File size: 16,037 Bytes
77146ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//
//  Qwen3CoreML.swift
//  Qwen3 CoreML Example
//
//  Swift Example for Qwen3 CoreML Integration
//  Qwen3-0.6B CoreML integration with Stateful KV-Cache and Int4 quantization
//
//  Requirements:
//  - iOS 18.0+ / macOS 15.0+ (Apple Neural Engine support)
//  - 400-500MB RAM for both models
//  - swift-transformers package
//
//  Usage:
//  let qwen3 = Qwen3CoreML()
//  await qwen3.loadModels()
//  let response = await qwen3.generate("Hello, world!")
//

import Foundation
import CoreML
import Tokenizers

/// Qwen3-0.6B CoreML model wrapper with Stateful KV-Cache
@MainActor
public final class Qwen3CoreML {

    // MARK: - Configuration

    public struct Config {
        public static let maxContextLength = 1024
        public static let maxTokens = 512
        public static let temperature: Float = 0.7
        public static let topK = 40
        public static let topP: Float = 0.9

        // Model paths (relative to app bundle or absolute)
        public static let prefillModelName = "Qwen3-0.6B-Prefill-Int4"
        public static let decodeModelName = "Qwen3-0.6B-Decode-Int4"
        public static let tokenizerModelId = "Qwen/Qwen3-0.6B"
    }

    // MARK: - State

    private var prefillModel: MLModel?
    private var decodeModel: MLModel?
    private var tokenizer: Tokenizer?
    private var decodeState: MLState?

    private(set) var isModelsLoaded = false
    private(set) var isGenerating = false

    // Qwen3 special tokens
    private let eosTokenIds: Set<Int> = [151643, 151645] // <|endoftext|>, <|im_end|>
    private let bosTokenId = 151643
    private let chatTemplate = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n%@<|im_end|>\n<|im_start|>assistant\n"

    // Performance tracking
    private(set) var tokensPerSecond: Double = 0
    private(set) var currentPosition = 0

    // MARK: - Initialization

    public init() {
        print("πŸ€– Qwen3CoreML initialized")
    }

    // MARK: - Model Loading

    /// Load both Prefill and Decode CoreML models and tokenizer
    public func loadModels() async throws {
        guard !isModelsLoaded else {
            print("πŸ€– Qwen3: Models already loaded")
            return
        }

        print("πŸ€– Qwen3: Loading CoreML models and tokenizer...")

        do {
            // Load Prefill model
            try await loadModel(named: Config.prefillModelName, into: &prefillModel)
            print("βœ… Prefill model loaded")

            // Load Decode model with state
            try await loadModel(named: Config.decodeModelName, into: &decodeModel, withState: true)
            print("βœ… Decode model loaded")

            // Load tokenizer via Tokenizers framework
            tokenizer = try await AutoTokenizer.from(pretrained: Config.tokenizerModelId)
            print("βœ… Tokenizer loaded")

            isModelsLoaded = true
            print("πŸŽ‰ Qwen3 models loaded successfully")

        } catch {
            print("❌ Failed to load Qwen3 models: \(error.localizedDescription)")
            throw Qwen3Error.modelLoadingFailed(error.localizedDescription)
        }
    }

    /// Load a single CoreML model
    private func loadModel(named modelName: String, into model: inout MLModel?, withState: Bool = false) async throws {
        let config = MLModelConfiguration()
        config.computeUnits = .cpuAndNeuralEngine  // Use ANE when available

        // Try Bundle first, then local paths
        var modelURL: URL?

        // Check main bundle
        if let url = Bundle.main.url(forResource: modelName, withExtension: "mlpackage") {
            modelURL = url
        }
        // Check app support directory
        else if let appSupport = FileManager.default.urls(for: .applicationSupportDirectory, in: .userDomainMask).first {
            let appDir = appSupport.appendingPathComponent("Qwen3CoreML")
            let modelsDir = appDir.appendingPathComponent("Models")
            let modelPath = modelsDir.appendingPathComponent("\(modelName).mlpackage")
            if FileManager.default.fileExists(atPath: modelPath.path) {
                modelURL = modelPath
            }
        }

        guard let modelURL = modelURL else {
            throw Qwen3Error.modelNotFound(modelName)
        }

        // Compile and load model
        let compiledURL = try await MLModel.compileModel(at: modelURL)
        model = try MLModel(contentsOf: compiledURL, configuration: config)

        // Create state for decode model only
        if withState {
            decodeState = model?.makeState()
        }
    }

    // MARK: - Text Generation

    /// Generate text response for user message (streaming)
    public func generate(
        userMessage: String,
        systemPrompt: String = "You are a helpful assistant.",
        maxTokens: Int = Config.maxTokens,
        temperature: Float = Config.temperature,
        enableThinking: Bool = false
    ) -> AsyncStream<String> {
        AsyncStream { continuation in
            Task {
                await generateInternal(
                    userMessage: userMessage,
                    systemPrompt: systemPrompt,
                    maxTokens: maxTokens,
                    temperature: temperature,
                    enableThinking: enableThinking,
                    continuation: continuation
                )
            }
        }
    }

