rewicks commited on
Commit
9fc3d8f
·
verified ·
1 Parent(s): 98cad20

Upload model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model.py +222 -0
model.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from transformers import PreTrainedModel
8
+
9
+ from typing import List
10
+
11
+ from .config import LidirlLSTMConfig
12
+
13
+ def torch_max_no_pads(model_out, lengths):
14
+ indices = torch.arange(model_out.size(1)).to(model_out.device)
15
+ mask = (indices < lengths.view(-1, 1)).unsqueeze(-1).expand(model_out.size())
16
+ model_out = torch.where(mask, model_out, torch.tensor(-1e9))
17
+ max_pool = torch.max(model_out, 1)[0]
18
+ return max_pool
19
+
20
+
21
+ class ProjectionLayer(nn.Module):
22
+ """
23
+ Noise-aware labels layer or traditional linear projection
24
+ """
25
+
26
+ def __init__(self,
27
+ hidden_dim : int,
28
+ label_size : int,
29
+ montecarlo_layer : bool = False):
30
+ super().__init__()
31
+ self.montecarlo_layer = montecarlo_layer
32
+ if montecarlo_layer:
33
+ self.proj = MCSoftmaxDenseFA(hidden_dim, label_size, 1, logits_only=True)
34
+ else:
35
+ # eventually I'm considering making this a variable size classifier so it's a sequence of layers even though it's just one
36
+ self.projs = [
37
+ nn.Linear(hidden_dim, label_size)
38
+ ]
39
+ self.proj = nn.Sequential(*self.projs)
40
+ self.init_layer()
41
+
42
+ def forward(self, x):
43
+ return self.proj(x)
44
+
45
+ def init_layer(self, pi : float = 0.01):
46
+ """
47
+ Initialize the final classification layer so all predictions are close to 0
48
+ """
49
+
50
+ if self.montecarlo_layer:
51
+ self.proj.init_layer(pi)
52
+ return
53
+
54
+ for layer in self.proj.modules():
55
+ if isinstance(layer, nn.Linear):
56
+ nn.init.normal_(layer.weight, mean=0.0, std=0.01)
57
+ if layer.bias is not None:
58
+ # Bias: -log((1 - pi) / pi)
59
+ bias_value = -math.log((1 - pi) / pi)
60
+ nn.init.constant_(layer.bias, bias_value)
61
+
62
+
63
+ class MinLSTMCell(nn.Module):
64
+ """
65
+ https://arxiv.org/pdf/2410.01201
66
+ https://github.com/YecanLee/min-LSTM-torch/blob/main/minLSTMcell.py
67
+ bidirectional and parallel
68
+ hold layer depth and sweep out the other dimensions
69
+ """
70
+ def __init__(self,
71
+ embed_dim,
72
+ hidden_dim):
73
+ super(MinLSTMCell, self).__init__()
74
+ self.embed_dim = embed_dim
75
+ self.hidden_dim = hidden_dim
76
+ self.output_dim = embed_dim
77
+
78
+ # Initialize the linear layers for the forget gate, input gate, and hidden state transformation
79
+ self.linear_f = nn.Linear(embed_dim, hidden_dim)
80
+ self.linear_i = nn.Linear(embed_dim, hidden_dim)
81
+ self.linear_h = nn.Linear(embed_dim, hidden_dim)
82
+
83
+ def parallel_scan_log(self, log_coeffs, log_values):
84
+ # log_coeffs: (batch_size, seq_len, input_size)
85
+ # log_values: (batch_size, seq_len + 1, input_size)
86
+ a_star = F.pad(torch.cumsum(log_coeffs, dim=1), (0, 0, 1, 0))
87
+ log_h0_plus_b_star = torch.logcumsumexp(
88
+ log_values - a_star, dim=1)
89
+ log_h = a_star + log_h0_plus_b_star
90
+ return torch.exp(log_h)[:, 1:]
91
+
92
+ def g(self, x):
93
+ return torch.where(x >= 0, x+0.5, torch.sigmoid(x))
94
+
95
+ def log_g(self, x):
96
+ return torch.where(x >= 0, (F.relu(x)+0.5).log(), -F.softplus(-x))
97
+
98
+ def forward(self, inputs):
99
+ h_init = torch.zeros(inputs.size(0), 1, self.hidden_dim, device=inputs.device)
100
+
101
+ diff = F.softplus(-self.linear_f(inputs)) - F.softplus(-self.linear_i(inputs))
102
+
103
+ log_f = -F.softplus(diff)
104
+ log_i = -F.softplus(-diff)
105
+ log_h_0 = torch.log(h_init)
106
+
107
+ log_tilde_h = self.log_g(self.linear_h(inputs))
108
+
109
+ h = self.parallel_scan_log(log_f, torch.cat([log_h_0, log_i + log_tilde_h], dim=1))
110
+ return h
111
+
112
+
113
+ class LSTMBlock(nn.Module):
114
+ def __init__(self,
115
+ embed_dim : int = 512,
116
+ hidden_dim : int = 2048,
117
+ num_layers : int = 6,
118
+ dropout : float = 0.1,
119
+ bidirectional : bool = False
120
+ ):
121
