import subprocess import shlex # Install the custom component if needed subprocess.run( shlex.split( "pip install ./gradio_magicquillv2-0.0.1-py3-none-any.whl" ) ) import sys import os import gradio as gr import tempfile import numpy as np import io import base64 import json import uvicorn import torch from fastapi import FastAPI, Request from fastapi.concurrency import run_in_threadpool from fastapi.middleware.cors import CORSMiddleware from gradio_client import Client, handle_file from gradio_magicquillv2 import MagicQuillV2 from PIL import Image from util import ( read_base64_image as read_base64_image_utils, tensor_to_base64, get_mask_bbox ) # --- Configuration --- # Set this to the URL of your backend Space (running app_backend.py) # Example: "https://huggingface.co/spaces/username/backend-space" hf_token = os.environ.get("HF_TOKEN") BACKEND_URL = "LiuZichen/MagicQuillV2" SAM_URL = "LiuZichen/MagicQuillHelper" print(f"Connecting to backend at: {BACKEND_URL}") try: backend_client = Client(BACKEND_URL, hf_token=hf_token) except Exception as e: print(f"Failed to connect to backend: {e}") backend_client = None print(f"Connecting to SAM client at: {SAM_URL}") try: sam_client = Client(SAM_URL, hf_token=hf_token) except Exception as e: print(f"Failed to connect to SAM client: {e}") sam_client = None # --- Helper Functions --- def generate_image_handler(x, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg): merged_image = x['from_frontend']['img'] total_mask = x['from_frontend']['total_mask'] original_image = x['from_frontend']['original_image'] add_color_image = x['from_frontend']['add_color_image'] add_edge_mask = x['from_frontend']['add_edge_mask'] remove_edge_mask = x['from_frontend']['remove_edge_mask'] fill_mask = x['from_frontend']['fill_mask'] add_prop_image = x['from_frontend']['add_prop_image'] positive_prompt = x['from_backend']['prompt'] if backend_client is None: print("Backend client not initialized") x["from_backend"]["generated_image"] = None return x try: # Call the backend API # The order of arguments must match app_backend.py input list res_base64 = backend_client.predict( merged_image, # merged_image total_mask, # total_mask original_image, # original_image add_color_image, # add_color_image add_edge_mask, # add_edge_mask remove_edge_mask, # remove_edge_mask fill_mask, # fill_mask add_prop_image, # add_prop_image positive_prompt, # positive_prompt negative_prompt, # negative_prompt fine_edge, # fine_edge fix_perspective, # fix_perspective grow_size, # grow_size edge_strength, # edge_strength color_strength, # color_strength local_strength, # local_strength seed, # seed steps, # steps cfg, # cfg api_name="/generate" ) x["from_backend"]["generated_image"] = res_base64 except Exception as e: print(f"Error in generation: {e}") x["from_backend"]["generated_image"] = None return x # --- Gradio UI --- with gr.Blocks(title="MagicQuill V2") as demo: with gr.Row(elem_classes="row"): text = gr.Markdown( """ # Welcome to MagicQuill V2! Give us a [GitHub star](https://github.com/zliucz/magicquillv2) if you are interested. Click the [link](https://magicquill.art/v2) to view our demo and tutorial. The paper is on [ArXiv](https://arxiv.org/abs/2512.03046) now. """) with gr.Row(): ms = MagicQuillV2() with gr.Row(): with gr.Column(): btn = gr.Button("Run", variant="primary") with gr.Column(): with gr.Accordion("parameters", open=False): negative_prompt = gr.Textbox(label="Negative Prompt", value="", interactive=True) fine_edge = gr.Radio(label="Fine Edge", choices=['enable', 'disable'], value='disable', interactive=True) fix_perspective = gr.Radio(label="Fix Perspective", choices=['enable', 