abh4006 commited on
Commit
5cf9268
·
verified ·
1 Parent(s): 13f9d3a

Update Readme.md

Browse files
Files changed (1) hide show
  1. README.md +39 -1
README.md CHANGED
@@ -11,4 +11,42 @@ base_model:
11
  tags:
12
  - biology
13
  - medical
14
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  tags:
12
  - biology
13
  - medical
14
+ ---
15
+
16
+ # Welcome to SAMF model [MICCAI' 25]!
17
+ **[MICCAI' 25] From Slices to Volumes: Multi-Scale Fusion of 2D and 3D Features for CT Scan Report Generation**
18
+
19
+ | **Model** | **Bleu1** | **Bleu4** | **RougeL** | **Meteor** | **Bert F1** | **Llama Score** |
20
+ |-----------------------|-----------|-----------|------------|------------|-------------|-----------------|
21
+ | CT2Rep | 0.309 | 0.172 | 0.243 | 0.173 | 0.865 | 6.35 |
22
+ | CT-Chat | 0.395 | - | 0.321 | 0.219 | - | 5.664 |
23
+ | Our Baseline (SAMF) | 0.423 | 0.203 | 0.338 | 0.356 | 0.879 | 6.792 |
24
+ | SAMF + *Ao2D* | **0.440** | **0.261** | **0.417** | **0.417** | **0.889** | **7.165** |
25
+
26
+
27
+ ## Introduction
28
+
29
+
30
+
31
+ *Slice Attentive Multimodal Fusion (SAMF)* , a framework that combines the rich, high-resolution information from 2D slices with the spatial coherence of 3D volumetric data. Experimental results demonstrate that our method outperforms existing baseline approaches in both report generation and multiple-choice question answering, highlighting the critical role of multidimensional feature integration.
32
+
33
+
34
+ ## Model Description
35
+
36
+ - **Model type:** 3D Medical Report Generation and Visual Question Answering
37
+ - **Language(s) (NLP):** English
38
+ - **License:** apache-2.0
39
+ - **Finetuned from model:** microsoft/Phi-3-mini-4k-instruct
40
+
41
+ ### Training Data
42
+
43
+ - **Medical Report Generation and Visual Question Answering:** [ibrahimhamamci/CT-RATE](https://huggingface.co/datasets/ibrahimhamamci/CT-RATE), default subset
44
+
45
+ ### Hardware Utilization
46
+
47
+ - **Hardware Type:** 1 × NVIDIA-A100
48
+ - **Hours used** around 16 hours
49
+
50
+ ### Evaluation
51
+
52
+ To perform evaluation using this model, please refer to our GitHub repository ([serag-ai/SAMF](https://github.com/serag-ai/SAMF.git)), which provides detailed information on how to use it.