Spaces:
Running
Running
File size: 18,647 Bytes
4a653e3 0467062 4a653e3 0467062 4a653e3 0467062 4a653e3 0467062 4a653e3 0467062 4a653e3 0467062 4a653e3 0467062 4a653e3 0467062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
"""LlamaIndex RAG service for evidence retrieval and indexing.
Requires optional dependencies: uv sync --extra modal
"""
from typing import Any
import structlog
from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import Evidence
logger = structlog.get_logger()
class LlamaIndexRAGService:
"""RAG service using LlamaIndex with ChromaDB vector store.
Supports multiple embedding providers:
- OpenAI embeddings (requires OPENAI_API_KEY)
- Local sentence-transformers (no API key required)
- Hugging Face embeddings (uses local sentence-transformers)
Supports multiple LLM providers for query synthesis:
- HuggingFace LLM (preferred, requires HF_TOKEN or HUGGINGFACE_API_KEY)
- OpenAI LLM (fallback, requires OPENAI_API_KEY)
- None (embedding-only mode, no query synthesis)
Note:
HuggingFace is the default LLM provider. OpenAI is used as fallback
if HuggingFace LLM is not available or no HF token is configured.
"""
def __init__(
self,
collection_name: str = "deepcritical_evidence",
persist_dir: str | None = None,
embedding_model: str | None = None,
similarity_top_k: int = 5,
use_openai_embeddings: bool | None = None,
use_in_memory: bool = False,
oauth_token: str | None = None,
) -> None:
"""
Initialize LlamaIndex RAG service.
Args:
collection_name: Name of the ChromaDB collection
persist_dir: Directory to persist ChromaDB data
embedding_model: Embedding model name (defaults based on provider)
similarity_top_k: Number of top results to retrieve
use_openai_embeddings: Force OpenAI embeddings (None = auto-detect)
use_in_memory: Use in-memory ChromaDB client (useful for tests)
oauth_token: Optional OAuth token from HuggingFace login (takes priority over env vars)
"""
# Import dependencies and store references
deps = self._import_dependencies()
self._chromadb = deps["chromadb"]
self._Document = deps["Document"]
self._Settings = deps["Settings"]
self._StorageContext = deps["StorageContext"]
self._VectorStoreIndex = deps["VectorStoreIndex"]
self._VectorIndexRetriever = deps["VectorIndexRetriever"]
self._ChromaVectorStore = deps["ChromaVectorStore"]
huggingface_embedding = deps["huggingface_embedding"]
huggingface_llm = deps["huggingface_llm"]
openai_embedding = deps["OpenAIEmbedding"]
openai_llm = deps["OpenAI"]
# Store basic configuration
self.collection_name = collection_name
self.persist_dir = persist_dir or settings.chroma_db_path
self.similarity_top_k = similarity_top_k
self.use_in_memory = use_in_memory
self.oauth_token = oauth_token
# Configure embeddings and LLM
use_openai = use_openai_embeddings if use_openai_embeddings is not None else False
self._configure_embeddings(
use_openai, embedding_model, huggingface_embedding, openai_embedding
)
self._configure_llm(huggingface_llm, openai_llm)
# Initialize ChromaDB and index
self._initialize_chromadb()
def _import_dependencies(self) -> dict[str, Any]:
"""Import LlamaIndex dependencies and return as dict."""
try:
import chromadb
from llama_index.core import Document, Settings, StorageContext, VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.vector_stores.chroma import ChromaVectorStore
# Try to import Hugging Face embeddings (may not be available in all versions)
try:
from llama_index.embeddings.huggingface import (
HuggingFaceEmbedding as _HuggingFaceEmbedding, # type: ignore[import-untyped]
)
huggingface_embedding = _HuggingFaceEmbedding
except ImportError:
huggingface_embedding = None # type: ignore[assignment]
# Try to import Hugging Face Inference API LLM (for API-based models)
# This is preferred over local HuggingFaceLLM for query synthesis
try:
from llama_index.llms.huggingface_api import (
HuggingFaceInferenceAPI as _HuggingFaceInferenceAPI, # type: ignore[import-untyped]
)
huggingface_llm = _HuggingFaceInferenceAPI
except ImportError:
# Fallback to local HuggingFaceLLM if API version not available
try:
from llama_index.llms.huggingface import (
HuggingFaceLLM as _HuggingFaceLLM, # type: ignore[import-untyped]
)
huggingface_llm = _HuggingFaceLLM
except ImportError:
huggingface_llm = None # type: ignore[assignment]
return {
"chromadb": chromadb,
"Document": Document,
"Settings": Settings,
"StorageContext": StorageContext,
"VectorStoreIndex": VectorStoreIndex,
"VectorIndexRetriever": VectorIndexRetriever,
"ChromaVectorStore": ChromaVectorStore,
"OpenAIEmbedding": OpenAIEmbedding,
"OpenAI": OpenAI,
"huggingface_embedding": huggingface_embedding,
"huggingface_llm": huggingface_llm,
}
except ImportError as e:
raise ImportError(
"LlamaIndex dependencies not installed. Run: uv sync --extra modal"
) from e
def _configure_embeddings(
self,
use_openai_embeddings: bool,
embedding_model: str | None,
huggingface_embedding: Any,
openai_embedding: Any,
) -> None:
"""Configure embedding model."""
