Spaces:
Runtime error
Runtime error
Peter Shi
commited on
Commit
·
c12dff8
1
Parent(s):
42e2df6
Add example with Git LFS for MP4
Browse files- .gitattributes +1 -0
- app.py +114 -20
- examples/office.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -4,19 +4,51 @@ import torch
|
|
| 4 |
import torchaudio
|
| 5 |
import tempfile
|
| 6 |
import warnings
|
|
|
|
| 7 |
warnings.filterwarnings("ignore")
|
| 8 |
|
| 9 |
from sam_audio import SAMAudio, SAMAudioProcessor
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def save_audio(tensor, sample_rate):
|
| 22 |
"""Helper to save torch tensor to a temp file for Gradio output."""
|
|
@@ -25,9 +57,11 @@ def save_audio(tensor, sample_rate):
|
|
| 25 |
return tmp.name
|
| 26 |
|
| 27 |
@spaces.GPU(duration=300)
|
| 28 |
-
def separate_audio(
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
if not file_path:
|
| 33 |
return None, None, "❌ Please upload an audio or video file."
|
|
@@ -48,14 +82,27 @@ def separate_audio(audio_path, video_path, text_prompt):
|
|
| 48 |
target_path = save_audio(result.target[0].unsqueeze(0).cpu(), sample_rate)
|
| 49 |
residual_path = save_audio(result.residual[0].unsqueeze(0).cpu(), sample_rate)
|
| 50 |
|
| 51 |
-
return target_path, residual_path, f"✅ Successfully isolated '{text_prompt}'"
|
| 52 |
|
| 53 |
except Exception as e:
|
| 54 |
import traceback
|
| 55 |
traceback.print_exc()
|
| 56 |
return None, None, f"❌ Error: {str(e)}"
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
with gr.Blocks(title="SAM-Audio Demo") as demo:
|
| 60 |
gr.Markdown(
|
| 61 |
"""
|
|
@@ -63,15 +110,23 @@ with gr.Blocks(title="SAM-Audio Demo") as demo:
|
|
| 63 |
|
| 64 |
Isolate specific sounds from an audio or video file using natural language prompts.
|
| 65 |
|
| 66 |
-
**
|
| 67 |
"""
|
| 68 |
)
|
| 69 |
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
-
gr.
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
text_prompt = gr.Textbox(
|
| 77 |
label="Text Prompt",
|
|
@@ -88,14 +143,53 @@ with gr.Blocks(title="SAM-Audio Demo") as demo:
|
|
| 88 |
output_residual = gr.Audio(label="Background (Residual)")
|
| 89 |
|
| 90 |
gr.Markdown("---")
|
| 91 |
-
gr.Markdown("###
|
| 92 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
| 94 |
run_btn.click(
|
| 95 |
-
fn=
|
| 96 |
-
inputs=[
|
| 97 |
outputs=[output_target, output_residual, status_output]
|
| 98 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
if __name__ == "__main__":
|
| 101 |
demo.launch()
|
|
|
|
| 4 |
import torchaudio
|
| 5 |
import tempfile
|
| 6 |
import warnings
|
| 7 |
+
import os
|
| 8 |
warnings.filterwarnings("ignore")
|
| 9 |
|
| 10 |
from sam_audio import SAMAudio, SAMAudioProcessor
|
| 11 |
|
| 12 |
+
# Available models
|
| 13 |
+
MODELS = {
|
| 14 |
+
"sam-audio-small": "facebook/sam-audio-small",
|
| 15 |
+
"sam-audio-base": "facebook/sam-audio-base",
|
| 16 |
+
"sam-audio-large": "facebook/sam-audio-large",
|
| 17 |
+
"sam-audio-small-tv (Visual)": "facebook/sam-audio-small-tv",
|
| 18 |
+
"sam-audio-base-tv (Visual)": "facebook/sam-audio-base-tv",
|
| 19 |
+
"sam-audio-large-tv (Visual)": "facebook/sam-audio-large-tv",
|
| 20 |
+
}
|
| 21 |
|
| 22 |
+
# Default model
|
| 23 |
+
DEFAULT_MODEL = "sam-audio-small"
|
| 24 |
+
|
| 25 |
+
# Example files
|
| 26 |
+
EXAMPLES_DIR = "examples"
|
| 27 |
+
EXAMPLE_FILE = os.path.join(EXAMPLES_DIR, "office.mp4")
|
| 28 |
+
|
| 29 |
+
# Global model cache
|
| 30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
+
current_model_name = None
|
| 32 |
+
model = None
|
| 33 |
+
processor = None
|
| 34 |
+
|
| 35 |
+
def load_model(model_name):
|
| 36 |
+
"""Load or switch model."""
