Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
ADDED
|
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import time
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
from config import ModelManager
|
| 7 |
+
|
| 8 |
+
class MathsBenchmarkApp:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
"""Initialise the Mathematics Benchmark application."""
|
| 11 |
+
self.dataset = None
|
| 12 |
+
self.df = None
|
| 13 |
+
self.model_manager = ModelManager()
|
| 14 |
+
self.load_dataset()
|
| 15 |
+
|
| 16 |
+
def load_dataset(self) -> None:
|
| 17 |
+
"""Load the MathsBench dataset from HuggingFace."""
|
| 18 |
+
try:
|
| 19 |
+
self.dataset = load_dataset("0xnu/maths_bench", split="train")
|
| 20 |
+
self.df = pd.DataFrame(self.dataset)
|
| 21 |
+
print(f"Dataset loaded successfully: {len(self.df)} questions")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
print(f"Error loading dataset: {e}")
|
| 24 |
+
self.df = pd.DataFrame()
|
| 25 |
+
|
| 26 |
+
def setup_api_provider(self, provider_name: str, api_key: str) -> Tuple[bool, str]:
|
| 27 |
+
"""Setup API provider with key."""
|
| 28 |
+
return self.model_manager.setup_provider(provider_name, api_key)
|
| 29 |
+
|
| 30 |
+
def get_filtered_data(self, category: str = "All", difficulty: str = "All") -> pd.DataFrame:
|
| 31 |
+
"""Filter dataset based on category and difficulty."""
|
| 32 |
+
if self.df.empty:
|
| 33 |
+
return pd.DataFrame()
|
| 34 |
+
|
| 35 |
+
filtered_df = self.df.copy()
|
| 36 |
+
|
| 37 |
+
if category != "All":
|
| 38 |
+
filtered_df = filtered_df[filtered_df['category'] == category]
|
| 39 |
+
|
| 40 |
+
if difficulty != "All":
|
| 41 |
+
filtered_df = filtered_df[filtered_df['difficulty'] == difficulty]
|
| 42 |
+
|
| 43 |
+
return filtered_df
|
| 44 |
+
|
| 45 |
+
def create_prompt_for_question(self, question_data: Dict) -> str:
|
| 46 |
+
"""Create a structured prompt for the model."""
|
| 47 |
+
prompt = f"""You are an expert mathematician. Solve this question and select the correct answer from the given options.
|
| 48 |
+
|
| 49 |
+
Question: {question_data['question']}
|
| 50 |
+
|
| 51 |
+
Available options:
|
| 52 |
+
A) {question_data['option_a']}
|
| 53 |
+
B) {question_data['option_b']}
|
| 54 |
+
C) {question_data['option_c']}
|
| 55 |
+
D) {question_data['option_d']}
|
| 56 |
+
|
| 57 |
+
Instructions:
|
| 58 |
+
1. Work through the problem step by step
|
| 59 |
+
2. Compare your result with each option
|
| 60 |
+
3. Select the option that matches your calculated answer
|
| 61 |
+
4. Respond with only the letter of your chosen answer
|
| 62 |
+
|
| 63 |
+
Your response must end with: "My final answer is: [LETTER]"
|
| 64 |
+
|
| 65 |
+
Example format:
|
| 66 |
+
First I'll solve... [working]
|
| 67 |
+
Checking the options...
|
| 68 |
+
My final answer is: B"""
|
| 69 |
+
|
| 70 |
+
return prompt
|
| 71 |
+
|
| 72 |
+
def evaluate_single_question(self, question_id: int, model: str) -> Dict:
|
| 73 |
+
"""Evaluate a single question using the specified model."""
|
| 74 |
+
if not self.model_manager.get_configured_providers():
|
| 75 |
+
return {"error": "No API providers configured"}
|
| 76 |
+
|
| 77 |
+
question_data = self.df[self.df['question_id'] == question_id].iloc[0].to_dict()
|
| 78 |
+
prompt = self.create_prompt_for_question(question_data)
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
ai_response = self.model_manager.generate_response(prompt, model, max_tokens=800)
|
| 82 |
+
|
| 83 |
+
# Parse the response to extract the answer
|
| 84 |
+
ai_answer = self.extract_answer_from_response(ai_response)
|
| 85 |
+
|
| 86 |
+
# Convert correct answer to letter format if needed
|
| 87 |
+
correct_answer_letter = self.convert_answer_to_letter(question_data)
|
| 88 |
+
|
| 89 |
+
is_correct = ai_answer == correct_answer_letter
|
| 90 |
+
|
| 91 |
+
return {
|
| 92 |
+
"question_id": question_id,
|
| 93 |
+
"question": question_data['question'],
|
| 94 |
+
"category": question_data['category'],
|
| 95 |
+
"difficulty": question_data['difficulty'],
|
| 96 |
+
"correct_answer": question_data['correct_answer'],
|
| 97 |
+
"correct_answer_letter": correct_answer_letter,
|
| 98 |
+
"ai_answer": ai_answer,
|
| 99 |
+
"is_correct": is_correct,
|
| 100 |
+
"ai_response": ai_response,
|
| 101 |
+
"model": model,
|
| 102 |
+
"options": {
|
| 103 |
+
"A": question_data['option_a'],
|
| 104 |
+
"B": question_data['option_b'],
|
| 105 |
+
"C": question_data['option_c'],
|
| 106 |
+
"D": question_data['option_d']
|
| 107 |
+
}
|
| 108 |
+
}
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return {"error": f"API call failed: {str(e)}"}
|
| 111 |
+
|
| 112 |
+
def convert_answer_to_letter(self, question_data: Dict) -> str:
|
| 113 |
+
"""Convert the correct answer to its corresponding letter option."""