if use_openai_embeddings:
if not settings.openai_api_key:
raise ConfigurationError("OPENAI_API_KEY required for OpenAI embeddings")
self.embedding_model = embedding_model or settings.openai_embedding_model
self._Settings.embed_model = openai_embedding(
model=self.embedding_model,
api_key=settings.openai_api_key,
)
else:
model_name = embedding_model or settings.huggingface_embedding_model
self.embedding_model = model_name
if huggingface_embedding is not None:
self._Settings.embed_model = huggingface_embedding(model_name=model_name)
else:
self._Settings.embed_model = self._create_sentence_transformer_embedding(model_name)
def _create_sentence_transformer_embedding(self, model_name: str) -> Any:
"""Create sentence-transformer embedding wrapper."""
from sentence_transformers import SentenceTransformer
try:
from llama_index.embeddings.base import (
BaseEmbedding, # type: ignore[import-untyped]
)
except ImportError:
from llama_index.core.embeddings import (
BaseEmbedding, # type: ignore[import-untyped]
)
class SentenceTransformerEmbedding(BaseEmbedding): # type: ignore[misc]
"""Simple wrapper for sentence-transformers."""
def __init__(self, model_name: str):
super().__init__()
self._model = SentenceTransformer(model_name)
def _get_query_embedding(self, query: str) -> list[float]:
result = self._model.encode(query).tolist()
return list(result) # type: ignore[no-any-return]
def _get_text_embedding(self, text: str) -> list[float]:
result = self._model.encode(text).tolist()
return list(result) # type: ignore[no-any-return]
async def _aget_query_embedding(self, query: str) -> list[float]:
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> list[float]:
return self._get_text_embedding(text)
return SentenceTransformerEmbedding(model_name)
def _configure_llm(self, huggingface_llm: Any, openai_llm: Any) -> None:
"""Configure LLM for query synthesis."""
# Priority: oauth_token > env vars
effective_token = (
self.oauth_token
or settings.hf_token
or settings.huggingface_api_key
)
if huggingface_llm is not None and effective_token:
model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct"
token = effective_token
# Check if it's HuggingFaceInferenceAPI (API-based) or HuggingFaceLLM (local)
llm_class_name = (
huggingface_llm.__name__
if hasattr(huggingface_llm, "__name__")
else str(huggingface_llm)
)
if "InferenceAPI" in llm_class_name:
# Use HuggingFace Inference API (supports token parameter)
try:
self._Settings.llm = huggingface_llm(
model_name=model_name,
token=token,
)
except Exception as e:
# If model is not available via inference API, log warning and continue without LLM
logger.warning(
"Failed to initialize HuggingFace Inference API LLM",
model=model_name,
error=str(e),
)
logger.info("Continuing without LLM - query synthesis will be unavailable")
self._Settings.llm = None
return
else:
# Use local HuggingFaceLLM (doesn't support token, uses model_name and tokenizer_name)
self._Settings.llm = huggingface_llm(
model_name=model_name,
tokenizer_name=model_name,
)
logger.info("Using HuggingFace LLM for query synthesis", model=model_name)
elif settings.openai_api_key:
self._Settings.llm = openai_llm(
model=settings.openai_model,
api_key=settings.openai_api_key,
)
logger.info("Using OpenAI LLM for query synthesis", model=settings.openai_model)
else:
logger.warning("No LLM API key available - query synthesis will be unavailable")
self._Settings.llm = None
def _initialize_chromadb(self) -> None:
"""Initialize ChromaDB client, collection, and index."""
if self.use_in_memory:
# Use in-memory client for tests (avoids file system issues)
self.chroma_client = self._chromadb.Client()
else:
# Use persistent client for production
self.chroma_client = self._chromadb.PersistentClient(path=self.persist_dir)
# Get or create collection
try:
self.collection = self.chroma_client.get_collection(self.collection_name)
logger.info("loaded_existing_collection", name=self.collection_name)
except Exception:
self.collection = self.chroma_client.create_collection(self.collection_name)
logger.info("created_new_collection", name=self.collection_name)
# Initialize vector store and index
self.vector_store = self._ChromaVectorStore(chroma_collection=self.collection)
self.storage_context = self._StorageContext.from_defaults(vector_store=self.vector_store)
# Try to load existing index, or create empty one
try:
self.index = self._VectorStoreIndex.from_vector_store(
vector_store=self.vector_store,
storage_context=self.storage_context,
)
logger.info("loaded_existing_index")
except Exception:
self.index = self._VectorStoreIndex([], storage_context=self.storage_context)
logger.info("created_new_index")
def ingest_evidence(self, evidence_list: list[Evidence]) -> None:
"""
Ingest evidence into the vector store.
