import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim from utils.criterion import CrossEntropyWithLabelSmooth def squared_l2_norm(x): flattened = x.view(x.unsqueeze(0).shape[0], -1) return (flattened ** 2).sum(1) def l2_norm(x): return squared_l2_norm(x).sqrt() def trades_loss(model, x_natural, y,optimizer = None, step_size=0.003, epsilon=0.031, perturb_steps=10, beta=1.0, attack='l_inf',natural_criterion= nn.CrossEntropyLoss() ): """ TRADES training (Zhang et al, 2019). """ # define KL-loss criterion_kl = nn.KLDivLoss(size_average=False) model.eval() batch_size = len(x_natural) # generate adversarial example x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach() p_natural = F.softmax(model(x_natural), dim=1) if attack == 'l_inf': for _ in range(perturb_steps): x_adv.requires_grad_() with torch.enable_grad(): loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), p_natural) grad = torch.autograd.grad(loss_kl, [x_adv])[0] x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) x_adv = torch.clamp(x_adv, 0.0, 1.0) elif attack == 'l2': delta = 0.001 * torch.randn(x_natural.shape).cuda().detach() delta = Variable(delta.data, requires_grad=True) # Setup optimizers optimizer_delta = optim.SGD([delta], lr=epsilon / perturb_steps * 2) for _ in range(perturb_steps): adv = x_natural + delta # optimize optimizer_delta.zero_grad() with torch.enable_grad(): loss = (-1) * criterion_kl(F.log_softmax(model(adv), dim=1), p_natural) loss.backward(retain_graph=True) # renorming gradient grad_norms = delta.grad.view(batch_size, -1).norm(p=2, dim=1) delta.grad.div_(grad_norms.view(-1, 1, 1, 1)) # avoid nan or inf if gradient is 0 if (grad_norms == 0).any(): delta.grad[grad_norms == 0] = torch.randn_like(delta.grad[grad_norms == 0]) optimizer_delta.step() # projection delta.data.add_(x_natural) delta.data.clamp_(0, 1).sub_(x_natural) delta.data.renorm_(p=2, dim=0, maxnorm=epsilon) x_adv = Variable(x_natural + delta, requires_grad=False) else: raise ValueError(f'Attack={attack} not supported for TRADES training!') model.train() x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) optimizer.zero_grad() # calculate robust loss logits_natural = model(x_natural) # print("loguts natural:{}".format(logits_natural)) logits_adv = model(x_adv) # print("loguts adv:{}".format(logits_adv)) loss_natural = natural_criterion(logits_natural, y) loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(logits_adv, dim=1), F.softmax(logits_natural, dim=1)) loss = loss_natural + beta * loss_robust return loss