new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 15

Decade of Natural Language Processing in Chronic Pain: A Systematic Review

In recent years, the intersection of Natural Language Processing (NLP) and public health has opened innovative pathways for investigating various domains, including chronic pain in textual datasets. Despite the promise of NLP in chronic pain, the literature is dispersed across various disciplines, and there is a need to consolidate existing knowledge, identify knowledge gaps in the literature, and inform future research directions in this emerging field. This review aims to investigate the state of the research on NLP-based interventions designed for chronic pain research. A search strategy was formulated and executed across PubMed, Web of Science, IEEE Xplore, Scopus, and ACL Anthology to find studies published in English between 2014 and 2024. After screening 132 papers, 26 studies were included in the final review. Key findings from this review underscore the significant potential of NLP techniques to address pressing challenges in chronic pain research. The past 10 years in this field have showcased the utilization of advanced methods (transformers like RoBERTa and BERT) achieving high-performance metrics (e.g., F1>0.8) in classification tasks, while unsupervised approaches like Latent Dirichlet Allocation (LDA) and k-means clustering have proven effective for exploratory analyses. Results also reveal persistent challenges such as limited dataset diversity, inadequate sample sizes, and insufficient representation of underrepresented populations. Future research studies should explore multimodal data validation systems, context-aware mechanistic modeling, and the development of standardized evaluation metrics to enhance reproducibility and equity in chronic pain research.

  • 1 authors
·
Dec 19, 2024

GoEX: Perspectives and Designs Towards a Runtime for Autonomous LLM Applications

Large Language Models (LLMs) are evolving beyond their classical role of providing information within dialogue systems to actively engaging with tools and performing actions on real-world applications and services. Today, humans verify the correctness and appropriateness of the LLM-generated outputs (e.g., code, functions, or actions) before putting them into real-world execution. This poses significant challenges as code comprehension is well known to be notoriously difficult. In this paper, we study how humans can efficiently collaborate with, delegate to, and supervise autonomous LLMs in the future. We argue that in many cases, "post-facto validation" - verifying the correctness of a proposed action after seeing the output - is much easier than the aforementioned "pre-facto validation" setting. The core concept behind enabling a post-facto validation system is the integration of an intuitive undo feature, and establishing a damage confinement for the LLM-generated actions as effective strategies to mitigate the associated risks. Using this, a human can now either revert the effect of an LLM-generated output or be confident that the potential risk is bounded. We believe this is critical to unlock the potential for LLM agents to interact with applications and services with limited (post-facto) human involvement. We describe the design and implementation of our open-source runtime for executing LLM actions, Gorilla Execution Engine (GoEX), and present open research questions towards realizing the goal of LLMs and applications interacting with each other with minimal human supervision. We release GoEX at https://github.com/ShishirPatil/gorilla/.

  • 10 authors
·
Apr 10, 2024

ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation

Uncertainty estimation is an essential and heavily-studied component for the reliable application of semantic segmentation methods. While various studies exist claiming methodological advances on the one hand, and successful application on the other hand, the field is currently hampered by a gap between theory and practice leaving fundamental questions unanswered: Can data-related and model-related uncertainty really be separated in practice? Which components of an uncertainty method are essential for real-world performance? Which uncertainty method works well for which application? In this work, we link this research gap to a lack of systematic and comprehensive evaluation of uncertainty methods. Specifically, we identify three key pitfalls in current literature and present an evaluation framework that bridges the research gap by providing 1) a controlled environment for studying data ambiguities as well as distribution shifts, 2) systematic ablations of relevant method components, and 3) test-beds for the five predominant uncertainty applications: OoD-detection, active learning, failure detection, calibration, and ambiguity modeling. Empirical results on simulated as well as real-world data demonstrate how the proposed framework is able to answer the predominant questions in the field revealing for instance that 1) separation of uncertainty types works on simulated data but does not necessarily translate to real-world data, 2) aggregation of scores is a crucial but currently neglected component of uncertainty methods, 3) While ensembles are performing most robustly across the different downstream tasks and settings, test-time augmentation often constitutes a light-weight alternative. Code is at: https://github.com/IML-DKFZ/values

  • 5 authors
·
Jan 16, 2024

Making LLMs Reliable When It Matters Most: A Five-Layer Architecture for High-Stakes Decisions

