Spaces:
Runtime error
Runtime error
Create transforms.py
Browse files- transforms.py +443 -0
transforms.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torchvision
|
| 2 |
+
import random
|
| 3 |
+
from PIL import Image, ImageOps
|
| 4 |
+
import numpy as np
|
| 5 |
+
import numbers
|
| 6 |
+
import math
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class GroupRandomCrop(object):
|
| 11 |
+
def __init__(self, size):
|
| 12 |
+
if isinstance(size, numbers.Number):
|
| 13 |
+
self.size = (int(size), int(size))
|
| 14 |
+
else:
|
| 15 |
+
self.size = size
|
| 16 |
+
|
| 17 |
+
def __call__(self, img_group):
|
| 18 |
+
|
| 19 |
+
w, h = img_group[0].size
|
| 20 |
+
th, tw = self.size
|
| 21 |
+
|
| 22 |
+
out_images = list()
|
| 23 |
+
|
| 24 |
+
x1 = random.randint(0, w - tw)
|
| 25 |
+
y1 = random.randint(0, h - th)
|
| 26 |
+
|
| 27 |
+
for img in img_group:
|
| 28 |
+
assert(img.size[0] == w and img.size[1] == h)
|
| 29 |
+
if w == tw and h == th:
|
| 30 |
+
out_images.append(img)
|
| 31 |
+
else:
|
| 32 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
| 33 |
+
|
| 34 |
+
return out_images
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class MultiGroupRandomCrop(object):
|
| 38 |
+
def __init__(self, size, groups=1):
|
| 39 |
+
if isinstance(size, numbers.Number):
|
| 40 |
+
self.size = (int(size), int(size))
|
| 41 |
+
else:
|
| 42 |
+
self.size = size
|
| 43 |
+
self.groups = groups
|
| 44 |
+
|
| 45 |
+
def __call__(self, img_group):
|
| 46 |
+
|
| 47 |
+
w, h = img_group[0].size
|
| 48 |
+
th, tw = self.size
|
| 49 |
+
|
| 50 |
+
out_images = list()
|
| 51 |
+
|
| 52 |
+
for i in range(self.groups):
|
| 53 |
+
x1 = random.randint(0, w - tw)
|
| 54 |
+
y1 = random.randint(0, h - th)
|
| 55 |
+
|
| 56 |
+
for img in img_group:
|
| 57 |
+
assert(img.size[0] == w and img.size[1] == h)
|
| 58 |
+
if w == tw and h == th:
|
| 59 |
+
out_images.append(img)
|
| 60 |
+
else:
|
| 61 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
| 62 |
+
|
| 63 |
+
return out_images
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class GroupCenterCrop(object):
|
| 67 |
+
def __init__(self, size):
|
| 68 |
+
self.worker = torchvision.transforms.CenterCrop(size)
|
| 69 |
+
|
| 70 |
+
def __call__(self, img_group):
|
| 71 |
+
return [self.worker(img) for img in img_group]
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class GroupRandomHorizontalFlip(object):
|
| 75 |
+
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
def __init__(self, is_flow=False):
|
| 79 |
+
self.is_flow = is_flow
|
| 80 |
+
|
| 81 |
+
def __call__(self, img_group, is_flow=False):
|
| 82 |
+
v = random.random()
|
| 83 |
+
if v < 0.5:
|
| 84 |
+
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
|
| 85 |
+
if self.is_flow:
|
| 86 |
+
for i in range(0, len(ret), 2):
|
| 87 |
+
# invert flow pixel values when flipping
|
| 88 |
+
ret[i] = ImageOps.invert(ret[i])
|
| 89 |
+
return ret
|
| 90 |
+
else:
|
| 91 |
+
return img_group
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class GroupNormalize(object):
|
| 95 |
+
def __init__(self, mean, std):
|
| 96 |
+
self.mean = mean
|
| 97 |
+
self.std = std
|
| 98 |
+
|
| 99 |
+
def __call__(self, tensor):
|
| 100 |
+
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
|
| 101 |
+
rep_std = self.std * (tensor.size()[0] // len(self.std))
|
| 102 |
+
|
| 103 |
+
# TODO: make efficient
|
| 104 |
+
for t, m, s in zip(tensor, rep_mean, rep_std):
|
| 105 |
+
t.sub_(m).div_(s)
|
| 106 |
+
|
| 107 |
+
return tensor
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class GroupScale(object):
|
| 111 |
+
""" Rescales the input PIL.Image to the given 'size'.
