|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
import spaces |
|
|
import gradio as gr |
|
|
from transformers import BitsAndBytesConfig |
|
|
import os |
|
|
from huggingface_hub import login |
|
|
|
|
|
login(token=os.environ["HUGGINGFACE_TOKEN"]) |
|
|
|
|
|
|
|
|
model_name = "meta-llama/Llama-2-7b-hf" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,use_auth_token=True) |
|
|
|
|
|
quantization_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_compute_dtype=torch.float16, |
|
|
bnb_4bit_use_double_quant=True |
|
|
) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
quantization_config=quantization_config, |
|
|
device_map="auto" |
|
|
) |
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def generate_text(prompt): |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
|
output = model.generate(**inputs, max_new_tokens=100) |
|
|
return tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def chat_with_llama(prompt): |
|
|
return generate_text(prompt) |
|
|
|
|
|
gr.Interface(fn=chat_with_llama, inputs="text", outputs="text", title="LLaMA 2 Chatbot").launch() |
|
|
|
|
|
|