'disable'], value='disable', interactive=True) grow_size = gr.Slider(label="Grow Size", minimum=10, maximum=100, value=50, step=1, interactive=True) edge_strength = gr.Slider(label="Edge Strength", minimum=0.0, maximum=5.0, value=0.6, step=0.01, interactive=True) color_strength = gr.Slider(label="Color Strength", minimum=0.0, maximum=5.0, value=1.5, step=0.01, interactive=True) local_strength = gr.Slider(label="Local Strength", minimum=0.0, maximum=5.0, value=1.0, step=0.01, interactive=True) seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True) steps = gr.Slider(label="Steps", minimum=0, maximum=50, value=20, interactive=True) cfg = gr.Slider(label="CFG", minimum=0.0, maximum=20.0, value=3.5, step=0.1, interactive=True) btn.click( generate_image_handler, inputs=[ms, negative_prompt, fine_edge, fix_perspective, grow_size, edge_strength, color_strength, local_strength, seed, steps, cfg], outputs=ms ) # --- FastAPI App --- app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def get_root_url(request: Request, route_path: str, root_path: str | None): return root_path gr.route_utils.get_root_url = get_root_url # gr.mount_gradio_app(app, demo, path="/demo", root_path="/demo") @app.post("/magic_quill/generate_image") async def generate_image(request: Request): data = await request.json() if backend_client is None: return {'error': 'Backend client not connected'} try: res = await run_in_threadpool( backend_client.predict, data["merged_image"], data["total_mask"], data["original_image"], data["add_color_image"], data["add_edge_mask"], data["remove_edge_mask"], data["fill_mask"], data["add_prop_image"], data["positive_prompt"], data["negative_prompt"], data["fine_edge"], data["fix_perspective"], data["grow_size"], data["edge_strength"], data["color_strength"], data["local_strength"], data["seed"], data["steps"], data["cfg"], api_name="/generate" ) return {'res': res} except Exception as e: print(f"Error in backend generation: {e}") return {'error': str(e)} @app.post("/magic_quill/process_background_img") async def process_background_img(request: Request): img = await request.json() from util import process_background # process_background returns tensor [1, H, W, 3] in uint8 or float resized_img_tensor = process_background(img) # tensor_to_base64 from util expects tensor resized_img_base64 = "data:image/webp;base64," + tensor_to_base64( resized_img_tensor, quality=80, method=6 ) return resized_img_base64 @app.post("/magic_quill/segmentation") async def segmentation(request: Request): json_data = await request.json() image_base64 = json_data.get("image", None) coordinates_positive = json_data.get("coordinates_positive", None) coordinates_negative = json_data.get("coordinates_negative", None) bboxes = json_data.get("bboxes", None) if sam_client is None: return {"error": "sam client not initialized"} # Process coordinates and bboxes (copied from original app.py) pos_coordinates = None if coordinates_positive and len(coordinates_positive) > 0: pos_coordinates = [] for coord in coordinates_positive: coord['x'] = int(round(coord['x'])) coord['y'] = int(round(coord['y'])) pos_coordinates.append({'x': coord['x'], 'y': coord['y']}) pos_coordinates = json.dumps(pos_coordinates) neg_coordinates = None if coordinates_negative and len(coordinates_negative) > 0: neg_coordinates = [] for coord in coordinates_negative: coord['x'] = int(round(coord['x'])) coord['y'] = int(round(coord['y'])) neg_coordinates.append({'x': coord['x'], 'y': coord['y']}) neg_coordinates = json.dumps(neg_coordinates) bboxes_xyxy = None if bboxes and len(bboxes) > 0: valid_bboxes = [] for bbox in bboxes: if (bbox.get("startX") is None or bbox.get("startY") is None