    /// Generate text response for user message (non-streaming)
    public func generateSync(
        userMessage: String,
        systemPrompt: String = "You are a helpful assistant.",
        maxTokens: Int = Config.maxTokens,
        temperature: Float = Config.temperature,
        enableThinking: Bool = false
    ) async throws -> String {
        guard isModelsLoaded, let tokenizer = tokenizer else {
            throw Qwen3Error.modelNotLoaded
        }

        var result = ""

        for await chunk in generate(
            userMessage: userMessage,
            systemPrompt: systemPrompt,
            maxTokens: maxTokens,
            temperature: temperature,
            enableThinking: enableThinking
        ) {
            result += chunk
        }

        return result
    }

    /// Reset conversation and KV-Cache state
    public func resetConversation() {
        decodeState = decodeModel?.makeState()
        currentPosition = 0
        print("πŸ”„ Qwen3 conversation reset")
    }

    // MARK: - Private Generation

    private func generateInternal(
        userMessage: String,
        systemPrompt: String,
        maxTokens: Int,
        temperature: Float,
        enableThinking: Bool,
        continuation: AsyncStream<String>.Continuation
    ) async {
        guard isModelsLoaded,
              let prefillModel = prefillModel,
              let decodeModel = decodeModel,
              let tokenizer = tokenizer,
              var decodeState = decodeState else {
            continuation.finish()
            return
        }

        isGenerating = true
        let startTime = Date()

        defer {
            isGenerating = false
            continuation.finish()
        }

        do {
            // Format chat prompt
            let chatPrompt = formatChatPrompt(
                userMessage: userMessage,
                systemPrompt: systemPrompt,
                enableThinking: enableThinking
            )

            // Tokenize prompt
            let inputTokens = tokenizer.encode(text: chatPrompt)

            // Check context length
            guard inputTokens.count + maxTokens <= Config.maxContextLength else {
                print("⚠️ Prompt too long, truncating...")
                // Truncate if needed
                let truncatedTokens = Array(inputTokens.suffix(Config.maxContextLength - maxTokens))
                // Add BOS token if missing
                let tokensToProcess = truncatedTokens.first == bosTokenId ? truncatedTokens : [bosTokenId] + truncatedTokens
                try await processTokens(tokensToProcess, model: prefillModel)
            }

            // Process initial tokens with Prefill model
            try await processTokens(inputTokens, model: prefillModel)

            // Generate new tokens with Decode model
            var generatedTokens: [Int] = []
            var isInThinkingBlock = false

            for _ in 0..<maxTokens {
                let nextToken = try await generateNextToken(
                    temperature: temperature,
                    decodeModel: decodeModel,
                    decodeState: &decodeState
                )

                // Check for end of generation
                if eosTokenIds.contains(nextToken) {
                    break
                }

                generatedTokens.append(nextToken)

                // Handle thinking blocks (thinking mode)
                if nextToken == 151667 { // <think>
                    isInThinkingBlock = true
                } else if nextToken == 151668 { // </think>
                    isInThinkingBlock = false
                    if !enableThinking {
                        continue
                    }
                }

                // Decode token to text
                let tokenText = tokenizer.decode(tokens: [nextToken])

                // Stream token if not in thinking block or thinking enabled
                if !isInThinkingBlock || enableThinking {
                    continuation.yield(tokenText)
                }
            }

            // Calculate performance
            let elapsed = Date().timeIntervalSince(startTime)
            tokensPerSecond = Double(generatedTokens.count) / elapsed
            print("πŸ“Š Generation: \(generatedTokens.count) tokens in \(String(format: "%.2f", elapsed))s (\(String(format: "%.1f", tokensPerSecond)) tok/s)")

        } catch {
            print("❌ Generation failed: \(error.localizedDescription)")
            // Note: We don't throw here since continuation is already finished
        }
    }

    /// Process initial tokens using Prefill model
    private func processTokens(_ tokens: [Int], model: MLModel) async throws {
        let seqLen = tokens.count

        // Create causal mask for all tokens
        let causalMask = createCausalMask(seqLen: seqLen, totalLen: seqLen)
        let inputIdsTensor = MLTensor(
            shape: [1, seqLen],
            scalars: tokens.map { Int32($0) },
            scalarType: Int32.self
        )

        let inputs = try MLDictionaryFeatureProvider(dictionary: [
            "inputIds": MLFeatureValue(tensor: inputIdsTensor),
            "causalMask": MLFeatureValue(tensor: causalMask)
        ])

        // Run prefill inference
        _ = try await model.prediction(from: inputs)
        currentPosition = seqLen
    }

