Spaces:
Sleeping
Sleeping
Create test.py
Browse files
test.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from pydub import AudioSegment
|
| 5 |
+
import tempfile
|
| 6 |
+
import pytz
|
| 7 |
+
from openai import OpenAI
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
| 11 |
+
from langchain_community.vectorstores import Chroma
|
| 12 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class DocumentRAG:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
self.document_store = None
|
| 18 |
+
self.qa_chain = None
|
| 19 |
+
self.document_summary = ""
|
| 20 |
+
self.chat_history = []
|
| 21 |
+
self.last_processed_time = None
|
| 22 |
+
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable
|
| 23 |
+
self.init_time = datetime.now(pytz.UTC)
|
| 24 |
+
|
| 25 |
+
if not self.api_key:
|
| 26 |
+
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
|
| 27 |
+
|
| 28 |
+
# Persistent directory for Chroma to avoid tenant-related errors
|
| 29 |
+
self.chroma_persist_dir = "./chroma_storage"
|
| 30 |
+
os.makedirs(self.chroma_persist_dir, exist_ok=True)
|
| 31 |
+
|
| 32 |
+
def process_documents(self, uploaded_files):
|
| 33 |
+
"""Process uploaded files by saving them temporarily and extracting content."""
|
| 34 |
+
if not self.api_key:
|
| 35 |
+
return "Please set the OpenAI API key in the environment variables."
|
| 36 |
+
if not uploaded_files:
|
| 37 |
+
return "Please upload documents first."
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
documents = []
|
| 41 |
+
for uploaded_file in uploaded_files:
|
| 42 |
+
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name
|
| 43 |
+
with open(temp_file_path, "wb") as temp_file:
|
| 44 |
+
temp_file.write(uploaded_file.read())
|
| 45 |
+
|
| 46 |
+
if temp_file_path.endswith('.pdf'):
|
| 47 |
+
loader = PyPDFLoader(temp_file_path)
|
| 48 |
+
elif temp_file_path.endswith('.txt'):
|
| 49 |
+
loader = TextLoader(temp_file_path)
|
| 50 |
+
elif temp_file_path.endswith('.csv'):
|
| 51 |
+
loader = CSVLoader(temp_file_path)
|
| 52 |
+
else:
|
| 53 |
+
return f"Unsupported file type: {uploaded_file.name}"
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
documents.extend(loader.load())
|
| 57 |
+
except Exception as e:
|
| 58 |
+
return f"Error loading {uploaded_file.name}: {str(e)}"
|
| 59 |
+
|
| 60 |
+
if not documents:
|
| 61 |
+
return "No valid documents were processed. Please check your files."
|
| 62 |
+
|
| 63 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 64 |
+
chunk_size=1000,
|
| 65 |
+
chunk_overlap=200,
|
| 66 |
+
length_function=len
|
| 67 |
+
)
|
| 68 |
+
documents = text_splitter.split_documents(documents)
|
| 69 |
+
|
| 70 |
+
combined_text = " ".join([doc.page_content for doc in documents])
|
| 71 |
+
self.document_summary = self.generate_summary(combined_text)
|
| 72 |
+
|
| 73 |
+
embeddings = OpenAIEmbeddings(api_key=self.api_key)
|
| 74 |
+
self.document_store = Chroma.from_documents(
|
| 75 |
+
documents,
|
| 76 |
+
embeddings,
|
| 77 |
+
persist_directory=self.chroma_persist_dir
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
| 81 |
+
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
|
| 82 |
+
self.document_store.as_retriever(search_kwargs={'k': 6}),
|
| 83 |
+
return_source_documents=True,
|
| 84 |
+
verbose=False
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
self.last_processed_time = datetime.now(pytz.UTC)
|
| 88 |
+
return "Documents processed successfully!"
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return f"Error processing documents: {str(e)}"
|
| 91 |
+
|
| 92 |
+
def generate_summary(self, text):
|
| 93 |
+
"""Generate a summary of the provided text."""
|
| 94 |
+
if not self.api_key:
|
| 95 |
+
return "API Key not set. Please set it in the environment variables."
|
| 96 |
+
try:
|
| 97 |
+
client = OpenAI(api_key=self.api_key)
|
| 98 |
+
response = client.chat.completions.create(
|
| 99 |
+
model="gpt-4",
|
| 100 |
+
messages=[
|
| 101 |
+
{"role": "system", "content": "Summarize the document content concisely and provide 3-5 key points for discussion."},
|
| 102 |
+
{"role": "user", "content": text[:4000]}
|
| 103 |
+
],
|
| 104 |
+
temperature=0.3
|
| 105 |
+
)
|
| 106 |
+
return response.choices[0].message.content
|
| 107 |
+
except Exception as e:
|
| 108 |
+
return f"Error generating summary: {str(e)}"
|
| 109 |
+
|
| 110 |
+
def create_podcast(self):
|
| 111 |
+
"""Generate a podcast script and audio based on the document summary."""