Args:
evidence_list: List of Evidence objects to ingest
"""
if not evidence_list:
logger.warning("no_evidence_to_ingest")
return
# Convert Evidence objects to LlamaIndex Documents
documents = []
for evidence in evidence_list:
metadata = {
"source": evidence.citation.source,
"title": evidence.citation.title,
"url": evidence.citation.url,
"date": evidence.citation.date,
"authors": ", ".join(evidence.citation.authors),
}
doc = self._Document(
text=evidence.content,
metadata=metadata,
doc_id=evidence.citation.url, # Use URL as unique ID
)
documents.append(doc)
# Insert documents into index
try:
for doc in documents:
self.index.insert(doc)
logger.info("ingested_evidence", count=len(documents))
except Exception as e:
logger.error("failed_to_ingest_evidence", error=str(e))
raise
def ingest_documents(self, documents: list[Any]) -> None:
"""
Ingest raw LlamaIndex Documents.
Args:
documents: List of LlamaIndex Document objects
"""
if not documents:
logger.warning("no_documents_to_ingest")
return
try:
for doc in documents:
self.index.insert(doc)
logger.info("ingested_documents", count=len(documents))
except Exception as e:
logger.error("failed_to_ingest_documents", error=str(e))
raise
def retrieve(self, query: str, top_k: int | None = None) -> list[dict[str, Any]]:
"""
Retrieve relevant documents for a query.
Args:
query: Query string
top_k: Number of results to return (defaults to similarity_top_k)
Returns:
List of retrieved documents with metadata and scores
"""
k = top_k or self.similarity_top_k
# Create retriever
retriever = self._VectorIndexRetriever(
index=self.index,
similarity_top_k=k,
)
try:
# Retrieve nodes
nodes = retriever.retrieve(query)
# Convert to dict format
results = []
for node in nodes:
results.append(
{
"text": node.node.get_content(),
"score": node.score,
"metadata": node.node.metadata,
}
)
logger.info("retrieved_documents", query=query[:50], count=len(results))
return results
except Exception as e:
logger.error("failed_to_retrieve", error=str(e), query=query[:50])
raise # Re-raise to allow callers to distinguish errors from empty results
def query(self, query_str: str, top_k: int | None = None) -> str:
"""
Query the RAG system and get a synthesized response.
Args:
query_str: Query string
top_k: Number of results to use (defaults to similarity_top_k)
Returns:
Synthesized response string
Raises:
ConfigurationError: If no LLM API key is available for query synthesis
"""
if not self._Settings.llm:
raise ConfigurationError(
"LLM API key required for query synthesis. Set HF_TOKEN, HUGGINGFACE_API_KEY, or OPENAI_API_KEY. "
"Alternatively, use retrieve() for embedding-only search."
)
k = top_k or self.similarity_top_k
# Create query engine
query_engine = self.index.as_query_engine(
similarity_top_k=k,
)
try:
response = query_engine.query(query_str)
logger.info("generated_response", query=query_str[:50])
return str(response)
except Exception as e:
logger.error("failed_to_query", error=str(e), query=query_str[:50])
raise # Re-raise to allow callers to handle errors explicitly
def clear_collection(self) -> None:
"""Clear all documents from the collection."""
try:
self.chroma_client.delete_collection(self.collection_name)
self.collection = self.chroma_client.create_collection(self.collection_name)
self.vector_store = self._ChromaVectorStore(chroma_collection=self.collection)
self.storage_context = self._StorageContext.from_defaults(
vector_store=self.vector_store
)
self.index = self._VectorStoreIndex([], storage_context=self.storage_context)
logger.info("cleared_collection", name=self.collection_name)
except Exception as e:
logger.error("failed_to_clear_collection", error=str(e))
raise
def get_rag_service(
collection_name: str = "deepcritical_evidence",
oauth_token: str | None = None,
**kwargs: Any,
) -> LlamaIndexRAGService:
"""
Get or create a RAG service instance.
Args:
collection_name: Name of the ChromaDB collection
oauth_token: Optional OAuth token from HuggingFace login (takes priority over env vars)
**kwargs: Additional arguments for LlamaIndexRAGService
Defaults to use_openai_embeddings=False (local embeddings)
Returns:
Configured LlamaIndexRAGService instance
Note:
By default, uses local embeddings (sentence-transformers) which require
no API keys. Set use_openai_embeddings=True to use OpenAI embeddings.
"""
# Default to local embeddings if not explicitly set
if "use_openai_embeddings" not in kwargs:
kwargs["use_openai_embeddings"] = False
return LlamaIndexRAGService(
collection_name=collection_name, oauth_token=oauth_token, **kwargs
)
|