|
| 112 |
+
'size' will be the size of the smaller edge.
|
| 113 |
+
For example, if height > width, then image will be
|
| 114 |
+
rescaled to (size * height / width, size)
|
| 115 |
+
size: size of the smaller edge
|
| 116 |
+
interpolation: Default: PIL.Image.BILINEAR
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
| 120 |
+
self.worker = torchvision.transforms.Resize(size, interpolation)
|
| 121 |
+
|
| 122 |
+
def __call__(self, img_group):
|
| 123 |
+
return [self.worker(img) for img in img_group]
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class GroupOverSample(object):
|
| 127 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
| 128 |
+
self.crop_size = crop_size if not isinstance(
|
| 129 |
+
crop_size, int) else (crop_size, crop_size)
|
| 130 |
+
|
| 131 |
+
if scale_size is not None:
|
| 132 |
+
self.scale_worker = GroupScale(scale_size)
|
| 133 |
+
else:
|
| 134 |
+
self.scale_worker = None
|
| 135 |
+
self.flip = flip
|
| 136 |
+
|
| 137 |
+
def __call__(self, img_group):
|
| 138 |
+
|
| 139 |
+
if self.scale_worker is not None:
|
| 140 |
+
img_group = self.scale_worker(img_group)
|
| 141 |
+
|
| 142 |
+
image_w, image_h = img_group[0].size
|
| 143 |
+
crop_w, crop_h = self.crop_size
|
| 144 |
+
|
| 145 |
+
offsets = GroupMultiScaleCrop.fill_fix_offset(
|
| 146 |
+
False, image_w, image_h, crop_w, crop_h)
|
| 147 |
+
oversample_group = list()
|
| 148 |
+
for o_w, o_h in offsets:
|
| 149 |
+
normal_group = list()
|
| 150 |
+
flip_group = list()
|
| 151 |
+
for i, img in enumerate(img_group):
|
| 152 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
| 153 |
+
normal_group.append(crop)
|
| 154 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
| 155 |
+
|
| 156 |
+
if img.mode == 'L' and i % 2 == 0:
|
| 157 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
| 158 |
+
else:
|
| 159 |
+
flip_group.append(flip_crop)
|
| 160 |
+
|
| 161 |
+
oversample_group.extend(normal_group)
|
| 162 |
+
if self.flip:
|
| 163 |
+
oversample_group.extend(flip_group)
|
| 164 |
+
return oversample_group
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class GroupFullResSample(object):
|
| 168 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
| 169 |
+
self.crop_size = crop_size if not isinstance(
|
| 170 |
+
crop_size, int) else (crop_size, crop_size)
|
| 171 |
+
|
| 172 |
+
if scale_size is not None:
|
| 173 |
+
self.scale_worker = GroupScale(scale_size)
|
| 174 |
+
else:
|
| 175 |
+
self.scale_worker = None
|
| 176 |
+
self.flip = flip
|
| 177 |
+
|
| 178 |
+
def __call__(self, img_group):
|
| 179 |
+
|
| 180 |
+
if self.scale_worker is not None:
|
| 181 |
+
img_group = self.scale_worker(img_group)
|
| 182 |
+
|
| 183 |
+
image_w, image_h = img_group[0].size
|
| 184 |
+
crop_w, crop_h = self.crop_size
|
| 185 |
+
|
| 186 |
+
w_step = (image_w - crop_w) // 4
|
| 187 |
+
h_step = (image_h - crop_h) // 4
|
| 188 |
+
|
| 189 |
+
offsets = list()
|
| 190 |
+
offsets.append((0 * w_step, 2 * h_step)) # left
|
| 191 |
+
offsets.append((4 * w_step, 2 * h_step)) # right
|
| 192 |
+
offsets.append((2 * w_step, 2 * h_step)) # center
|
| 193 |
+
|
| 194 |
+