    /// Generate next token using Decode model
    private func generateNextToken(
        temperature: Float,
        decodeModel: MLModel,
        decodeState: inout MLState
    ) async throws -> Int {
        // Current position as input
        let positionIds = [Int32(currentPosition)]

        let positionTensor = MLTensor(
            shape: [1, 1],
            scalars: positionIds,
            scalarType: Int32.self
        )

        // We need a dummy input ID, actual logit generation uses past KV cache
        let dummyInputTensor = MLTensor(
            shape: [1, 1],
            scalars: [Int32(0)], // Will be ignored in decode model
            scalarType: Int32.self
        )

        let inputs = try MLDictionaryFeatureProvider(dictionary: [
            "inputIds": MLFeatureValue(tensor: dummyInputTensor),
            "positionIds": MLFeatureValue(tensor: positionTensor),
        ])

        let output = try await decodeModel.prediction(from: inputs, using: decodeState)

        guard let logitsTensor = output.featureValue(for: "logits")?.tensorValue(of: Float16.self) else {
            throw Qwen3Error.inferenceError("No logits in model output")
        }

        // Sample from logits
        let nextToken = sampleToken(from: logitsTensor, temperature: temperature)

        // Update position for next step
        currentPosition += 1

        return nextToken
    }

    /// Sample next token from logits
    private func sampleToken(from logitsTensor: MLTensor, temperature: Float) -> Int {
        // Extract logits for the last token [1, 1, vocab_size] -> [vocab_size]
        let vocabSize = logitsTensor.shape[2]

        var logitsArray = [Float](repeating: 0, count: vocabSize)
        logitsTensor.withUnsafeBufferPointer(of: Float16.self) { buffer in
            for i in 0..<vocabSize {
                logitsArray[i] = Float(buffer[vocabSize + i]) // Last token position
            }
        }

        if temperature <= 0 {
            // Greedy sampling
            return logitsArray.enumerated().max(by: { $0.element < $1.element })?.offset ?? 0
        }

        // Apply temperature and sample
        let scaledLogits = logitsArray.map { $0 / temperature }
        let maxLogit = scaledLogits.max() ?? 0
        let expLogits = scaledLogits.map { exp($0 - maxLogit) }
        let sumExp = expLogits.reduce(0, +)
        let probs = expLogits.map { $0 / sumExp }

        // Sample from distribution
        let random = Float.random(in: 0..<1)
        var cumulative: Float = 0

        for (index, prob) in probs.enumerated() {
            cumulative += prob
            if random < cumulative {
                return index
            }
        }

        return vocabSize - 1
    }

    /// Create causal attention mask
    private func createCausalMask(seqLen: Int, totalLen: Int) -> MLTensor {
        var maskData = [Float16](repeating: Float16(-Float.infinity), count: seqLen * totalLen)

        for i in 0..<seqLen {
            for j in 0..<(totalLen - seqLen + i + 1) {
                maskData[i * totalLen + j] = Float16(0)
            }
        }

        return MLTensor(
            shape: [1, 1, seqLen, totalLen],
            scalars: maskData,
            scalarType: Float16.self
        )
    }

    /// Format chat prompt using Qwen3 chat template
    private func formatChatPrompt(userMessage: String, systemPrompt: String, enableThinking: Bool) -> String {
        let chatTemplate = "<|im_start|>system\n\(systemPrompt)<|im_end|>\n<|im_start|>user\n\(userMessage)<|im_end|>\n<|im_start|>assistant\n"

        if enableThinking {
            return chatTemplate
        } else {
            return chatTemplate + "/no_think\n"
        }
    }
}

// MARK: - Errors

public enum Qwen3Error: LocalizedError {
    case modelNotFound(String)
    case modelNotLoaded
    case modelLoadingFailed(String)
    case inferenceError(String)
    case tokenizationError

    public var errorDescription: String? {
        switch self {
        case .modelNotFound(let modelName):
            return "Model '\(modelName)' not found. Place it in app bundle or ~/Library/Application Support/Qwen3CoreML/Models/"
        case .modelNotLoaded:
            return "Models are not loaded. Call loadModels() first."
        case .inferenceError(let message):
            return "Inference error: \(message)"
        case .tokenizationError:
            return "Tokenization error"
        }
    }
}

// MARK: - Helper Methods

/// Extension with utility methods for text processing
extension Qwen3CoreML {

    /// Correct text using Qwen3 (compatible with LLMRunner.correct())
    public func correct(text: String) async throws -> String {
        return try await generateSync(
            userMessage: """
            Please correct the following text by fixing punctuation, capitalization, and grammatical errors.
            Keep the original language. Only output the corrected text, nothing else.

            Text: \(text)

            Corrected:
            """,
            systemPrompt: "You are a professional proofreader and text editor.",
            maxTokens: 256,
            temperature: 0.1 // Low temperature for consistent corrections
        ).trimmingCharacters(in: .whitespacesAndNewlines)
    }
}