import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.optim as optim import numpy as np # def attack_pgd(model,train_batch_data,train_batch_labels,attack_iters=10,step_size=2/255.0,epsilon=8.0/255.0): # ce_loss = torch.nn.CrossEntropyLoss().cuda() # train_ifgsm_data = train_batch_data.detach() + torch.zeros_like(train_batch_data).uniform_(-epsilon,epsilon) # train_ifgsm_data = torch.clamp(train_ifgsm_data,0,1) # for i in range(attack_iters): # train_ifgsm_data.requires_grad_() # logits = model(train_ifgsm_data) # loss = ce_loss(logits,train_batch_labels.cuda()) # loss.backward() # train_grad = train_ifgsm_data.grad.detach() # train_ifgsm_data = train_ifgsm_data + step_size*torch.sign(train_grad) # train_ifgsm_data = torch.clamp(train_ifgsm_data.detach(),0,1) # train_ifgsm_pert = train_ifgsm_data - train_batch_data # train_ifgsm_pert = torch.clamp(train_ifgsm_pert,-epsilon,epsilon) # train_ifgsm_data = train_batch_data + train_ifgsm_pert # train_ifgsm_data = train_ifgsm_data.detach() # return train_ifgsm_data def kl_loss(a,b): loss = -a*b + torch.log(b+1e-5)*b return loss def rslad_inner_loss(model, teacher_logits, x_natural, y, optimizer, step_size=0.0078, epsilon=0.031, perturb_steps=10, beta=6.0): # define KL-loss criterion_kl = nn.KLDivLoss(size_average=False,reduce=False) model.eval() batch_size = len(x_natural) # generate adversarial example x_adv = x_natural.detach() + 0.001 * torch.randn(x_natural.shape).cuda().detach() for _ in range(perturb_steps): x_adv.requires_grad_() with torch.enable_grad(): loss_kl = criterion_kl(F.log_softmax(model(x_adv), dim=1), F.softmax(teacher_logits, dim=1)) loss_kl = torch.sum(loss_kl) grad = torch.autograd.grad(loss_kl, [x_adv])[0] x_adv = x_adv.detach() + step_size * torch.sign(grad.detach()) x_adv = torch.min(torch.max(x_adv, x_natural - epsilon), x_natural + epsilon) x_adv = torch.clamp(x_adv, 0.0, 1.0) model.train() x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) # zero gradient # optimizer.zero_grad() # logits = model(x_adv) return x_adv def rslad_loss(teacher_model,model,x_natural,y,optimizer,step_size=0.0078, epsilon=0.031, perturb_steps=10, beta=6.0): teacher_logits = teacher_model(x_natural) x_adv = rslad_inner_loss(model,teacher_logits,x_natural,y,optimizer,step_size,epsilon,perturb_steps) adv_logits = model(x_adv) model.train() nat_logits = model(x_natural) kl_Loss1 = kl_loss(F.log_softmax(adv_logits,dim=1),F.softmax(teacher_logits.detach(),dim=1)) kl_Loss2 = kl_loss(F.log_softmax(nat_logits,dim=1),F.softmax(teacher_logits.detach(),dim=1)) kl_Loss1 = torch.mean(kl_Loss1) kl_Loss2 = torch.mean(kl_Loss2) loss = 5/6.0*kl_Loss1 + 1/6.0*kl_Loss2 return loss