oversample_group = list()
|
| 195 |
+
for o_w, o_h in offsets:
|
| 196 |
+
normal_group = list()
|
| 197 |
+
flip_group = list()
|
| 198 |
+
for i, img in enumerate(img_group):
|
| 199 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
| 200 |
+
normal_group.append(crop)
|
| 201 |
+
if self.flip:
|
| 202 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
| 203 |
+
|
| 204 |
+
if img.mode == 'L' and i % 2 == 0:
|
| 205 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
| 206 |
+
else:
|
| 207 |
+
flip_group.append(flip_crop)
|
| 208 |
+
|
| 209 |
+
oversample_group.extend(normal_group)
|
| 210 |
+
oversample_group.extend(flip_group)
|
| 211 |
+
return oversample_group
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class GroupMultiScaleCrop(object):
|
| 215 |
+
|
| 216 |
+
def __init__(self, input_size, scales=None, max_distort=1,
|
| 217 |
+
fix_crop=True, more_fix_crop=True):
|
| 218 |
+
self.scales = scales if scales is not None else [1, .875, .75, .66]
|
| 219 |
+
self.max_distort = max_distort
|
| 220 |
+
self.fix_crop = fix_crop
|
| 221 |
+
self.more_fix_crop = more_fix_crop
|
| 222 |
+
self.input_size = input_size if not isinstance(input_size, int) else [
|
| 223 |
+
input_size, input_size]
|
| 224 |
+
self.interpolation = Image.BILINEAR
|
| 225 |
+
|
| 226 |
+
def __call__(self, img_group):
|
| 227 |
+
|
| 228 |
+
im_size = img_group[0].size
|
| 229 |
+
|
| 230 |
+
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
|
| 231 |
+
crop_img_group = [
|
| 232 |
+
img.crop(
|
| 233 |
+
(offset_w,
|
| 234 |
+
offset_h,
|
| 235 |
+
offset_w +
|
| 236 |
+
crop_w,
|
| 237 |
+
offset_h +
|
| 238 |
+
crop_h)) for img in img_group]
|
| 239 |
+
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
|
| 240 |
+
for img in crop_img_group]
|
| 241 |
+
return ret_img_group
|
| 242 |
+
|
| 243 |
+
def _sample_crop_size(self, im_size):
|
| 244 |
+
image_w, image_h = im_size[0], im_size[1]
|
| 245 |
+
|
| 246 |
+
# find a crop size
|
| 247 |
+
base_size = min(image_w, image_h)
|
| 248 |
+
crop_sizes = [int(base_size * x) for x in self.scales]
|
| 249 |
+
crop_h = [
|
| 250 |
+
self.input_size[1] if abs(
|
| 251 |
+
x - self.input_size[1]) < 3 else x for x in crop_sizes]
|
| 252 |
+
crop_w = [
|
| 253 |
+
self.input_size[0] if abs(
|
| 254 |
+
x - self.input_size[0]) < 3 else x for x in crop_sizes]
|
| 255 |
+
|
| 256 |
+
pairs = []
|
| 257 |
+
for i, h in enumerate(crop_h):
|
| 258 |
+
for j, w in enumerate(crop_w):
|
| 259 |
+
if abs(i - j) <= self.max_distort:
|
| 260 |
+
pairs.append((w, h))
|
| 261 |
+
|
| 262 |
+
crop_pair = random.choice(pairs)
|
| 263 |
+
if not self.fix_crop:
|
| 264 |
+
w_offset = random.randint(0, image_w - crop_pair[0])
|
| 265 |
+
h_offset = random.randint(0, image_h - crop_pair[1])
|
| 266 |
+
else:
|
| 267 |
+
w_offset, h_offset = self._sample_fix_offset(
|
| 268 |
+
image_w, image_h, crop_pair[0], crop_pair[1])
|
| 269 |
+
|
| 270 |
+
return crop_pair[0], crop_pair[1], w_offset, h_offset
|
| 271 |
+
|
| 272 |
+
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
|
| 273 |
+
offsets = self.fill_fix_offset(
|
| 274 |
+
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