Current large language models (LLMs) excel in verifiable domains where outputs can be checked before action but prove less reliable for high-stakes strategic decisions with uncertain outcomes. This gap, driven by mutually reinforcing cognitive biases in both humans and artificial intelligence (AI) systems, threatens the defensibility of valuations and sustainability of investments in the sector. This report describes a framework emerging from systematic qualitative assessment across 7 frontier-grade LLMs and 3 market-facing venture vignettes under time pressure. Detailed prompting specifying decision partnership and explicitly instructing avoidance of sycophancy, confabulation, solution drift, and nihilism achieved initial partnership state but failed to maintain it under operational pressure. Sustaining protective partnership state required an emergent 7-stage calibration sequence, built upon a 4-stage initialization process, within a 5-layer protection architecture enabling bias self-monitoring, human-AI adversarial challenge, partnership state verification, performance degradation detection, and stakeholder protection. Three discoveries resulted: partnership state is achievable through ordered calibration but requires emergent maintenance protocols; reliability degrades when architectural drift and context exhaustion align; and dissolution discipline prevents costly pursuit of fundamentally wrong directions. Cross-model validation revealed systematic performance differences across LLM architectures. This approach demonstrates that human-AI teams can achieve cognitive partnership capable of preventing avoidable regret in high-stakes decisions, addressing return-on-investment expectations that depend on AI systems supporting consequential decision-making without introducing preventable cognitive traps when verification arrives too late.

  • 1 authors
·
Nov 10

Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions

We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.

  • 3 authors
·
Jan 15, 2024

6G-Enabled Digital Twin Framework for Real-Time Cyber-Physical Systems: An Experimental Validation with Industrial Bearing Fault Detection

Current Cyber-Physical Systems (CPS) integrated with Digital Twin (DT) technology face critical limitations in achieving real-time performance for mission-critical industrial applications. Existing 5G-enabled systems suffer from latencies exceeding 10ms, which are inadequate for applications requiring sub-millisecond response times, such as autonomous industrial control and predictive maintenance. This research aims to develop and validate a 6G-enabled Digital Twin framework that achieves ultra-low latency communication and real-time synchronization between physical industrial assets and their digital counterparts, specifically targeting bearing fault detection as a critical industrial use case. The proposed framework integrates terahertz communications (0.1-1 THz), intelligent reflecting surfaces, and edge artificial intelligence within a five-layer architecture. Experimental validation was conducted using the Case Western Reserve University (CWRU) bearing dataset, implementing comprehensive feature extraction (15 time and frequency domain features) and Random Forest classification algorithms. The system performance was evaluated against traditional WiFi-6 and 5G networks across multiple metrics, including classification accuracy, end-to-end latency, and scalability. It achieved 97.7% fault classification accuracy with 0.8ms end-to-end latency, representing a 15.6x improvement over WiFi-6 (12.5ms) and 5.25x improvement over 5G (4.2ms) networks. The system demonstrated superior scalability with sub-linear processing time growth and maintained consistent performance across four bearing fault categories (normal, inner race, outer race, and ball faults) with macro-averaged F1-scores exceeding 97%.

  • 2 authors
·
Oct 4

Explainable AI Methods for Neuroimaging: Systematic Failures of Common Tools, the Need for Domain-Specific Validation, and a Proposal for Safe Application

Trustworthy interpretation of deep learning models is critical for neuroimaging applications, yet commonly used Explainable AI (XAI) methods lack rigorous validation, risking misinterpretation. We performed the first large-scale, systematic comparison of XAI methods on ~45,000 structural brain MRIs using a novel XAI validation framework. This framework establishes verifiable ground truth by constructing prediction tasks with known signal sources - from localized anatomical features to subject-specific clinical lesions - without artificially altering input images. Our analysis reveals systematic failures in two of the most widely used methods: GradCAM consistently failed to localize predictive features, while Layer-wise Relevance Propagation generated extensive, artifactual explanations that suggest incompatibility with neuroimaging data characteristics. Our results indicate that these failures stem from a domain mismatch, where methods with design principles tailored to natural images require substantial adaptation for neuroimaging data. In contrast, the simpler, gradient-based method SmoothGrad, which makes fewer assumptions about data structure, proved consistently accurate, suggesting its conceptual simplicity makes it more robust to this domain shift. These findings highlight the need for domain-specific adaptation and validation of XAI methods, suggest that interpretations from prior neuroimaging studies using standard XAI methodology warrant re-evaluation, and provide urgent guidance for practical application of XAI in neuroimaging.

  • 6 authors
·
Aug 4

A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation

Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.

  • 4 authors
·
Oct 11, 2024

What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims

Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.