|
| 114 |
+
correct_answer = str(question_data['correct_answer']).strip()
|
| 115 |
+
|
| 116 |
+
options = {
|
| 117 |
+
'A': str(question_data['option_a']).strip(),
|
| 118 |
+
'B': str(question_data['option_b']).strip(),
|
| 119 |
+
'C': str(question_data['option_c']).strip(),
|
| 120 |
+
'D': str(question_data['option_d']).strip()
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
# Find which option matches the correct answer
|
| 124 |
+
for letter, option_value in options.items():
|
| 125 |
+
if correct_answer == option_value:
|
| 126 |
+
return letter
|
| 127 |
+
|
| 128 |
+
# If no exact match, try case-insensitive comparison
|
| 129 |
+
correct_lower = correct_answer.lower()
|
| 130 |
+
for letter, option_value in options.items():
|
| 131 |
+
if correct_lower == option_value.lower():
|
| 132 |
+
return letter
|
| 133 |
+
|
| 134 |
+
# If still no match, return the first option as fallback
|
| 135 |
+
return 'A'
|
| 136 |
+
|
| 137 |
+
def extract_answer_from_response(self, response: str) -> str:
|
| 138 |
+
"""Extract the letter answer from AI response."""
|
| 139 |
+
response_upper = response.upper()
|
| 140 |
+
|
| 141 |
+
# Primary method: Look for "MY FINAL ANSWER IS: X" pattern
|
| 142 |
+
if "MY FINAL ANSWER IS:" in response_upper:
|
| 143 |
+
answer_part = response_upper.split("MY FINAL ANSWER IS:")[1].strip()
|
| 144 |
+
for letter in ['A', 'B', 'C', 'D']:
|
| 145 |
+
if letter in answer_part[:3]: # Check first 3 chars after the phrase
|
| 146 |
+
return letter
|
| 147 |
+
|
| 148 |
+
# Secondary method: Look for "ANSWER:" pattern
|
| 149 |
+
if "ANSWER:" in response_upper:
|
| 150 |
+
answer_part = response_upper.split("ANSWER:")[1].strip()
|
| 151 |
+
for letter in ['A', 'B', 'C', 'D']:
|
| 152 |
+
if letter in answer_part[:10]:
|
| 153 |
+
return letter
|
| 154 |
+
|
| 155 |
+
# Tertiary method: Look for explicit statements like "THE ANSWER IS A"
|
| 156 |
+
for letter in ['A', 'B', 'C', 'D']:
|
| 157 |
+
patterns = [
|
| 158 |
+
f"THE ANSWER IS {letter}",
|
| 159 |
+
f"ANSWER IS {letter}",
|
| 160 |
+
f"I CHOOSE {letter}",
|
| 161 |
+
f"SELECT {letter}",
|
| 162 |
+
f"OPTION {letter}"
|
| 163 |
+
]
|
| 164 |
+
for pattern in patterns:
|
| 165 |
+
if pattern in response_upper:
|
| 166 |
+
return letter
|
| 167 |
+
|
| 168 |
+
# Final fallback: Look for last occurrence of a standalone letter
|
| 169 |
+
letters_found = []
|
| 170 |
+
for letter in ['A', 'B', 'C', 'D']:
|
| 171 |
+
if f" {letter}" in response_upper or f"{letter})" in response_upper or f"({letter}" in response_upper:
|
| 172 |
+
letters_found.append(letter)
|
| 173 |
+
|
| 174 |
+
if letters_found:
|
| 175 |
+
return letters_found[-1] # Return the last found letter
|
| 176 |
+
|
| 177 |
+
return "Unknown"
|
| 178 |
+
|
| 179 |
+
def run_benchmark(self, category: str, difficulty: str, num_questions: int, model: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str]:
|
| 180 |
+
"""Run benchmark evaluation on filtered questions."""
