|
|
import streamlit as st |
|
|
import os |
|
|
from openai import OpenAI |
|
|
import tempfile |
|
|
from langchain.chains import ConversationalRetrievalChain |
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings |
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
from langchain_community.vectorstores import Chroma |
|
|
from langchain_community.document_loaders import ( |
|
|
PyPDFLoader, |
|
|
TextLoader, |
|
|
CSVLoader |
|
|
) |
|
|
from datetime import datetime |
|
|
import pytz |
|
|
|
|
|
from langchain.chains import ConversationalRetrievalChain |
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings |
|
|
from langchain_community.vectorstores import Chroma |
|
|
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader |
|
|
import os |
|
|
import tempfile |
|
|
from datetime import datetime |
|
|
import pytz |
|
|
|
|
|
|
|
|
class DocumentRAG: |
|
|
def __init__(self): |
|
|
self.document_store = None |
|
|
self.qa_chain = None |
|
|
self.document_summary = "" |
|
|
self.chat_history = [] |
|
|
self.last_processed_time = None |
|
|
self.api_key = os.getenv("OPENAI_API_KEY") |
|
|
self.init_time = datetime.now(pytz.UTC) |
|
|
|
|
|
if not self.api_key: |
|
|
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.") |
|
|
|
|
|
|
|
|
self.chroma_persist_dir = "./chroma_storage" |
|
|
os.makedirs(self.chroma_persist_dir, exist_ok=True) |
|
|
|
|
|
def process_documents(self, uploaded_files): |
|
|
"""Process uploaded files by saving them temporarily and extracting content.""" |
|
|
if not self.api_key: |
|
|
return "Please set the OpenAI API key in the environment variables." |
|
|
if not uploaded_files: |
|
|
return "Please upload documents first." |
|
|
|
|
|
try: |
|
|
documents = [] |
|
|
for uploaded_file in uploaded_files: |
|
|
|
|
|
temp_file_path = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]).name |
|
|
with open(temp_file_path, "wb") as temp_file: |
|
|
temp_file.write(uploaded_file.read()) |
|
|
|
|
|
|
|
|
if temp_file_path.endswith('.pdf'): |
|
|
loader = PyPDFLoader(temp_file_path) |
|
|
elif temp_file_path.endswith('.txt'): |
|
|
loader = TextLoader(temp_file_path) |
|
|
elif temp_file_path.endswith('.csv'): |
|
|
loader = CSVLoader(temp_file_path) |
|
|
else: |
|
|
return f"Unsupported file type: {uploaded_file.name}" |
|
|
|
|
|
|
|
|
try: |
|
|
documents.extend(loader.load()) |
|
|
except Exception as e: |
|
|
return f"Error loading {uploaded_file.name}: {str(e)}" |
|
|
|
|
|
if not documents: |
|
|
return "No valid documents were processed. Please check your files." |
|
|
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
|
chunk_size=1000, |
|
|
chunk_overlap=200, |
|
|
length_function=len |
|
|
) |
|
|
documents = text_splitter.split_documents(documents) |
|
|
|
|
|
|
|
|
combined_text = " ".join([doc.page_content for doc in documents]) |
|
|
self.document_summary = self.generate_summary(combined_text) |
|
|
|
|
|
|
|
|
embeddings = OpenAIEmbeddings(api_key=self.api_key) |
|
|
self.document_store = Chroma.from_documents( |
|
|
documents, |
|
|
embeddings, |
|
|
persist_directory=self.chroma_persist_dir |
|
|
) |
|
|
|
|
|
self.qa_chain = ConversationalRetrievalChain.from_llm( |
|
|
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key), |
|
|
self.document_store.as_retriever(search_kwargs={'k': 6}), |
|
|
return_source_documents=True, |
|
|
verbose=False |
|
|
) |
|
|
|
|
|
self.last_processed_time = datetime.now(pytz.UTC) |
|
|
return "Documents processed successfully!" |
|
|
except Exception as e: |
|
|
return f"Error processing documents: {str(e)}" |
|
|
|
|
|
def generate_summary(self, text): |
|
|
"""Generate a summary of the provided text.""" |
|
|
if not self.api_key: |
|
|
return "API Key not set. Please set it in the environment variables." |
|
|
try: |
|
|
client = OpenAI(api_key=self.api_key) |
|
|
response = client.chat.completions.create( |
|
|
model="gpt-4", |
|
|
messages=[ |
|
|
{"role": "system", "content": "Summarize the document content concisely and provide 3-5 key points for discussion."}, |
|
|
{"role": "user", "content": text[:4000]} |
|
|
], |
|
|
temperature=0.3 |
|
|
) |
|
|
return response.choices[0].message.content |
|
|
except Exception as e: |
|
|
return f"Error generating summary: {str(e)}" |
|
|
|
|
|
def handle_query(self, question, history): |
|
|
"""Handle user queries.""" |
|
|
if not self.qa_chain: |
|
|
return history + [("System", "Please process the documents first.")] |
|
|
try: |
|
|
preface = """ |
|
|
Instruction: Respond in English. Be professional and concise, keeping the response under 300 words. |
|
|
If you cannot provide an answer, say: "I am not sure about this question. Please try asking something else." |
|
|
""" |
|
|
query = f"{preface}\nQuery: {question}" |
|
|
|
|
|
result = self.qa_chain({ |
|
|
"question": query, |
|
|
"chat_history": [(q, a) for q, a in history] |
|
|
}) |
|
|
|
|
|
if "answer" not in result: |
|
|
return history + [("System", "Sorry, an error occurred.")] |
|
|
|
|
|
history.append((question, result["answer"])) |
|
|
return history |
|
|
except Exception as e: |
|
|
return history + [("System", f"Error: {str(e)}")] |
|
|
|
|
|
|
|
|
if "rag_system" not in st.session_state: |
|
|
st.session_state.rag_system = DocumentRAG() |
|
|
|
|
|
|
|
|
st.title("Document Analyzer and Podcast Generator") |
|
|
|
|
|
|
|
|
if "OPENAI_API_KEY" not in os.environ or not os.getenv("OPENAI_API_KEY"): |
|
|
st.error("The 'OPENAI_API_KEY' environment variable is not set. Please configure it in your hosting environment.") |
|
|
|
|
|
|
|
|
st.subheader("Step 1: Upload Documents") |
|
|
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True) |
|
|
|
|
|
if st.button("Process Documents"): |
|
|
if uploaded_files: |
|
|
|
|
|
result = st.session_state.rag_system.process_documents(uploaded_files) |
|
|
if "successfully" in result: |
|
|
st.success(result) |
|
|
else: |
|
|
st.error(result) |
|
|
else: |
|
|
st.warning("No files uploaded.") |
|
|
|
|
|
|
|
|
st.subheader("Step 2: Ask Questions") |
|
|
if st.session_state.rag_system.qa_chain: |
|
|
history = [] |
|
|
user_question = st.text_input("Ask a question:") |
|
|
if st.button("Submit Question"): |
|
|
|
|
|
history = st.session_state.rag_system.handle_query(user_question, history) |
|
|
for question, answer in history: |
|
|
st.chat_message("user").write(question) |
|
|
st.chat_message("assistant").write(answer) |
|
|
else: |
|
|
st.info("Please process documents before asking questions.") |