  • 5 authors
·
Jun 12, 2024

OCTCube-M: A 3D multimodal optical coherence tomography foundation model for retinal and systemic diseases with cross-cohort and cross-device validation

We present OCTCube-M, a 3D OCT-based multi-modal foundation model for jointly analyzing OCT and en face images. OCTCube-M first developed OCTCube, a 3D foundation model pre-trained on 26,685 3D OCT volumes encompassing 1.62 million 2D OCT images. It then exploits a novel multi-modal contrastive learning framework COEP to integrate other retinal imaging modalities, such as fundus autofluorescence and infrared retinal imaging, into OCTCube, efficiently extending it into multi-modal foundation models. OCTCube achieves best performance on predicting 8 retinal diseases, demonstrating strong generalizability on cross-cohort, cross-device and cross-modality prediction. OCTCube can also predict cross-organ nodule malignancy (CT) and low cardiac ejection fraction as well as systemic diseases, such as diabetes and hypertension, revealing its wide applicability beyond retinal diseases. We further develop OCTCube-IR using COEP with 26,685 OCT and IR image pairs. OCTCube-IR can accurately retrieve between OCT and IR images, allowing joint analysis between 3D and 2D retinal imaging modalities. Finally, we trained a tri-modal foundation model OCTCube-EF from 4 million 2D OCT images and 400K en face retinal images. OCTCube-EF attains the best performance on predicting the growth rate of geographic atrophy (GA) across datasets collected from 6 multi-center global trials conducted in 23 countries. This improvement is statistically equivalent to running a clinical trial with more than double the size of the original study. Our analysis based on another retrospective case study reveals OCTCube-EF's ability to avoid false positive Phase-III results according to its accurate treatment effect estimation on the Phase-II results. In sum, OCTCube-M is a 3D multi-modal foundation model framework that integrates OCT and other retinal imaging modalities revealing substantial diagnostic and prognostic benefits.

  • 12 authors
·
Aug 20, 2024

Data-Juicer: A One-Stop Data Processing System for Large Language Models

The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, diverse, and high-quality data. Despite this, existing open-source tools for LLM data processing remain limited and mostly tailored to specific datasets, with an emphasis on the reproducibility of released data over adaptability and usability, inhibiting potential applications. In response, we propose a one-stop, powerful yet flexible and user-friendly LLM data processing system named Data-Juicer. Our system offers over 50 built-in versatile operators and pluggable tools, which synergize modularity, composability, and extensibility dedicated to diverse LLM data processing needs. By incorporating visualized and automatic evaluation capabilities, Data-Juicer enables a timely feedback loop to accelerate data processing and gain data insights. To enhance usability, Data-Juicer provides out-of-the-box components for users with various backgrounds, and fruitful data recipes for LLM pre-training and post-tuning usages. Further, we employ multi-facet system optimization and seamlessly integrate Data-Juicer with both LLM and distributed computing ecosystems, to enable efficient and scalable data processing. Empirical validation of the generated data recipes reveals considerable improvements in LLaMA performance for various pre-training and post-tuning cases, demonstrating up to 7.45% relative improvement of averaged score across 16 LLM benchmarks and 16.25% higher win rate using pair-wise GPT-4 evaluation. The system's efficiency and scalability are also validated, supported by up to 88.7% reduction in single-machine processing time, 77.1% and 73.1% less memory and CPU usage respectively, and 7.91x processing acceleration when utilizing distributed computing ecosystems. Our system, data recipes, and multiple tutorial demos are released, calling for broader research centered on LLM data.

  • 13 authors
·
Sep 5, 2023

Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population

This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.

  • 15 authors
·
May 29

Research on Tibetan Tourism Viewpoints information generation system based on LLM

Tibet, ensconced within China's territorial expanse, is distinguished by its labyrinthine and heterogeneous topography, a testament to its profound historical heritage, and the cradle of a unique religious ethos. The very essence of these attributes, however, has impeded the advancement of Tibet's tourism service infrastructure, rendering existing smart tourism services inadequate for the region's visitors. This study delves into the ramifications of informational disparities at tourist sites on Tibetan tourism and addresses the challenge of establishing the Large Language Model (LLM) evaluation criteria. It introduces an innovative approach, the DualGen Bridge AI system, employing supervised fine-tuning techniques to bolster model functionality and enhance optimization processes. Furthermore, it pioneers a multi-structured generative results assessment framework. Empirical validation confirms the efficacy of this framework. The study also explores the application of the supervised fine-tuning method within the proprietary DualGen Bridge AI, aimed at refining the generation of tourist site information. The study's findings offer valuable insights for optimizing system performance and provide support and inspiration for the application of LLM technology in Tibet's tourism services and beyond, potentially revolutionizing the smart tourism industry with advanced, tailored information generation capabilities.