|
| 181 |
+
if not self.model_manager.get_configured_providers():
|
| 182 |
+
return pd.DataFrame(), "Please configure API providers first"
|
| 183 |
+
|
| 184 |
+
filtered_df = self.get_filtered_data(category, difficulty)
|
| 185 |
+
|
| 186 |
+
if filtered_df.empty:
|
| 187 |
+
return pd.DataFrame(), "No questions found for the selected filters"
|
| 188 |
+
|
| 189 |
+
# Sample questions if requested number is less than available
|
| 190 |
+
if num_questions < len(filtered_df):
|
| 191 |
+
filtered_df = filtered_df.sample(n=num_questions, random_state=42)
|
| 192 |
+
|
| 193 |
+
results = []
|
| 194 |
+
correct_count = 0
|
| 195 |
+
|
| 196 |
+
progress(0, desc="Starting evaluation...")
|
| 197 |
+
|
| 198 |
+
for i, (_, row) in enumerate(filtered_df.iterrows()):
|
| 199 |
+
progress((i + 1) / len(filtered_df), desc=f"Evaluating question {i + 1}/{len(filtered_df)}")
|
| 200 |
+
|
| 201 |
+
result = self.evaluate_single_question(row['question_id'], model)
|
| 202 |
+
|
| 203 |
+
if "error" not in result:
|
| 204 |
+
results.append(result)
|
| 205 |
+
if result['is_correct']:
|
| 206 |
+
correct_count += 1
|
| 207 |
+
|
| 208 |
+
# Add small delay to avoid rate limits
|
| 209 |
+
time.sleep(0.5)
|
| 210 |
+
|
| 211 |
+
if not results:
|
| 212 |
+
return pd.DataFrame(), "No valid results obtained"
|
| 213 |
+
|
| 214 |
+
results_df = pd.DataFrame(results)
|
| 215 |
+
accuracy = (correct_count / len(results)) * 100
|
| 216 |
+
|
| 217 |
+
summary = f"""
|
| 218 |
+
Benchmark Complete!
|
| 219 |
+
|
| 220 |
+
Total Questions: {len(results)}
|
| 221 |
+
Correct Answers: {correct_count}
|
| 222 |
+
Accuracy: {accuracy:.2f}%
|
| 223 |
+
Model: {model}
|
| 224 |
+
Category: {category}
|
| 225 |
+
Difficulty: {difficulty}
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
return results_df, summary
|
| 229 |
+
|
| 230 |
+
# Global app instance
|
| 231 |
+
app = MathsBenchmarkApp()
|
| 232 |
+
|
| 233 |
+
def create_gradio_interface():
|
| 234 |
+
"""Create the Gradio interface for the Mathematics Benchmark."""
|
| 235 |
+
|
| 236 |
+
# Get unique categories and difficulties
|
| 237 |
+
categories = ["All"] + sorted(app.df['category'].unique().tolist()) if not app.df.empty else ["All"]
|
| 238 |
+
difficulties = ["All"] + sorted(app.df['difficulty'].unique().tolist()) if not app.df.empty else ["All"]
|
| 239 |
+
|
| 240 |
+
with gr.Blocks(title="Mathematics Benchmark", theme=gr.themes.Soft()) as interface:
|
| 241 |
+
gr.HTML("""
|
| 242 |
+
<div style="text-align: center; padding: 20px;">
|
| 243 |
+
<h1>🧮 LLM Mathematics Benchmark</h1>
|
| 244 |
+
<p>Evaluate Large Language Models on mathematical reasoning tasks using a diverse dataset of questions</p>
|
| 245 |
+
</div>
|
| 246 |
+
""")
|
| 247 |
+
|
| 248 |
+
with gr.Tab("🔧 Configuration"):
|
| 249 |
+
gr.HTML("<h3>API Configuration</h3><p>Configure your API keys for different model providers:</p>")
|
| 250 |
+
|
| 251 |
+
# OpenAI Configuration
|
| 252 |
+
with gr.Group():
|
| 253 |
+
gr.HTML("<h4>🤖 OpenAI Configuration</h4>")
|
| 254 |
+
with gr.Row():
|
| 255 |
+
openai_key_input = gr.Textbox(
|
| 256 |
+
label="OpenAI API Key",
|
| 257 |
+
placeholder="Enter your OpenAI API key",
|
| 258 |
+
type="password",
|
| 259 |
+
scale=3
|
| 260 |
+
)
|
| 261 |
+
openai_setup_btn = gr.Button("Configure OpenAI", variant="primary", scale=1)
|
| 262 |
+
|
| 263 |
+
openai_status = gr.Textbox(label="OpenAI Status", interactive=False)
|
| 264 |
+
|
| 265 |
+
# Claude Configuration
|
| 266 |
+
with gr.Group():
|
| 267 |
+
gr.HTML("<h4>🧠 Anthropic Claude Configuration</h4>")
|
| 268 |
+
with gr.Row():
|
| 269 |
+
claude_key_input = gr.Textbox(
|
| 270 |
+
label="Anthropic API Key",
|
| 271 |
+
placeholder="Enter your Anthropic API key",
|
| 272 |
+
type="password",
|
| 273 |
+
scale=3
|
| 274 |