or bbox.get("endX") is None or bbox.get("endY") is None): continue else: x_min = max(min(int(bbox["startX"]), int(bbox["endX"])), 0) y_min = max(min(int(bbox["startY"]), int(bbox["endY"])), 0) x_max = int(bbox["startX"]) if int(bbox["startX"]) > int(bbox["endX"]) else int(bbox["endX"]) y_max = int(bbox["startY"]) if int(bbox["startY"]) > int(bbox["endY"]) else int(bbox["endY"]) valid_bboxes.append((x_min, y_min, x_max, y_max)) bboxes_xyxy = [] for bbox in valid_bboxes: x_min, y_min, x_max, y_max = bbox bboxes_xyxy.append((x_min, y_min, x_max, y_max)) if bboxes_xyxy: bboxes_xyxy = json.dumps(bboxes_xyxy) print(f"Segmentation request: pos={pos_coordinates}, neg={neg_coordinates}, bboxes={bboxes_xyxy}") try: # Save base64 image to temp file image_bytes = read_base64_image_utils(image_base64) pil_image = Image.open(image_bytes) # Resize for faster transmission (short side 512) original_size = pil_image.size w, h = original_size scale = 512 / min(w, h) if scale < 1: new_w = int(w * scale) new_h = int(h * scale) pil_image_resized = pil_image.resize((new_w, new_h), Image.LANCZOS) print(f"Resized image for segmentation: {original_size} -> {(new_w, new_h)}") # Adjust coordinates and bboxes according to scale if pos_coordinates: pos_coords_list = json.loads(pos_coordinates) for coord in pos_coords_list: coord['x'] = int(coord['x'] * scale) coord['y'] = int(coord['y'] * scale) pos_coordinates = json.dumps(pos_coords_list) if neg_coordinates: neg_coords_list = json.loads(neg_coordinates) for coord in neg_coords_list: coord['x'] = int(coord['x'] * scale) coord['y'] = int(coord['y'] * scale) neg_coordinates = json.dumps(neg_coords_list) if bboxes_xyxy: bboxes_list = json.loads(bboxes_xyxy) new_bboxes = [] for bbox in bboxes_list: new_bboxes.append(( int(bbox[0] * scale), int(bbox[1] * scale), int(bbox[2] * scale), int(bbox[3] * scale) )) bboxes_xyxy = json.dumps(new_bboxes) else: pil_image_resized = pil_image scale = 1.0 with tempfile.NamedTemporaryFile(suffix=".webp", delete=False) as temp_in: pil_image_resized.save(temp_in.name, format="WEBP", quality=80) temp_in_path = temp_in.name # Execute segmentation via Client result_path = await run_in_threadpool( sam_client.predict, handle_file(temp_in_path), pos_coordinates, neg_coordinates, bboxes_xyxy, api_name="/segment" ) os.unlink(temp_in_path) if isinstance(result_path, (list, tuple)): result_path = result_path[0] if not result_path or not os.path.exists(result_path): raise RuntimeError("Client returned invalid result path") mask_pil = Image.open(result_path) if mask_pil.mode != 'L': mask_pil = mask_pil.convert('L') pil_image = pil_image.convert("RGB") if pil_image.size != mask_pil.size: mask_pil = mask_pil.resize(pil_image.size, Image.NEAREST) r, g, b = pil_image.split() res_pil = Image.merge("RGBA", (r, g, b, mask_pil)) mask_tensor = torch.from_numpy(np.array(mask_pil) / 255.0).float().unsqueeze(0) mask_bbox = get_mask_bbox(mask_tensor) if mask_bbox: x_min, y_min, x_max, y_max = mask_bbox seg_bbox = {'startX': x_min, 'startY': y_min, 'endX': x_max, 'endY': y_max} else: seg_bbox = {'startX': 0, 'startY': 0, 'endX': 0, 'endY': 0} print(seg_bbox) buffered = io.BytesIO() res_pil.save(buffered, format="PNG") image_base64_res = base64.b64encode(buffered.getvalue()).decode("utf-8") return { "error": False, "segmentation_image": "data:image/png;base64," + image_base64_res, "segmentation_bbox": seg_bbox } except Exception as e: print(f"Error in segmentation: {e}") return {"error": str(e)} # Mount the Gradio app demo.queue(default_concurrency_limit=20, max_size=40) app = gr.mount_gradio_app(app, demo, path="/", root_path="/demo") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)