|
| 37 |
+
global current_model_name, model, processor
|
| 38 |
+
|
| 39 |
+
model_id = MODELS.get(model_name, MODELS[DEFAULT_MODEL])
|
| 40 |
+
|
| 41 |
+
if current_model_name == model_name and model is not None:
|
| 42 |
+
return
|
| 43 |
+
|
| 44 |
+
print(f"Loading {model_id}...")
|
| 45 |
+
model = SAMAudio.from_pretrained(model_id).to(device).eval()
|
| 46 |
+
processor = SAMAudioProcessor.from_pretrained(model_id)
|
| 47 |
+
current_model_name = model_name
|
| 48 |
+
print(f"Model {model_id} loaded on {device}.")
|
| 49 |
+
|
| 50 |
+
# Load default model at startup
|
| 51 |
+
load_model(DEFAULT_MODEL)
|
| 52 |
|
| 53 |
def save_audio(tensor, sample_rate):
|
| 54 |
"""Helper to save torch tensor to a temp file for Gradio output."""
|
|
|
|
| 57 |
return tmp.name
|
| 58 |
|
| 59 |
@spaces.GPU(duration=300)
|
| 60 |
+
def separate_audio(model_name, file_path, text_prompt):
|
| 61 |
+
global model, processor
|
| 62 |
+
|
| 63 |
+
# Load selected model if different
|
| 64 |
+
load_model(model_name)
|
| 65 |
|
| 66 |
if not file_path:
|
| 67 |
return None, None, "❌ Please upload an audio or video file."
|
|
|
|
| 82 |
target_path = save_audio(result.target[0].unsqueeze(0).cpu(), sample_rate)
|
| 83 |
residual_path = save_audio(result.residual[0].unsqueeze(0).cpu(), sample_rate)
|
| 84 |
|
| 85 |
+
return target_path, residual_path, f"✅ Successfully isolated '{text_prompt}' using {model_name}"
|
| 86 |
|
| 87 |
except Exception as e:
|
| 88 |
import traceback
|
| 89 |
traceback.print_exc()
|
| 90 |
return None, None, f"❌ Error: {str(e)}"
|
| 91 |
|
| 92 |
+
def process_file(model_name, file, prompt):
|
| 93 |
+
if file is None:
|
| 94 |
+
return None, None, "❌ Please upload a file."
|
| 95 |
+
# Handle both file object and file path
|
| 96 |
+
file_path = file.name if hasattr(file, 'name') else file
|
| 97 |
+
return separate_audio(model_name, file_path, prompt)
|
| 98 |
+
|
| 99 |
+
def process_example(model_name, file_path, prompt):
|
| 100 |
+
"""Process directly from example - file_path is already a string."""
|
| 101 |
+
if not file_path or not os.path.exists(file_path):
|
| 102 |
+
return None, None, "❌ Example file not found."
|
| 103 |
+
return separate_audio(model_name, file_path, prompt)
|
| 104 |
+
|
| 105 |
+
# Build Gradio Interface
|
| 106 |
with gr.Blocks(title="SAM-Audio Demo") as demo:
|
| 107 |
gr.Markdown(
|
| 108 |
"""
|
|
|
|
| 110 |
|
| 111 |
Isolate specific sounds from an audio or video file using natural language prompts.
|
| 112 |
|
| 113 |
+
**Models:** [facebook/sam-audio](https://huggingface.co/collections/facebook/sam-audio-67608edbf75ad66bf5e8cb3a)
|
| 114 |
"""
|
| 115 |
)
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column():
|
| 119 |
+
model_selector = gr.Dropdown(
|
| 120 |
+
choices=list(MODELS.keys()),
|
| 121 |
+
value=DEFAULT_MODEL,
|
| 122 |
+
label="Model",
|
| 123 |
+
info="Larger = better quality but slower. TV variants for visual prompting."
