shahviransh commited on
Commit
619f5be
·
verified ·
1 Parent(s): 719445e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -6
README.md CHANGED
@@ -54,6 +54,11 @@ This is an ensemble fraud detection system trained on 1.47M e-commerce transacti
54
 
55
  ### Usage
56
 
 
 
 
 
 
57
  ```python
58
  import joblib
59
  import numpy as np
@@ -66,15 +71,18 @@ xgb_model = joblib.load("xgb_model.pkl")
66
  ensemble_model = joblib.load("ensemble_model.pkl")
67
  scaler = joblib.load("scaler.pkl")
68
 
69
- # Prepare your data (same features as training)
70
- X = ... # Your transaction data
71
 
72
- # Scale
73
- X_scaled = scaler.transform(X)
74
 
75
  # Predict with ensemble
76
- fraud_proba = ensemble_model.predict_proba(X_scaled)[:, 1]
77
- fraud_pred = ensemble_model.predict(X_scaled)
 
 
 
78
  ```
79
 
80
  ### License
 
54
 
55
  ### Usage
56
 
57
+ ```python
58
+ ### Usage
59
+
60
+ ## Warning: Need GPU environment with CUDA installed
61
+
62
  ```python
63
  import joblib
64
  import numpy as np
 
71
  ensemble_model = joblib.load("ensemble_model.pkl")
72
  scaler = joblib.load("scaler.pkl")
73
 
74
+ # Prepare your data
75
+ df = ...
76
 
77
+ X = df[df.columns.difference(['Is Fraudulent'])].copy()
78
+ y = df['Is Fraudulent'].copy()
79
 
80
  # Predict with ensemble
81
+ fraud_proba = ensemble_model.predict_proba(X)[:, 1]
82
+ fraud_pred = ensemble_model.predict(X)
83
+
84
+ # Evaluate predictions
85
+ evaluate_models([lr_model, rf_model, nn_model, xgb_model, ensemble_model], X, y, ['Logistic Regression', 'Random Forest', 'Neural Network', 'XGBoost', 'Stacking Ensemble'])
86
  ```
87
 
88
  ### License