+
)
|
| 275 |
+
claude_setup_btn = gr.Button("Configure Claude", variant="primary", scale=1)
|
| 276 |
+
|
| 277 |
+
claude_status = gr.Textbox(label="Claude Status", interactive=False)
|
| 278 |
+
|
| 279 |
+
# Configuration status
|
| 280 |
+
config_summary = gr.Textbox(
|
| 281 |
+
label="Configuration Summary",
|
| 282 |
+
placeholder="No providers configured",
|
| 283 |
+
interactive=False
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
def setup_openai(api_key):
|
| 287 |
+
success, message = app.setup_api_provider("openai", api_key)
|
| 288 |
+
update_config_summary()
|
| 289 |
+
return message
|
| 290 |
+
|
| 291 |
+
def setup_claude(api_key):
|
| 292 |
+
success, message = app.setup_api_provider("claude", api_key)
|
| 293 |
+
update_config_summary()
|
| 294 |
+
return message
|
| 295 |
+
|
| 296 |
+
def update_config_summary():
|
| 297 |
+
configured = app.model_manager.get_configured_providers()
|
| 298 |
+
if not configured:
|
| 299 |
+
return "No providers configured"
|
| 300 |
+
return f"Configured providers: {', '.join(configured)}"
|
| 301 |
+
|
| 302 |
+
openai_setup_btn.click(
|
| 303 |
+
fn=setup_openai,
|
| 304 |
+
inputs=[openai_key_input],
|
| 305 |
+
outputs=[openai_status]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
claude_setup_btn.click(
|
| 309 |
+
fn=setup_claude,
|
| 310 |
+
inputs=[claude_key_input],
|
| 311 |
+
outputs=[claude_status]
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
with gr.Tab("📊 Dataset Explorer"):
|
| 315 |
+
with gr.Row():
|
| 316 |
+
filter_category = gr.Dropdown(
|
| 317 |
+
choices=categories,
|
| 318 |
+
value="All",
|
| 319 |
+
label="Category",
|
| 320 |
+
scale=1
|
| 321 |
+
)
|
| 322 |
+
filter_difficulty = gr.Dropdown(
|
| 323 |
+
choices=difficulties,
|
| 324 |
+
value="All",
|
| 325 |
+
label="Difficulty",
|
| 326 |
+
scale=1
|
| 327 |
+
)
|
| 328 |
+
refresh_btn = gr.Button("Refresh Data", scale=1)
|
| 329 |
+
|
| 330 |
+
dataset_table = gr.Dataframe(
|
| 331 |
+
headers=["question_id", "category", "difficulty", "question", "correct_answer"],
|
| 332 |
+
label="Filtered Dataset"
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
def update_table(category, difficulty):
|
| 336 |
+
filtered_df = app.get_filtered_data(category, difficulty)
|
| 337 |
+
if filtered_df.empty:
|
| 338 |
+
return pd.DataFrame()
|
| 339 |
+
return filtered_df[['question_id', 'category', 'difficulty', 'question', 'correct_answer']]
|
| 340 |
+
|
| 341 |
+
refresh_btn.click(
|
| 342 |
+
fn=update_table,
|
| 343 |
+
inputs=[filter_category, filter_difficulty],
|
| 344 |
+
outputs=[dataset_table]
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Initial load
|
| 348 |
+
interface.load(
|
| 349 |
+
fn=update_table,
|
| 350 |
+
inputs=[filter_category, filter_difficulty],
|
| 351 |
+
outputs=[dataset_table]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
with gr.Tab("🧪 Run Benchmark"):
|
| 355 |
+
with gr.Row():
|
| 356 |
+
bench_category = gr.Dropdown(
|
| 357 |
+
choices=categories,
|
| 358 |
+
value="All",
|
| 359 |
+
label="Category Filter"
|
| 360 |
+
)
|
| 361 |
+
bench_difficulty = gr.Dropdown(
|
| 362 |
+
choices=difficulties,
|
| 363 |
+
value="All",
|
| 364 |
+
label="Difficulty Filter"
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
with gr.Row():
|
| 368 |
+
num_questions = gr.Slider(
|
| 369 |
+
minimum=1,
|
| 370 |
+
maximum=100,
|
| 371 |
+
value=10,
|
| 372 |
+
step=1,
|
| 373 |
+
label="Number of Questions"
|
| 374 |
+
)
|
| 375 |
+
model_choice = gr.Dropdown(
|
| 376 |
+
choices=app.model_manager.get_flat_model_list(),
|
| 377 |
+
value=app.model_manager.get_flat_model_list()[0] if app.model_manager.get_flat_model_list() else None,
|
| 378 |
+
label="Model"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