+ super(LSTMBlock, self).__init__()
122
+
123
+ self.layers = []
124
+ last_dim = embed_dim
125
+ for _ in range(num_layers):
126
+ self.layers.append(MinLSTMCell(last_dim, hidden_dim))
127
+ self.layers.append(nn.LayerNorm(hidden_dim, elementwise_affine=True))
128
+ self.layers.append(nn.GELU())
129
+ self.layers.append(nn.Dropout(dropout))
130
+ last_dim = hidden_dim
131
+ self.model = nn.Sequential(*self.layers)
132
+ self.bidirectionality_term = 2 if bidirectional else 1
133
+ self.output_dim = hidden_dim * self.bidirectionality_term
134
+ self.bidirectional = bidirectional
135
+
136
+ def flip_sequence(self, inputs, lengths):
137
+ # Here we want to flip the sequence but keep the right-padding
138
+ # We can do this by flipping the sequence and then flipping the padding
139
+ new = []
140
+ for inp, leng in zip(inputs, lengths):
141
+ new.append(inp[:leng].flip(0))
142
+ return pad_sequence(new, batch_first=True).to(inputs.device)
143
+
144
+ def forward(self, inputs, lengths):
145
+ encoding = self.model(inputs)
146
+ last_token = encoding[torch.arange(encoding.size(0)), lengths - 1].view(inputs.size(0), 1, -1)
147
+ if self.bidirectional:
148
+ reverse_sequence = self.flip_sequence(inputs, lengths)
149
+ reverse_encoding = self.model(reverse_sequence)
150
+ reverse_last_token = reverse_encoding[torch.arange(reverse_encoding.size(0)), lengths - 1].view(inputs.size(0), 1, -1)
151
+ last_token = torch.cat((last_token, reverse_last_token), dim=-1)
152
+
153
+ return last_token, torch.ones((inputs.size(0), 1), device=inputs.device, dtype=torch.long)
154
+
155
+
156
+ class LidirlLSTM(PreTrainedModel):
157
+ """
158
+ Defines the Lidirl LSTM Model
159
+ """
160
+
161
+ config_class = LidirlLSTMConfig
162
+ def __init__(self, config):
163
+ super().__init__(config)
164
+
165
+ self.encoder = LSTMBlock(
166
+ embed_dim = config.embed_dim,
167
+ hidden_dim = config.hidden_dim,
168
+ num_layers = config.num_layers,
169
+ dropout = config.dropout,
170
+ bidirectional = config.bidirectional
171
+ )
172
+ self.embed_layer = nn.Embedding(config.vocab_size, config.embed_dim)
173
+ self.proj = ProjectionLayer(self.encoder.output_dim, config.label_size, config.montecarlo_layer)
174
+
175
+ self.label_size = config.label_size
176
+ self.max_length = config.max_length
177
+ self.multilabel = config.multilabel
178
+ self.monte_carlo = config.montecarlo_layer
179
+
180
+ self.labels = ["" for _ in config.labels]
181
+ for key, value in config.labels.items():
182
+ self.labels[value] = key
183
+
184
+ def forward(self, inputs, lengths):
185
+ inputs = inputs[:, :self.max_length]
186
+ lengths = lengths.clamp(max=self.max_length)
187
+
188
+ embeddings = self.embed_layer(inputs)
189
+ encoding, lengths = self.encoder(embeddings, lengths=lengths)
190
+ max_pool = torch_max_no_pads(encoding, lengths)
191
+ projection = self.proj(max_pool)
192
+
193
+ return projection
194
+
195
+ def __call__(self, inputs, lengths):
196
+ # this is inference only model
197
+ with torch.no_grad():
198
+ logits = self.forward(inputs, lengths)
199
+ if self.multilabel:
200
+ probs = torch.sigmoid(logits)
201
+ else:
202
+ probs = torch.softmax(logits, dim=-1)
203
+ return probs
204
+
205
+ def predict(self, inputs, lengths, threshold=0.5, top_k=None):
206
+ probs = self.__call__(inputs, lengths)
207
+ if top_k is not None and top_k > 0:
208
+ top_k_preds = torch.topk(probs, top_k, dim=1)
209
+ pred_labels = []
210
+ for pred, prob in zip(top_k_preds.indices, top_k_preds.values):
211
+ pred_labels.append([(self.labels[p.item()], pr.item()) for (p, pr) in zip(pred, prob)])
212
+ return pred_labels
213
+ if self.multilabel:
214
+ batch_idx, label_idx = torch.where(probs > threshold)
215
+ output = [[] for _ in range(len(inputs))]
216
+ for batch, label in zip(batch_idx, label_idx):
217
+ label_string = self.labels
218
+ output[batch.item()].append(
219
+ (self.labels[label.item()], probs[batch, label].item())
220
+ )
221
+ return output
222
+