Update README.md
Browse files
README.md
CHANGED
|
@@ -12,19 +12,47 @@ tags:
|
|
| 12 |
- quelmap/Lightning-4b
|
| 13 |
- Intel/hebrew-math-tutor-v1
|
| 14 |
- GetSoloTech/Qwen3-Code-Reasoning-4B
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
---
|
| 16 |
|
| 17 |
-
# quem-v2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
quem-v2-4b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
| 20 |
* [janhq/Jan-v1-2509](https://huggingface.co/janhq/Jan-v1-2509)
|
| 21 |
* [quelmap/Lightning-4b](https://huggingface.co/quelmap/Lightning-4b)
|
| 22 |
* [Intel/hebrew-math-tutor-v1](https://huggingface.co/Intel/hebrew-math-tutor-v1)
|
| 23 |
* [GetSoloTech/Qwen3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Qwen3-Code-Reasoning-4B)
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
models:
|
| 29 |
- model: janhq/Jan-v1-2509
|
| 30 |
parameters:
|
|
@@ -55,26 +83,101 @@ parameters:
|
|
| 55 |
|
| 56 |
device: auto
|
| 57 |
dtype: bfloat16
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
!pip install -qU transformers accelerate
|
| 62 |
|
| 63 |
-
|
| 64 |
-
import
|
| 65 |
import torch
|
| 66 |
|
| 67 |
-
|
| 68 |
-
messages = [{"role": "user", "content": "What is a large language model?"}]
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
"text-generation",
|
| 74 |
-
model=
|
| 75 |
torch_dtype=torch.float16,
|
| 76 |
device_map="auto",
|
| 77 |
)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
- quelmap/Lightning-4b
|
| 13 |
- Intel/hebrew-math-tutor-v1
|
| 14 |
- GetSoloTech/Qwen3-Code-Reasoning-4B
|
| 15 |
+
language:
|
| 16 |
+
- en
|
| 17 |
+
- pt
|
| 18 |
+
pipeline_tag: text-generation
|
| 19 |
---
|
| 20 |
|
| 21 |
+
# π€ quem-4b v2
|
| 22 |
+
|
| 23 |
+
A 4-billion parameter merged language model built on the **Qwen3** family. **quem-v2-4b** blends four complementary models using **LazyMergekit** with the **DARE-TIES** method to deliver a compact, versatile model for instruction following, coding assistance, and reasoning.
|
| 24 |
+
|
| 25 |
+
## π Overview
|
| 26 |
+
|
| 27 |
+
**quem-v2-4b** is a carefully balanced merge of four specialized 4B-class models. Using **DARE-TIES** with equal weights, it aims to retain strengths across general conversation (Jan), fast responses (Lightning), mathematical reasoning (Hebrew Math Tutor), and code reasoning (Qwen3 Code Reasoning).
|
| 28 |
+
|
| 29 |
+
### β¨ Key Features
|
| 30 |
+
|
| 31 |
+
* **Balanced Merge:** Equal weights (25% each) for stability across skills.
|
| 32 |
+
* **Reasoning & Code:** Improved chain-of-thought style reasoning and code understanding from contributor models.
|
| 33 |
+
* **Compact & Efficient:** 4B parameters for fast inference on a single consumer GPU.
|
| 34 |
+
* **Instruction-Tuned:** Works out-of-the-box with standard chat prompts via the HF chat template.
|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
## π§ Base Models
|
| 39 |
|
|
|
|
| 40 |
* [janhq/Jan-v1-2509](https://huggingface.co/janhq/Jan-v1-2509)
|
| 41 |
* [quelmap/Lightning-4b](https://huggingface.co/quelmap/Lightning-4b)
|
| 42 |
* [Intel/hebrew-math-tutor-v1](https://huggingface.co/Intel/hebrew-math-tutor-v1)
|
| 43 |
* [GetSoloTech/Qwen3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Qwen3-Code-Reasoning-4B)
|
| 44 |
|
| 45 |
+
All contributions are merged on top of a Qwen3 base (see configuration below).