run_benchmark_btn = gr.Button("Run Benchmark", variant="primary", size="lg")
|
| 382 |
+
|
| 383 |
+
benchmark_summary = gr.Textbox(
|
| 384 |
+
label="Benchmark Results Summary",
|
| 385 |
+
lines=8,
|
| 386 |
+
interactive=False
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
results_table = gr.Dataframe(
|
| 390 |
+
label="Detailed Results",
|
| 391 |
+
headers=["question_id", "question", "category", "difficulty", "correct_answer", "correct_letter", "ai_answer", "ai_choice", "is_correct"]
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def run_benchmark_wrapper(category, difficulty, num_q, model):
|
| 395 |
+
results_df, summary = app.run_benchmark(category, difficulty, num_q, model)
|
| 396 |
+
|
| 397 |
+
if results_df.empty:
|
| 398 |
+
return summary, pd.DataFrame()
|
| 399 |
+
|
| 400 |
+
# Prepare display dataframe
|
| 401 |
+
display_df = results_df[['question_id', 'question', 'category', 'difficulty', 'correct_answer', 'correct_answer_letter', 'ai_answer', 'is_correct']].copy()
|
| 402 |
+
|
| 403 |
+
# Add the actual AI choice text
|
| 404 |
+
display_df['ai_choice'] = display_df.apply(
|
| 405 |
+
lambda row: results_df[results_df['question_id'] == row['question_id']]['options'].iloc[0].get(row['ai_answer'], 'Unknown')
|
| 406 |
+
if row['ai_answer'] in ['A', 'B', 'C', 'D'] else 'Invalid', axis=1
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Reorder columns for better display
|
| 410 |
+
display_df = display_df[['question_id', 'question', 'category', 'difficulty', 'correct_answer', 'correct_answer_letter', 'ai_answer', 'ai_choice', 'is_correct']]
|
| 411 |
+
|
| 412 |
+
return summary, display_df
|
| 413 |
+
|
| 414 |
+
run_benchmark_btn.click(
|
| 415 |
+
fn=run_benchmark_wrapper,
|
| 416 |
+
inputs=[bench_category, bench_difficulty, num_questions, model_choice],
|
| 417 |
+
outputs=[benchmark_summary, results_table]
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
with gr.Tab("🔍 Debug Single Question"):
|
| 421 |
+
with gr.Row():
|
| 422 |
+
debug_question_id = gr.Number(
|
| 423 |
+
label="Question ID",
|
| 424 |
+
value=450,
|
| 425 |
+
precision=0
|
| 426 |
+
)
|
| 427 |
+
debug_model = gr.Dropdown(
|
| 428 |
+
choices=app.model_manager.get_flat_model_list(),
|
| 429 |
+
value=app.model_manager.get_flat_model_list()[0] if app.model_manager.get_flat_model_list() else None,
|
| 430 |
+
label="Model"
|
| 431 |
+
)
|
| 432 |
+
debug_btn = gr.Button("Test Single Question", variant="primary")
|
| 433 |
+
|
| 434 |
+
debug_question_display = gr.Textbox(
|
| 435 |
+
label="Question Details",
|
| 436 |
+
lines=4,
|
| 437 |
+
interactive=False
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
debug_ai_response = gr.Textbox(
|
| 441 |
+
label="Full AI Response",
|
| 442 |
+
lines=8,
|
| 443 |
+
interactive=False
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
debug_result = gr.Textbox(
|
| 447 |
+
label="Parsed Result",
|
| 448 |
+
lines=3,
|
| 449 |
+
interactive=False
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
def debug_single_question(question_id, model):
|
| 453 |
+
if not app.model_manager.get_configured_providers():
|
| 454 |
+
return "Please configure API providers first", "", ""
|
| 455 |
+
|
| 456 |
+
try:
|
| 457 |
+
question_id = int(question_id)
|
| 458 |
+
matching_questions = app.df[app.df['question_id'] == question_id]
|
| 459 |
+
|
| 460 |
+
if matching_questions.empty:
|
| 461 |
+
return f"No question found with ID {question_id}", "", ""
|
| 462 |
+
|
| 463 |
+
question_data = matching_questions.iloc[0].to_dict()
|
| 464 |
+
|
| 465 |
+
question_info = f"""Question ID: {question_id}
|
| 466 |
+
Category: {question_data['category']}
|
| 467 |
+
Difficulty: {question_data['difficulty']}
|
| 468 |
+
Question: {question_data['question']}
|
| 469 |
+
|
| 470 |
+
Options:
|
| 471 |
+