|
| 275 |
+
return random.choice(offsets)
|
| 276 |
+
|
| 277 |
+
@staticmethod
|
| 278 |
+
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
|
| 279 |
+
w_step = (image_w - crop_w) // 4
|
| 280 |
+
h_step = (image_h - crop_h) // 4
|
| 281 |
+
|
| 282 |
+
ret = list()
|
| 283 |
+
ret.append((0, 0)) # upper left
|
| 284 |
+
ret.append((4 * w_step, 0)) # upper right
|
| 285 |
+
ret.append((0, 4 * h_step)) # lower left
|
| 286 |
+
ret.append((4 * w_step, 4 * h_step)) # lower right
|
| 287 |
+
ret.append((2 * w_step, 2 * h_step)) # center
|
| 288 |
+
|
| 289 |
+
if more_fix_crop:
|
| 290 |
+
ret.append((0, 2 * h_step)) # center left
|
| 291 |
+
ret.append((4 * w_step, 2 * h_step)) # center right
|
| 292 |
+
ret.append((2 * w_step, 4 * h_step)) # lower center
|
| 293 |
+
ret.append((2 * w_step, 0 * h_step)) # upper center
|
| 294 |
+
|
| 295 |
+
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
|
| 296 |
+
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
|
| 297 |
+
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
|
| 298 |
+
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
|
| 299 |
+
|
| 300 |
+
return ret
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class GroupRandomSizedCrop(object):
|
| 304 |
+
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
|
| 305 |
+
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
|
| 306 |
+
This is popularly used to train the Inception networks
|
| 307 |
+
size: size of the smaller edge
|
| 308 |
+
interpolation: Default: PIL.Image.BILINEAR
|
| 309 |
+
"""
|
| 310 |
+
|
| 311 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
| 312 |
+
self.size = size
|
| 313 |
+
self.interpolation = interpolation
|
| 314 |
+
|
| 315 |
+
def __call__(self, img_group):
|
| 316 |
+
for attempt in range(10):
|
| 317 |
+
area = img_group[0].size[0] * img_group[0].size[1]
|
| 318 |
+
target_area = random.uniform(0.08, 1.0) * area
|
| 319 |
+
aspect_ratio = random.uniform(3. / 4, 4. / 3)
|
| 320 |
+
|
| 321 |
+
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
| 322 |
+
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
| 323 |
+
|
| 324 |
+
if random.random() < 0.5:
|
| 325 |
+
w, h = h, w
|
| 326 |
+
|
| 327 |
+
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
|
| 328 |
+
x1 = random.randint(0, img_group[0].size[0] - w)
|
| 329 |
+
y1 = random.randint(0, img_group[0].size[1] - h)
|
| 330 |
+
found = True
|
| 331 |
+
break
|
| 332 |
+
else:
|
| 333 |
+
found = False
|
| 334 |
+
x1 = 0
|
| 335 |
+
y1 = 0
|
| 336 |
+
|
| 337 |
+
if found:
|
| 338 |
+
out_group = list()
|
| 339 |
+
for img in img_group:
|
| 340 |
+
img = img.crop((x1, y1, x1 + w, y1 + h))
|
| 341 |
+
assert(img.size == (w, h))
|
| 342 |
+
out_group.append(
|
| 343 |
+
img.resize(
|
| 344 |
+
(self.size, self.size), self.interpolation))
|
| 345 |
+
return out_group
|
| 346 |
+
else:
|
| 347 |
+
# Fallback
|
| 348 |
+
scale = GroupScale(self.size, interpolation=self.interpolation)
|
| 349 |
+
crop = GroupRandomCrop(self.size)
|
| 350 |
+
return crop(scale(img_group))
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class ConvertDataFormat(object):