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## π οΈ Merge Method & Configuration
|
| 50 |
+
|
| 51 |
+
The merge was performed using **[LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)**, ensuring a harmonious integration of the different specializations.
|
| 52 |
|
| 53 |
+
### Merge YAML (LazyMergekit)
|
| 54 |
+
|
| 55 |
+
```yaml
|
| 56 |
models:
|
| 57 |
- model: janhq/Jan-v1-2509
|
| 58 |
parameters:
|
|
|
|
| 83 |
|
| 84 |
device: auto
|
| 85 |
dtype: bfloat16
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
---
|
| 89 |
+
|
| 90 |
+
## π» Usage (Transformers)
|
| 91 |
+
|
| 92 |
+
Install:
|
| 93 |
+
|
| 94 |
+
```bash
|
| 95 |
+
pip install -U transformers accelerate torch
|
| 96 |
+
```
|
| 97 |
|
| 98 |
+
Minimal chat example:
|
|
|
|
| 99 |
|
| 100 |
+
```python
|
| 101 |
+
from transformers import AutoTokenizer, pipeline
|
| 102 |
import torch
|
| 103 |
|
| 104 |
+
model_id = "rodrigomt/quem-v2-4b"
|
|
|
|
| 105 |
|
| 106 |
+
messages = [
|
| 107 |
+
{"role": "user", "content": "What is a large language model?"}
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 111 |
+
prompt = tokenizer.apply_chat_template(
|
| 112 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
pipe = pipeline(
|
| 116 |
"text-generation",
|
| 117 |
+
model=model_id,
|
| 118 |
torch_dtype=torch.float16,
|
| 119 |
device_map="auto",
|
| 120 |
)
|
| 121 |
|
| 122 |
+
out = pipe(
|
| 123 |
+
prompt,
|
| 124 |
+
max_new_tokens=256,
|
| 125 |
+
do_sample=True,
|
| 126 |
+
temperature=0.7,
|
| 127 |
+
top_k=50,
|
| 128 |
+
top_p=0.95,
|
| 129 |
+
)
|
| 130 |
+
print(out[0]["generated_text"])
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
### Prompting Tips
|
| 134 |
+
|
| 135 |
+
* Use standard **system / user / assistant** chat structure.
|
| 136 |
+
* For coding tasks, include concise requirements, desired language, and constraints.
|
| 137 |
+
* For math/logic tasks, allow slightly higher `max_new_tokens` and consider lower temperature (e.g., `temperature=0.3β0.5`) for more deterministic reasoning.
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## βοΈ Inference Notes
|
| 142 |
+
|
| 143 |
+
* **Precision:** Default `bfloat16` (bf16); `float16` also works well on most GPUs.
|
| 144 |
+
* **Quantization:** 4-bit/8-bit quantization via `bitsandbytes` or `auto-gptq` can reduce memory; expect some quality trade-offs.
|
| 145 |
+
* **Decoding:**
|
| 146 |
+
|
| 147 |
+
* General chat: `temperature=0.7`, `top_p=0.9β0.95`, `max_new_tokens=256`.
|
| 148 |
+
* Code/Math: lower temperature (`0.2β0.5`), optionally increase `max_new_tokens` to 512β1024 for step-by-step reasoning.
|
| 149 |
+
|
| 150 |
+
---
|
| 151 |
+
|
| 152 |
+
## π§ͺ Evaluation
|
| 153 |
+
|
| 154 |
+
No unified public benchmark is included in this release. Early local testing indicates improved step-by-step reasoning compared to the prior 4B merge on similar hardware, but results are **highly sensitive** to decoding parameters and prompts. Community PRs with reproducible evals (Arena/AlpacaEval/HELM/OpenLLM Leaderboards/LocalAIMe) are welcome.
|
| 155 |
+
|
| 156 |
+
---
|
| 157 |
+
|
| 158 |
+
## π₯οΈ System Requirements
|
| 159 |
+
|
| 160 |
+
**Minimum (single GPU):**
|
| 161 |
+
|
| 162 |
+
* RAM: 16 GB
|
| 163 |
+
* VRAM: 8 GB (e.g., RTX 3060 Ti / 3070 class)
|
| 164 |
+
* Storage: ~20 GB free
|
| 165 |
+
* CPU: Recent quad-core
|
| 166 |
+
|
| 167 |
+
**Recommended:**
|
| 168 |
+
|
| 169 |
+
* RAM: 32 GB
|
| 170 |
+
* VRAM: 12 GB+ (e.g., RTX 4070 / 3080 or higher)
|
| 171 |
+
* CPU: Modern multi-core
|
| 172 |
+
|
| 173 |
+
> Quantized weights can reduce VRAM but may affect quality.
|
| 174 |
+
|
| 175 |
+
---
|
| 176 |
+
|
| 177 |
+
## π Acknowledgments
|
| 178 |
+
|
| 179 |
+
Thanks to the authors and communities behind **Jan**, **Lightning**, **Intel Hebrew Math Tutor**, **Qwen3 Code Reasoning**, and the **LazyMergekit** toolchain.
|
| 180 |
+
|
| 181 |
+
## π License
|
| 182 |
+
|
| 183 |
+
This model is licensed under the **Apache 2.0 License**.
|