Update rag_system.py
Browse files- rag_system.py +35 -97
rag_system.py
CHANGED
|
@@ -8,11 +8,6 @@ from langchain.docstore.document import Document
|
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
import pdfplumber
|
| 10 |
from concurrent.futures import ThreadPoolExecutor
|
| 11 |
-
from langchain.retrievers import ContextualCompressionRetriever
|
| 12 |
-
from langchain.retrievers.document_compressors import LLMChainExtractor
|
| 13 |
-
from langgraph.graph import Graph
|
| 14 |
-
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
|
| 15 |
-
from langchain.prompts import PromptTemplate
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
|
@@ -33,40 +28,11 @@ def load_retrieval_qa_chain():
|
|
| 33 |
# Initialize ChatOpenAI model
|
| 34 |
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0) # "gpt-4o-mini
|
| 35 |
|
| 36 |
-
# Create
|
| 37 |
-
compressor = LLMChainExtractor.from_llm(llm)
|
| 38 |
-
|
| 39 |
-
# Create a ContextualCompressionRetriever
|
| 40 |
-
compression_retriever = ContextualCompressionRetriever(
|
| 41 |
-
base_compressor=compressor,
|
| 42 |
-
base_retriever=vectorstore.as_retriever()
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
# Define your instruction/prompt
|
| 46 |
-
instruction = """λΉμ μ RAG(Retrieval-Augmented Generation) κΈ°λ° AI μ΄μμ€ν΄νΈμ
λλ€. λ€μ μ§μΉ¨μ λ°λΌ μ¬μ©μ μ§λ¬Έμ λ΅νμΈμ:
|
| 47 |
-
|
| 48 |
-
1. οΏ½οΏ½μ κ²°κ³Ό νμ©: μ 곡λ κ²μ κ²°κ³Όλ₯Ό λΆμνκ³ κ΄λ ¨ μ 보λ₯Ό μ¬μ©ν΄ λ΅λ³νμΈμ.
|
| 49 |
-
2. μ νμ± μ μ§: μ 보μ μ νμ±μ νμΈνκ³ , λΆνμ€ν κ²½μ° μ΄λ₯Ό λͺ
μνμΈμ.
|
| 50 |
-
3. κ°κ²°ν μλ΅: μ§λ¬Έμ μ§μ λ΅νκ³ ν΅μ¬ λ΄μ©μ μ§μ€νμΈμ.
|
| 51 |
-
4. μΆκ° μ 보 μ μ: κ΄λ ¨λ μΆκ° μ λ³΄κ° μλ€λ©΄ μΈκΈνμΈμ.
|
| 52 |
-
5. μ€λ¦¬μ± κ³ λ €: κ°κ΄μ μ΄κ³ μ€λ¦½μ μΈ νλλ₯Ό μ μ§νμΈμ.
|
| 53 |
-
6. νκ³ μΈμ : λ΅λ³ν μ μλ κ²½μ° μμ§ν μΈμ νμΈμ.
|
| 54 |
-
7. λν μ μ§: μμ°μ€λ½κ² λνλ₯Ό μ΄μ΄κ°κ³ , νμμ νμ μ§λ¬Έμ μ μνμΈμ.
|
| 55 |
-
|
| 56 |
-
νμ μ ννκ³ μ μ©ν μ 보λ₯Ό μ 곡νλ κ²μ λͺ©νλ‘ νμΈμ."""
|
| 57 |
-
|
| 58 |
-
# Create a prompt template
|
| 59 |
-
prompt_template = PromptTemplate(
|
| 60 |
-
input_variables=["context", "question"],
|
| 61 |
-
template=instruction + "\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:"
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
# Create ConversationalRetrievalChain with the new retriever and prompt
|
| 65 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 66 |
llm,
|
| 67 |
-
|
| 68 |
-
return_source_documents=True
|
| 69 |
-
combine_docs_chain_kwargs={"prompt": prompt_template}
|
| 70 |
)
|
| 71 |
|
| 72 |
return qa_chain
|
|
@@ -116,69 +82,41 @@ def update_embeddings():
|
|
| 116 |
documents.extend(result)
|
| 117 |
vectorstore.add_documents(documents)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
sources.append(f"{os.path.basename(doc.metadata['source'])} (Page {doc.metadata['page']})")
|
| 132 |
-
else:
|
| 133 |
-
print(f"Warning: Document missing metadata: {doc.metadata}")
|
| 134 |
-
|
| 135 |
-
return {
|
| 136 |
-
"answer": result["answer"],
|
| 137 |
-
"sources": sources
|
| 138 |
-
}
|
| 139 |
-
|
| 140 |
-
workflow = Graph()
|
| 141 |
-
workflow.add_node("retrieve_and_generate", retrieve_and_generate)
|
| 142 |
-
workflow.set_entry_point("retrieve_and_generate")
|
| 143 |
-
|
| 144 |
-
chain = workflow.compile()
|
| 145 |
-
return chain
|
| 146 |
-
|
| 147 |
-
rag_chain = create_rag_graph()
|
| 148 |
-
|
| 149 |
-
def get_answer(query, chat_history):
|
| 150 |
-
try:
|
| 151 |
-
response = rag_chain({"question": query, "chat_history": chat_history})
|
| 152 |
-
|
| 153 |
-
if not response or "answer" not in response:
|
| 154 |
-
return {
|
| 155 |
-