|
| 354 |
+
def __init__(self, model_type):
|
| 355 |
+
self.model_type = model_type
|
| 356 |
+
|
| 357 |
+
def __call__(self, images):
|
| 358 |
+
if self.model_type == '2D':
|
| 359 |
+
return images
|
| 360 |
+
tc, h, w = images.size()
|
| 361 |
+
t = tc // 3
|
| 362 |
+
images = images.view(t, 3, h, w)
|
| 363 |
+
images = images.permute(1, 0, 2, 3)
|
| 364 |
+
return images
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
class Stack(object):
|
| 368 |
+
|
| 369 |
+
def __init__(self, roll=False):
|
| 370 |
+
self.roll = roll
|
| 371 |
+
|
| 372 |
+
def __call__(self, img_group):
|
| 373 |
+
if img_group[0].mode == 'L':
|
| 374 |
+
return np.concatenate([np.expand_dims(x, 2)
|
| 375 |
+
for x in img_group], axis=2)
|
| 376 |
+
elif img_group[0].mode == 'RGB':
|
| 377 |
+
if self.roll:
|
| 378 |
+
return np.concatenate([np.array(x)[:, :, ::-1]
|
| 379 |
+
for x in img_group], axis=2)
|
| 380 |
+
else:
|
| 381 |
+
#print(np.concatenate(img_group, axis=2).shape)
|
| 382 |
+
# print(img_group[0].shape)
|
| 383 |
+
return np.concatenate(img_group, axis=2)
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
class ToTorchFormatTensor(object):
|
| 387 |
+
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
|
| 388 |
+
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
|
| 389 |
+
|
| 390 |
+
def __init__(self, div=True):
|
| 391 |
+
self.div = div
|
| 392 |
+
|
| 393 |
+
def __call__(self, pic):
|
| 394 |
+
if isinstance(pic, np.ndarray):
|
| 395 |
+
# handle numpy array
|
| 396 |
+
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
|
| 397 |
+
else:
|
| 398 |
+
# handle PIL Image
|
| 399 |
+
img = torch.ByteTensor(
|
| 400 |
+
torch.ByteStorage.from_buffer(
|
| 401 |
+
pic.tobytes()))
|
| 402 |
+
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
|
| 403 |
+
# put it from HWC to CHW format
|
| 404 |
+
# yikes, this transpose takes 80% of the loading time/CPU
|
| 405 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
| 406 |
+
return img.float().div(255) if self.div else img.float()
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
class IdentityTransform(object):
|
| 410 |
+
|
| 411 |
+
def __call__(self, data):
|
| 412 |
+
return data
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
if __name__ == "__main__":
|
| 416 |
+
trans = torchvision.transforms.Compose([
|
| 417 |
+
GroupScale(256),
|
| 418 |
+
GroupRandomCrop(224),
|
| 419 |
+
Stack(),
|
| 420 |
+
ToTorchFormatTensor(),
|
| 421 |
+
GroupNormalize(
|
| 422 |
+
mean=[.485, .456, .406],
|
| 423 |
+
std=[.229, .224, .225]
|
| 424 |
+
)]
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')
|
| 428 |
+
|
| 429 |
+
color_group = [im] * 3
|
| 430 |
+
rst = trans(color_group)
|
| 431 |
+
|
| 432 |
+
gray_group = [im.convert('L')] * 9
|
| 433 |
+
gray_rst = trans(gray_group)
|
| 434 |
+
|
| 435 |
+
trans2 = torchvision.transforms.Compose([
|
| 436 |
+
GroupRandomSizedCrop(256),
|
| 437 |
+
Stack(),
|
| 438 |
+
ToTorchFormatTensor(),
|
| 439 |
+
GroupNormalize(
|
| 440 |
+
mean=[.485, .456, .406],
|
| 441 |
+
std=[.229, .224, .225])
|
| 442 |
+
])
|
| 443 |
+
print(trans2(color_group))
|