A) {question_data['option_a']}
|
| 472 |
+
B) {question_data['option_b']}
|
| 473 |
+
C) {question_data['option_c']}
|
| 474 |
+
D) {question_data['option_d']}
|
| 475 |
+
|
| 476 |
+
Correct Answer: {question_data['correct_answer']}"""
|
| 477 |
+
|
| 478 |
+
result = app.evaluate_single_question(question_id, model)
|
| 479 |
+
|
| 480 |
+
if "error" in result:
|
| 481 |
+
return question_info, "", f"Error: {result['error']}"
|
| 482 |
+
|
| 483 |
+
ai_response = result.get('ai_response', 'No response')
|
| 484 |
+
|
| 485 |
+
parsed_result = f"""Extracted Answer: {result.get('ai_answer', 'Unknown')}
|
| 486 |
+
Correct Letter: {result.get('correct_answer_letter', 'Unknown')}
|
| 487 |
+
Is Correct: {result.get('is_correct', False)}
|
| 488 |
+
AI Choice Text: {result.get('options', {}).get(result.get('ai_answer', ''), 'Unknown')}"""
|
| 489 |
+
|
| 490 |
+
return question_info, ai_response, parsed_result
|
| 491 |
+
|
| 492 |
+
except Exception as e:
|
| 493 |
+
return f"Error processing question: {str(e)}", "", ""
|
| 494 |
+
|
| 495 |
+
debug_btn.click(
|
| 496 |
+
fn=debug_single_question,
|
| 497 |
+
inputs=[debug_question_id, debug_model],
|
| 498 |
+
outputs=[debug_question_display, debug_ai_response, debug_result]
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
with gr.Tab("📈 Analytics"):
|
| 502 |
+
gr.HTML("""
|
| 503 |
+
<div style="padding: 20px;">
|
| 504 |
+
<h3>Dataset Statistics</h3>
|
| 505 |
+
</div>
|
| 506 |
+
""")
|
| 507 |
+
|
| 508 |
+
# Dataset statistics
|
| 509 |
+
if not app.df.empty:
|
| 510 |
+
stats_html = f"""
|
| 511 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; padding: 20px;">
|
| 512 |
+
<div style="background: #f0f0f0; padding: 15px; border-radius: 8px;">
|
| 513 |
+
<h4 style="color: #101010;">Total Questions</h4>
|
| 514 |
+
<p style="font-size: 24px; color: #101010; font-weight: bold;">{len(app.df)}</p>
|
| 515 |
+
</div>
|
| 516 |
+
<div style="background: #f0f0f0; padding: 15px; border-radius: 8px;">
|
| 517 |
+
<h4 style="color: #101010;">Categories</h4>
|
| 518 |
+
<p style="font-size: 24px; color: #101010; font-weight: bold;">{len(app.df['category'].unique())}</p>
|
| 519 |
+
</div>
|
| 520 |
+
<div style="background: #f0f0f0; padding: 15px; border-radius: 8px;">
|
| 521 |
+
<h4 style="color: #101010;">Difficulty Levels</h4>
|
| 522 |
+
<p style="font-size: 24px; color: #101010; font-weight: bold;">{len(app.df['difficulty'].unique())}</p>
|
| 523 |
+
</div>
|
| 524 |
+
</div>
|
| 525 |
+
|
| 526 |
+
<div style="padding: 20px;">
|
| 527 |
+
<h4>Categories Distribution:</h4>
|
| 528 |
+
<ul>
|
| 529 |
+
"""
|
| 530 |
+
|
| 531 |
+
for category, count in app.df['category'].value_counts().items():
|
| 532 |
+
stats_html += f"<li>{category}: {count} questions</li>"
|
| 533 |
+
|
| 534 |
+
stats_html += """
|
| 535 |
+
</ul>
|
| 536 |
+
|
| 537 |
+
<h4>Difficulty Distribution:</h4>
|
| 538 |
+
<ul>
|
| 539 |
+
"""
|
| 540 |
+
|
| 541 |
+
for difficulty, count in app.df['difficulty'].value_counts().items():
|
| 542 |
+
stats_html += f"<li>{difficulty}: {count} questions</li>"
|
| 543 |
+
|
| 544 |
+
stats_html += "</ul></div>"
|
| 545 |
+
|
| 546 |
+
gr.HTML(stats_html)
|
| 547 |
+
|
| 548 |
+
return interface
|
| 549 |
+
|
| 550 |
+
# Create and launch the interface
|
| 551 |
+
if __name__ == "__main__":
|
| 552 |
+
interface = create_gradio_interface()
|
| 553 |
+
interface.launch(
|
| 554 |
+
server_name="0.0.0.0",
|
| 555 |
+
server_port=7860,
|
| 556 |
+
show_error=True,
|
| 557 |
+
share=False
|
| 558 |
+
)
|
config.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import anthropic
|
| 3 |
+
from typing import Dict, Tuple, Optional
|
| 4 |
+
from abc import ABC, abstractmethod
|
| 5 |
+
|
| 6 |
+
class ModelProvider(ABC):
|
| 7 |
+
"""Abstract base class for model providers."""
