Create build_cache.py
Browse files- build_cache.py +70 -0
build_cache.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# build_cache.py
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import qa_store
|
| 6 |
+
from loader import load_curriculum, load_glossary
|
| 7 |
+
|
| 8 |
+
# 1. Configuration
|
| 9 |
+
EMBED_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 10 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 11 |
+
DATA_DIR = os.path.join(BASE_DIR, "data")
|
| 12 |
+
CACHE_FILE = os.path.join(DATA_DIR, "cached_embeddings.pt")
|
| 13 |
+
|
| 14 |
+
def build_and_save():
|
| 15 |
+
print("⏳ Loading data...")
|
| 16 |
+
load_curriculum()
|
| 17 |
+
load_glossary()
|
| 18 |
+
|
| 19 |
+
print(f"⏳ Loading model: {EMBED_MODEL_NAME}...")
|
| 20 |
+
# Use CPU for build script to ensure compatibility, or cuda if you have it
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
embed_model = SentenceTransformer(EMBED_MODEL_NAME, device=device)
|
| 23 |
+
|
| 24 |
+
# --- 2. Build Textbook Embeddings ---
|
| 25 |
+
print(f"🧮 Computing embeddings for {len(qa_store.ENTRIES)} textbook entries...")
|
| 26 |
+
textbook_texts = []
|
| 27 |
+
for e in qa_store.ENTRIES:
|
| 28 |
+
chapter = e.get("chapter_title", "") or e.get("chapter", "") or ""
|
| 29 |
+
section = e.get("section_title", "") or e.get("section", "") or ""
|
| 30 |
+
text = e.get("text", "") or ""
|
| 31 |
+
combined = f"{chapter}\n{section}\n{text}"
|
| 32 |
+
textbook_texts.append(combined)
|
| 33 |
+
|
| 34 |
+
if textbook_texts:
|
| 35 |
+
textbook_embeddings = embed_model.encode(
|
| 36 |
+
textbook_texts,
|
| 37 |
+
convert_to_tensor=True,
|
| 38 |
+
show_progress_bar=True
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
textbook_embeddings = None
|
| 42 |
+
|
| 43 |
+
# --- 3. Build Glossary Embeddings ---
|
| 44 |
+
print(f"🧮 Computing embeddings for {len(qa_store.GLOSSARY)} glossary terms...")
|
| 45 |
+
glossary_texts = [
|
| 46 |
+
f"{item.get('term', '')} :: {item.get('definition', '')}"
|
| 47 |
+
for item in qa_store.GLOSSARY
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
if glossary_texts:
|
| 51 |
+
glossary_embeddings = embed_model.encode(
|
| 52 |
+
glossary_texts,
|
| 53 |
+
convert_to_numpy=True,
|
| 54 |
+
normalize_embeddings=True,
|
| 55 |
+
show_progress_bar=True
|
| 56 |
+
)
|
| 57 |
+
else:
|
| 58 |
+
glossary_embeddings = None
|
| 59 |
+
|
| 60 |
+
# --- 4. Save to Disk ---
|
| 61 |
+
print(f"💾 Saving to {CACHE_FILE}...")
|
| 62 |
+
torch.save({
|
| 63 |
+
"textbook": textbook_embeddings,
|
| 64 |
+
"glossary": glossary_embeddings
|
| 65 |
+
}, CACHE_FILE)
|
| 66 |
+
|
| 67 |
+
print("✅ Done! You can now upload 'data/cached_embeddings.pt' to Hugging Face.")
|
| 68 |
+
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
build_and_save()
|