"answer": "μ£μ‘ν©λλ€. λ΅λ³μ μμ±ν μ μμμ΅λλ€. μ§λ¬Έμ λ€μ ννν΄ μ£Όμκ² μ΅λκΉ?",
|
| 156 |
-
"sources": []
|
| 157 |
-
}
|
| 158 |
-
|
| 159 |
-
sources = response.get("sources", [])
|
| 160 |
-
|
| 161 |
-
return {
|
| 162 |
-
"answer": response["answer"],
|
| 163 |
-
"sources": sources
|
| 164 |
-
}
|
| 165 |
-
except Exception as e:
|
| 166 |
-
print(f"Error in get_answer: {str(e)}")
|
| 167 |
-
return {
|
| 168 |
-
"answer": "λ΅λ³ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄ μ£ΌμΈμ.",
|
| 169 |
-
"sources": []
|
| 170 |
-
}
|
| 171 |
|
| 172 |
# Example usage
|
| 173 |
if __name__ == "__main__":
|
| 174 |
update_embeddings() # Update embeddings with new documents
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
print(f"Question: {question}")
|
| 178 |
print(f"Answer: {response['answer']}")
|
| 179 |
-
print(f"Sources: {response['sources']}")
|
| 180 |
-
|
| 181 |
-
# Validate source format
|
| 182 |
-
for source in response['sources']:
|
| 183 |
-
if not (source.endswith(')') and ' (Page ' in source):
|
| 184 |
-
print(f"Warning: Unexpected source format: {source}")
|
|
|
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
import pdfplumber
|
| 10 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Load environment variables
|
| 13 |
load_dotenv()
|
|
|
|
| 28 |
# Initialize ChatOpenAI model
|
| 29 |
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0) # "gpt-4o-mini
|
| 30 |
|
| 31 |
+
# Create ConversationalRetrievalChain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 33 |
llm,
|
| 34 |
+
vectorstore.as_retriever(),
|
| 35 |
+
return_source_documents=True
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
return qa_chain
|
|
|
|
| 82 |
documents.extend(result)
|
| 83 |
vectorstore.add_documents(documents)
|
| 84 |
|
| 85 |
+
# Generate answer for a query
|
| 86 |
+
def get_answer(qa_chain, query, chat_history):
|
| 87 |
+
formatted_history = [(q, a) for q, a in zip(chat_history[::2], chat_history[1::2])]
|
| 88 |
+
|
| 89 |
+
response = qa_chain.invoke({"question": query, "chat_history": formatted_history})
|
| 90 |
+
|
| 91 |
+
answer = response["answer"]
|
| 92 |
+
|
| 93 |
+
source_docs = response.get("source_documents", [])
|
| 94 |
+
source_texts = [f"{os.path.basename(doc.metadata['source'])} (Page {doc.metadata['page']})" for doc in source_docs]
|
| 95 |
+
|
| 96 |
+
return {"answer": answer, "sources": source_texts}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
# Example usage
|
| 99 |
if __name__ == "__main__":
|
| 100 |
update_embeddings() # Update embeddings with new documents
|
| 101 |
+
qa_chain = load_retrieval_qa_chain()
|
| 102 |
+
question = """λΉμ μ RAG(Retrieval-Augmented Generation) κΈ°λ° AI μ΄μμ€ν΄νΈμ
λλ€. λ€μ μ§μΉ¨μ λ°λΌ μ¬μ©μ μ§λ¬Έμ λ΅νμΈμ:
|
| 103 |
+
|
| 104 |
+
1. κ²μ κ²°κ³Ό νμ©: μ 곡λ κ²μ κ²°κ³Όλ₯Ό λΆμνκ³ κ΄λ ¨ μ 보λ₯Ό μ¬μ©ν΄ λ΅λ³νμΈμ.
|
| 105 |
+
|
| 106 |
+
2. μ νμ± μ μ§: μ 보μ μ νμ±μ νμΈνκ³ , λΆνμ€ν κ²½μ° μ΄λ₯Ό λͺ
μνμΈμ.
|
| 107 |
+
|
| 108 |
+
3. κ°κ²°ν μλ΅: μ§λ¬Έμ μ§μ λ΅νκ³ ν΅μ¬ λ΄μ©μ μ§μ€νμΈμ.
|
| 109 |
+
|
| 110 |
+
4. μΆκ° μ 보 μ μ: κ΄λ ¨λ μΆκ° μ λ³΄κ° μλ€λ©΄ μΈκΈνμΈμ.
|
| 111 |
+
|
| 112 |
+
5. μ€λ¦¬μ± κ³ λ €: κ°κ΄μ μ΄κ³ μ€λ¦½μ μΈ νλλ₯Ό μ μ§νμΈμ.
|
| 113 |
+
|
| 114 |
+
6. νκ³ μΈμ : λ΅λ³ν μ μλ κ²½μ° μμ§ν μΈμ νμΈμ.
|
| 115 |
+
|
| 116 |
+
7. λν μ μ§: μμ°μ€λ½κ² λνλ₯Ό μ΄μ΄κ°κ³ , νμμ νμ μ§λ¬Έμ μ μνμΈμ.
|
| 117 |
+
νμ μ ννκ³ μ μ©ν μ 보λ₯Ό μ 곡νλ κ²μ λͺ©νλ‘ νμΈμ."""
|
| 118 |
+
|
| 119 |
+
response = get_answer(qa_chain, question, [])
|
| 120 |
print(f"Question: {question}")
|
| 121 |
print(f"Answer: {response['answer']}")
|
| 122 |
+
print(f"Sources: {response['sources']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|