|
| 8 |
+
|
| 9 |
+
@abstractmethod
|
| 10 |
+
def setup_client(self, api_key: str) -> Tuple[bool, str]:
|
| 11 |
+
"""Setup the API client with the provided key."""
|
| 12 |
+
pass
|
| 13 |
+
|
| 14 |
+
@abstractmethod
|
| 15 |
+
def generate_response(self, prompt: str, model: str, max_tokens: int = 800) -> str:
|
| 16 |
+
"""Generate a response using the specified model."""
|
| 17 |
+
pass
|
| 18 |
+
|
| 19 |
+
@abstractmethod
|
| 20 |
+
def get_available_models(self) -> list:
|
| 21 |
+
"""Return list of available models for this provider."""
|
| 22 |
+
pass
|
| 23 |
+
|
| 24 |
+
class OpenAIProvider(ModelProvider):
|
| 25 |
+
"""OpenAI API provider implementation."""
|
| 26 |
+
|
| 27 |
+
def __init__(self):
|
| 28 |
+
self.client = None
|
| 29 |
+
self.models = [
|
| 30 |
+
"gpt-3.5-turbo",
|
| 31 |
+
"gpt-4",
|
| 32 |
+
"gpt-4-turbo",
|
| 33 |
+
"gpt-4o",
|
| 34 |
+
"gpt-4o-mini"
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
def setup_client(self, api_key: str) -> Tuple[bool, str]:
|
| 38 |
+
"""Configure OpenAI client with provided API key."""
|
| 39 |
+
if not api_key.strip():
|
| 40 |
+
return False, "OpenAI API key cannot be empty"
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
self.client = openai.OpenAI(api_key=api_key.strip())
|
| 44 |
+
# Test the connection
|
| 45 |
+
response = self.client.chat.completions.create(
|
| 46 |
+
model="gpt-3.5-turbo",
|
| 47 |
+
messages=[{"role": "user", "content": "Hello"}],
|
| 48 |
+
max_tokens=5
|
| 49 |
+
)
|
| 50 |
+
return True, "OpenAI client configured successfully"
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return False, f"Failed to configure OpenAI client: {str(e)}"
|
| 53 |
+
|
| 54 |
+
def generate_response(self, prompt: str, model: str, max_tokens: int = 800) -> str:
|
| 55 |
+
"""Generate response using OpenAI models."""
|
| 56 |
+
if self.client is None:
|
| 57 |
+
raise Exception("OpenAI client not configured")
|
| 58 |
+
|
| 59 |
+
response = self.client.chat.completions.create(
|
| 60 |
+
model=model,
|
| 61 |
+
messages=[
|
| 62 |
+
{"role": "system", "content": "You are a precise mathematician who always provides clear, step-by-step solutions and selects the correct answer from given options."},
|
| 63 |
+
{"role": "user", "content": prompt}
|
| 64 |
+
],
|
| 65 |
+
max_tokens=max_tokens,
|
| 66 |
+
temperature=0.0
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
return response.choices[0].message.content
|
| 70 |
+
|
| 71 |
+
def get_available_models(self) -> list:
|
| 72 |
+
"""Return available OpenAI models."""
|
| 73 |
+
return self.models
|
| 74 |
+
|
| 75 |
+
class ClaudeProvider(ModelProvider):
|
| 76 |
+
"""Anthropic Claude API provider implementation."""
|
| 77 |
+
|
| 78 |
+
def __init__(self):
|
| 79 |
+
self.client = None
|
| 80 |
+
self.models = [
|
| 81 |
+
"claude-3-haiku-20240307",
|
| 82 |
+
"claude-3-sonnet-20240229",
|
| 83 |
+
"claude-3-opus-20240229",
|
| 84 |
+
"claude-3-5-sonnet-20241022",
|
| 85 |
+
"claude-3-5-haiku-20241022",
|
| 86 |
+
"claude-sonnet-4-20250514",
|
| 87 |
+
"claude-opus-4-20250514",
|
| 88 |
+
"claude-opus-4-1-20250805"
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
def setup_client(self, api_key: str) -> Tuple[bool, str]:
|
| 92 |
+
"""Configure Anthropic client with provided API key."""
