings.openai_api_key:
            self._Settings.llm = openai_llm(
                model=settings.openai_model,
                api_key=settings.openai_api_key,
            )
            logger.info("Using OpenAI LLM for query synthesis", model=settings.openai_model)
        else:
            logger.warning("No LLM API key available - query synthesis will be unavailable")
            self._Settings.llm = None

    def _initialize_chromadb(self) -> None:
        """Initialize ChromaDB client, collection, and index."""
        if self.use_in_memory:
            # Use in-memory client for tests (avoids file system issues)
            self.chroma_client = self._chromadb.Client()
        else:
            # Use persistent client for production
            self.chroma_client = self._chromadb.PersistentClient(path=self.persist_dir)

        # Get or create collection
        try:
            self.collection = self.chroma_client.get_collection(self.collection_name)
            logger.info("loaded_existing_collection", name=self.collection_name)
        except Exception:
            self.collection = self.chroma_client.create_collection(self.collection_name)
            logger.info("created_new_collection", name=self.collection_name)

        # Initialize vector store and index
        self.vector_store = self._ChromaVectorStore(chroma_collection=self.collection)
        self.storage_context = self._StorageContext.from_defaults(vector_store=self.vector_store)

        # Try to load existing index, or create empty one
        try:
            self.index = self._VectorStoreIndex.from_vector_store(
                vector_store=self.vector_store,
                storage_context=self.storage_context,
            )
            logger.info("loaded_existing_index")
        except Exception:
            self.index = self._VectorStoreIndex([], storage_context=self.storage_context)
            logger.info("created_new_index")

    def ingest_evidence(self, evidence_list: list[Evidence]) -> None:
        """
        Ingest evidence into the vector store.

        Args:
            evidence_list: List of Evidence objects to ingest
        """
        if not evidence_list:
            logger.warning("no_evidence_to_ingest")
            return

        # Convert Evidence objects to LlamaIndex Documents
        documents = []
        for evidence in evidence_list:
            metadata = {
                "source": evidence.citation.source,
                "title": evidence.citation.title,
                "url": evidence.citation.url,
                "date": evidence.citation.date,
                "authors": ", ".join(evidence.citation.authors),
            }

            doc = self._Document(
                text=evidence.content,
                metadata=metadata,
                doc_id=evidence.citation.url,  # Use URL as unique ID
            )
            documents.append(doc)

        # Insert documents into index
        try:
            for doc in documents:
                self.index.insert(doc)
            logger.info("ingested_evidence", count=len(documents))
        except Exception as e:
            logger.error("failed_to_ingest_evidence", error=str(e))
            raise

    def ingest_documents(self, documents: list[Any]) -> None:
        """
        Ingest raw LlamaIndex Documents.

        Args:
            documents: List of LlamaIndex Document objects
        """
        if not documents:
            logger.warning("no_documents_to_ingest")
            return

        try:
            for doc in documents:
                self.index.insert(doc)
            logger.info("ingested_documents", count=len(documents))
        except Exception as e:
            logger.error("failed_to_ingest_documents", error=str(e))
            raise

    def retrieve(self, query: str, top_k: int | None = None) -> list[dict[str, Any]]:
        """
        Retrieve relevant documents for a query.

        Args:
            query: Query string
            top_k: Number of results to return (defaults to similarity_top_k)

        Returns:
            List of retrieved documents with metadata and scores
        """
        k = top_k or self.similarity_top_k

        # Create retriever
        retriever = self._VectorIndexRetriever(
            index=self.index,
            similarity_top_k=k,
        )

        try:
            # Retrieve nodes
            nodes = retriever.retrieve(query)

            # Convert to dict format
            results = []
            for node in nodes:
                results.append(
                    {
                        "text": node.node.get_content(),
                        "score": node.score,
                        "metadata": node.node.metadata,
                    }
                )

            logger.info("retrieved_documents", query=query[:50], count=len(results))
            return results

        except Exception as e:
            logger.error("failed_to_retrieve", error=str(e), query=query[:50])
            raise  # Re-raise to allow callers to distinguish errors from empty results

    def query(self, query_str: str, top_k: int | None = None) -> str:
        """
        Query the RAG system and get a synthesized response.

        Args:
            query_str: Query string
            top_k: Number of results to use (defaults to similarity_top_k)

        Returns:
            Synthesized response string

        Raises:
            ConfigurationError: If no LLM API key is available for query synthesis
        """
        if not self._Settings.llm:
            raise ConfigurationError(
                "LLM API key required for query synthesis. Set HF_TOKEN, HUGGINGFACE_API_KEY, or OPENAI_API_KEY. "
                "Alternatively, use retrieve() for embedding-only search."
            )

        k = top_k or self.similarity_top_k

        # Create query engine
        query_engine = self.index.as_query_engine(
            similarity_top_k=k,
        )

        try:
            response = query_engine.query(query_str)
            logger.info("generated_response", query=query_str[:50])
            return str(response)

        except Exception as e:
            logger.error("failed_to_query", error=str(e), query=query_str[:50])
            raise  # Re-raise to allow callers to handle errors explicitly

    def clear_collection(self) -> None:
        """Clear all documents from the collection."""
        try:
            self.chroma_client.delete_collection(self.collection_name)
            self.collection = self.chroma_client.create_collection(self.collection_name)
            self.vector_store = self._ChromaVectorStore(chroma_collection=self.collection)
            self.storage_context = self._StorageContext.from_defaults(
                vector_store=self.vector_store
            )
            self.index = self._VectorStoreIndex([], storage_context=self.storage_context)
            logger.info("cleared_collection", name=self.collection_name)
        except Exception as e:
            logger.error("failed_to_clear_collection", error=str(e))
            raise


def get_rag_service(
    collection_name: str = "deepcritical_evidence",
    oauth_token: str | None = None,
    **kwargs: Any,
) -> LlamaIndexRAGService:
    """
    Get or create a RAG service instance.

    Args:
        collection_name: Name of the ChromaDB collection
        oauth_token: Optional OAuth token from HuggingFace login (takes priority over env vars)
        **kwargs: Additional arguments for LlamaIndexRAGService
            Defaults to use_openai_embeddings=False (local embeddings)

    Returns:
        Configured LlamaIndexRAGService instance

    Note:
        By default, uses local embeddings (sentence-transformers) which require
        no API keys. Set use_openai_embeddings=True to use OpenAI embeddings.
    """
    # Default to local embeddings if not explicitly set
    if "use_openai_embeddings" not in kwargs:
        kwargs["use_openai_embeddings"] = False
    return LlamaIndexRAGService(
        collection_name=collection_name, oauth_token=oauth_token, **kwargs
    )