|
| 112 |
+
if not self.document_summary:
|
| 113 |
+
return "Please process documents before generating a podcast.", None
|
| 114 |
+
|
| 115 |
+
if not self.api_key:
|
| 116 |
+
return "Please set the OpenAI API key in the environment variables.", None
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
client = OpenAI(api_key=self.api_key)
|
| 120 |
+
script_response = client.chat.completions.create(
|
| 121 |
+
model="gpt-4",
|
| 122 |
+
messages=[
|
| 123 |
+
{"role": "system", "content": "You are a professional podcast producer. Create a natural dialogue based on the provided document summary."},
|
| 124 |
+
{"role": "user", "content": f"""Based on the following document summary, create a 1-2 minute podcast script:
|
| 125 |
+
1. Clearly label the dialogue as 'Host 1:' and 'Host 2:'
|
| 126 |
+
2. Keep the content engaging and insightful.
|
| 127 |
+
3. Use conversational language suitable for a podcast.
|
| 128 |
+
4. Ensure the script has a clear opening and closing.
|
| 129 |
+
Document Summary: {self.document_summary}"""}
|
| 130 |
+
],
|
| 131 |
+
temperature=0.7
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
script = script_response.choices[0].message.content
|
| 135 |
+
if not script:
|
| 136 |
+
return "Error: Failed to generate podcast script.", None
|
| 137 |
+
|
| 138 |
+
final_audio = AudioSegment.empty()
|
| 139 |
+
is_first_speaker = True
|
| 140 |
+
|
| 141 |
+
lines = [line.strip() for line in script.split("\n") if line.strip()]
|
| 142 |
+
for line in lines:
|
| 143 |
+
if ":" not in line:
|
| 144 |
+
continue
|
| 145 |
+
|
| 146 |
+
speaker, text = line.split(":", 1)
|
| 147 |
+
if not text.strip():
|
| 148 |
+
continue
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
voice = "nova" if is_first_speaker else "onyx"
|
| 152 |
+
audio_response = client.audio.speech.create(
|
| 153 |
+
model="tts-1",
|
| 154 |
+
voice=voice,
|
| 155 |
+
input=text.strip()
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
| 159 |
+
audio_response.stream_to_file(temp_audio_file.name)
|
| 160 |
+
|
| 161 |
+
segment = AudioSegment.from_file(temp_audio_file.name)
|
| 162 |
+
final_audio += segment
|
| 163 |
+
final_audio += AudioSegment.silent(duration=300)
|
| 164 |
+
|
| 165 |
+
is_first_speaker = not is_first_speaker
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(f"Error generating audio for line: {text}")
|
| 168 |
+
print(f"Details: {e}")
|
| 169 |
+
continue
|
| 170 |
+
|
| 171 |
+
if len(final_audio) == 0:
|
| 172 |
+
return "Error: No audio could be generated.", None
|
| 173 |
+
|
| 174 |
+
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
| 175 |
+
final_audio.export(output_file, format="mp3")
|
| 176 |
+
return script, output_file
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
return f"Error generating podcast: {str(e)}", None
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# Initialize RAG system in session state
|
| 183 |
+
if "rag_system" not in st.session_state:
|
| 184 |
+
st.session_state.rag_system = DocumentRAG()
|
| 185 |
+
|
| 186 |
+
# Sidebar
|
| 187 |
+
with st.sidebar:
|
| 188 |
+
st.title("About")
|
| 189 |
+
st.markdown(
|
| 190 |
+
"""
|
| 191 |
+
This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
|
| 192 |
+
It allows users to upload documents, generate summaries, ask questions, and create podcasts.
|
| 193 |
+
"""
|
| 194 |
+
)
|
| 195 |
+
st.markdown("### Steps:")
|
| 196 |
+
st.markdown("1. Upload documents.")
|
| 197 |
+
st.markdown("2. Generate summaries.")
|
| 198 |
+
st.markdown("3. Ask questions.")
|
| 199 |
+
st.markdown("4. Create podcasts.")
|
| 200 |
+
|
| 201 |
+
# Main App
|
| 202 |
+
st.title("Document Analyzer and Podcast Generator")
|
| 203 |
+
|
| 204 |
+
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
|
| 205 |
+
|
| 206 |
+
if st.button("Process Documents"):
|
| 207 |
+
if uploaded_files:
|
| 208 |
+
result = st.session_state.rag_system.process_documents(uploaded_files)
|
| 209 |
+
st.success(result) if "successfully" in result else st.error(result)
|
| 210 |
+
else:
|
| 211 |
+
st.warning("No files uploaded.")
|
| 212 |
+
|
| 213 |
+
if st.session_state.rag_system.document_summary:
|
| 214 |
+
st.subheader("Step 2: Generate Podcast")
|
| 215 |
+
if st.button("Generate Podcast"):
|
| 216 |
+
script, audio_path = st.session_state.rag_system.create_podcast()
|
| 217 |
+
if audio_path:
|
| 218 |
+
st.text_area("Generated Podcast Script", script, height=200)
|
| 219 |
+
st.audio(audio_path, format="audio/mp3")
|
| 220 |
+
st.success("Podcast generated successfully!")
|