|
| 93 |
+
if not api_key.strip():
|
| 94 |
+
return False, "Anthropic API key cannot be empty"
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
self.client = anthropic.Anthropic(api_key=api_key.strip())
|
| 98 |
+
# Test the connection
|
| 99 |
+
response = self.client.messages.create(
|
| 100 |
+
model="claude-3-haiku-20240307",
|
| 101 |
+
max_tokens=5,
|
| 102 |
+
messages=[{"role": "user", "content": "Hello"}]
|
| 103 |
+
)
|
| 104 |
+
return True, "Claude client configured successfully"
|
| 105 |
+
except Exception as e:
|
| 106 |
+
return False, f"Failed to configure Claude client: {str(e)}"
|
| 107 |
+
|
| 108 |
+
def generate_response(self, prompt: str, model: str, max_tokens: int = 800) -> str:
|
| 109 |
+
"""Generate response using Claude models."""
|
| 110 |
+
if self.client is None:
|
| 111 |
+
raise Exception("Claude client not configured")
|
| 112 |
+
|
| 113 |
+
# Add system prompt for Claude
|
| 114 |
+
system_prompt = "You are a precise mathematician who always provides clear, step-by-step solutions and selects the correct answer from given options."
|
| 115 |
+
|
| 116 |
+
response = self.client.messages.create(
|
| 117 |
+
model=model,
|
| 118 |
+
max_tokens=max_tokens,
|
| 119 |
+
system=system_prompt,
|
| 120 |
+
messages=[{"role": "user", "content": prompt}]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
return response.content[0].text
|
| 124 |
+
|
| 125 |
+
def get_available_models(self) -> list:
|
| 126 |
+
"""Return available Claude models."""
|
| 127 |
+
return self.models
|
| 128 |
+
|
| 129 |
+
class ModelManager:
|
| 130 |
+
"""Manages multiple model providers and routing."""
|
| 131 |
+
|
| 132 |
+
def __init__(self):
|
| 133 |
+
self.providers = {
|
| 134 |
+
"openai": OpenAIProvider(),
|
| 135 |
+
"claude": ClaudeProvider()
|
| 136 |
+
}
|
| 137 |
+
self.configured_providers = set()
|
| 138 |
+
|
| 139 |
+
def setup_provider(self, provider_name: str, api_key: str) -> Tuple[bool, str]:
|
| 140 |
+
"""Setup a specific provider with API key."""
|
| 141 |
+
if provider_name not in self.providers:
|
| 142 |
+
return False, f"Unknown provider: {provider_name}"
|
| 143 |
+
|
| 144 |
+
success, message = self.providers[provider_name].setup_client(api_key)
|
| 145 |
+
|
| 146 |
+
if success:
|
| 147 |
+
self.configured_providers.add(provider_name)
|
| 148 |
+
else:
|
| 149 |
+
self.configured_providers.discard(provider_name)
|
| 150 |
+
|
| 151 |
+
return success, message
|
| 152 |
+
|
| 153 |
+
def get_provider_for_model(self, model: str) -> Optional[str]:
|
| 154 |
+
"""Determine which provider handles the given model."""
|
| 155 |
+
for provider_name, provider in self.providers.items():
|
| 156 |
+
if model in provider.get_available_models():
|
| 157 |
+
return provider_name
|
| 158 |
+
return None
|
| 159 |
+
|
| 160 |
+
def generate_response(self, prompt: str, model: str, max_tokens: int = 800) -> str:
|
| 161 |
+
"""Generate response using the appropriate provider for the model."""
|
| 162 |
+
provider_name = self.get_provider_for_model(model)
|
| 163 |
+
|
| 164 |
+
if not provider_name:
|
| 165 |
+
raise Exception(f"No provider found for model: {model}")
|
| 166 |
+
|
| 167 |
+
if provider_name not in self.configured_providers:
|
| 168 |
+
raise Exception(f"Provider {provider_name} not configured")
|
| 169 |
+
|
| 170 |
+
return self.providers[provider_name].generate_response(prompt, model, max_tokens)
|
| 171 |
+
|
| 172 |
+
def get_all_models(self) -> Dict[str, list]:
|
| 173 |
+
"""Get all available models grouped by provider."""
|
| 174 |
+
return {
|
| 175 |
+
provider_name: provider.get_available_models()
|
| 176 |
+
for provider_name, provider in self.providers.items()
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
def get_flat_model_list(self) -> list:
|
| 180 |
+
"""Get a flat list of all available models."""
|
| 181 |
+
models = []
|
| 182 |
+
for provider in self.providers.values():
|
| 183 |
+
models.extend(provider.get_available_models())
|
| 184 |
+
return models
|
| 185 |
+
|
| 186 |
+
def is_provider_configured(self, provider_name: str) -> bool:
|
| 187 |
+
"""Check if a provider is configured."""
|
| 188 |
+
return provider_name in self.configured_providers
|
| 189 |
+
|
| 190 |
+
def get_configured_providers(self) -> list:
|
| 191 |
+
"""Get list of configured providers."""
|
| 192 |
+
return list(self.configured_providers)
|