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
input_file = gr.File(
|
| 127 |
+
label="Upload Audio or Video",
|
| 128 |
+
file_types=[".mp3", ".wav", ".flac", ".ogg", ".m4a", ".mp4", ".mkv", ".avi", ".mov", ".webm"],
|
| 129 |
+
)
|
| 130 |
|
| 131 |
text_prompt = gr.Textbox(
|
| 132 |
label="Text Prompt",
|
|
|
|
| 143 |
output_residual = gr.Audio(label="Background (Residual)")
|
| 144 |
|
| 145 |
gr.Markdown("---")
|
| 146 |
+
gr.Markdown("### 🎬 Try Demo Examples")
|
| 147 |
+
gr.Markdown("Click an example below to auto-fill and process:")
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
if os.path.exists(EXAMPLE_FILE):
|
| 151 |
+
example_btn1 = gr.Button("🎤 Man Speaking")
|
| 152 |
+
example_btn2 = gr.Button("🎤 Woman Speaking")
|
| 153 |
+
example_btn3 = gr.Button("🎵 Background Music")
|
| 154 |
+
|
| 155 |
+
gr.Markdown("---")
|
| 156 |
+
gr.Markdown("**Supported formats:** MP3, WAV, FLAC, OGG, M4A, MP4, MKV, AVI, MOV, WebM")
|
| 157 |
|
| 158 |
+
# Main run button
|
| 159 |
run_btn.click(
|
| 160 |
+
fn=process_file,
|
| 161 |
+
inputs=[model_selector, input_file, text_prompt],
|
| 162 |
outputs=[output_target, output_residual, status_output]
|
| 163 |
)
|
| 164 |
+
|
| 165 |
+
# Example buttons - auto-fill and process
|
| 166 |
+
if os.path.exists(EXAMPLE_FILE):
|
| 167 |
+
example_btn1.click(
|
| 168 |
+
fn=lambda: (EXAMPLE_FILE, "A man speaking"),
|
| 169 |
+
outputs=[input_file, text_prompt]
|
| 170 |
+
).then(
|
| 171 |
+
fn=lambda m: process_example(m, EXAMPLE_FILE, "A man speaking"),
|
| 172 |
+
inputs=[model_selector],
|
| 173 |
+
outputs=[output_target, output_residual, status_output]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
example_btn2.click(
|
| 177 |
+
fn=lambda: (EXAMPLE_FILE, "A woman speaking"),
|
| 178 |
+
outputs=[input_file, text_prompt]
|
| 179 |
+
).then(
|
| 180 |
+
fn=lambda m: process_example(m, EXAMPLE_FILE, "A woman speaking"),
|
| 181 |
+
inputs=[model_selector],
|
| 182 |
+
outputs=[output_target, output_residual, status_output]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
example_btn3.click(
|
| 186 |
+
fn=lambda: (EXAMPLE_FILE, "Background music"),
|
| 187 |
+
outputs=[input_file, text_prompt]
|
| 188 |
+
).then(
|
| 189 |
+
fn=lambda m: process_example(m, EXAMPLE_FILE, "Background music"),
|
| 190 |
+
inputs=[model_selector],
|
| 191 |
+
outputs=[output_target, output_residual, status_output]
|
| 192 |
+
)
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|
| 195 |
demo.launch()
|
examples/office.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0f583ff34c5fd9d1a83d640e7c0131ad339755bd69e54f104723b707f213c21
|
| 3 |
+
size 4551702
|