  • 6 authors
·
Jul 18, 2024

A deep learning system for differential diagnosis of skin diseases

Skin conditions affect an estimated 1.9 billion people worldwide. A shortage of dermatologists causes long wait times and leads patients to seek dermatologic care from general practitioners. However, the diagnostic accuracy of general practitioners has been reported to be only 0.24-0.70 (compared to 0.77-0.96 for dermatologists), resulting in referral errors, delays in care, and errors in diagnosis and treatment. In this paper, we developed a deep learning system (DLS) to provide a differential diagnosis of skin conditions for clinical cases (skin photographs and associated medical histories). The DLS distinguishes between 26 skin conditions that represent roughly 80% of the volume of skin conditions seen in primary care. The DLS was developed and validated using de-identified cases from a teledermatology practice serving 17 clinical sites via a temporal split: the first 14,021 cases for development and the last 3,756 cases for validation. On the validation set, where a panel of three board-certified dermatologists defined the reference standard for every case, the DLS achieved 0.71 and 0.93 top-1 and top-3 accuracies respectively. For a random subset of the validation set (n=963 cases), 18 clinicians reviewed the cases for comparison. On this subset, the DLS achieved a 0.67 top-1 accuracy, non-inferior to board-certified dermatologists (0.63, p<0.001), and higher than primary care physicians (PCPs, 0.45) and nurse practitioners (NPs, 0.41). The top-3 accuracy showed a similar trend: 0.90 DLS, 0.75 dermatologists, 0.60 PCPs, and 0.55 NPs. These results highlight the potential of the DLS to augment general practitioners to accurately diagnose skin conditions by suggesting differential diagnoses that may not have been considered. Future work will be needed to prospectively assess the clinical impact of using this tool in actual clinical workflows.

  • 22 authors
·
Sep 11, 2019

A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images

Automatic identification of brain lesions from magnetic resonance imaging (MRI) scans of stroke survivors would be a useful aid in patient diagnosis and treatment planning. We propose a multi-modal multi-path convolutional neural network system for automating stroke lesion segmentation. Our system has nine end-to-end UNets that take as input 2-dimensional (2D) slices and examines all three planes with three different normalizations. Outputs from these nine total paths are concatenated into a 3D volume that is then passed to a 3D convolutional neural network to output a final lesion mask. We trained and tested our method on datasets from three sources: Medical College of Wisconsin (MCW), Kessler Foundation (KF), and the publicly available Anatomical Tracings of Lesions After Stroke (ATLAS) dataset. Cross-study validation results (with independent training and validation datasets) were obtained to compare with previous methods based on naive Bayes, random forests, and three recently published convolutional neural networks. Model performance was quantified in terms of the Dice coefficient. Training on the KF and MCW images and testing on the ATLAS images yielded a mean Dice coefficient of 0.54. This was reliably better than the next best previous model, UNet, at 0.47. Reversing the train and test datasets yields a mean Dice of 0.47 on KF and MCW images, whereas the next best UNet reaches 0.45. With all three datasets combined, the current system compared to previous methods also attained a reliably higher cross-validation accuracy. It also achieved high Dice values for many smaller lesions that existing methods have difficulty identifying. Overall, our system is a clear improvement over previous methods for automating stroke lesion segmentation, bringing us an important step closer to the inter-rater accuracy level of human experts.

  • 7 authors
·
May 26, 2019

CreAgent: Towards Long-Term Evaluation of Recommender System under Platform-Creator Information Asymmetry

Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.

  • 7 authors
·
Feb 11

GLONET: Mercator's end-to-end neural Global Ocean forecasting system

Accurate ocean forecasting is crucial in different areas ranging from science to decision making. Recent advancements in data-driven models have shown significant promise, particularly in weather forecasting community, but yet no data-driven approaches have matched the accuracy and the scalability of traditional global ocean forecasting systems that rely on physics-driven numerical models and can be very computationally expensive, depending on their spatial resolution or complexity. Here, we introduce GLONET, a global ocean neural network-based forecasting system, developed by Mercator Ocean International. GLONET is trained on the global Mercator Ocean physical reanalysis GLORYS12 to integrate physics-based principles through neural operators and networks, which dynamically capture local-global interactions within a unified, scalable framework, ensuring high small-scale accuracy and efficient dynamics. GLONET's performance is assessed and benchmarked against two other forecasting systems: the global Mercator Ocean analysis and forecasting 1/12 high-resolution physical system GLO12 and a recent neural-based system also trained from GLORYS12. A series of comprehensive validation metrics is proposed, specifically tailored for neural network-based ocean forecasting systems, which extend beyond traditional point-wise error assessments that can introduce bias towards neural networks optimized primarily to minimize such metrics. The preliminary evaluation of GLONET shows promising results, for temperature, sea surface height, salinity and ocean currents. GLONET's experimental daily forecast are accessible through the European Digital Twin Ocean platform EDITO.

  • 8 authors
·
Dec 6, 2024

ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation

ComfyUI provides a widely-adopted, workflow-based interface that enables users to customize various image generation tasks through an intuitive node-based architecture. However, the intricate connections between nodes and diverse modules often present a steep learning curve for users. In this paper, we introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent. The core innovation of ComfyGPT lies in two key aspects. First, it focuses on generating individual node links rather than entire workflows, significantly improving generation precision. Second, we proposed FlowAgent, a LLM-based workflow generation agent that uses both supervised fine-tuning (SFT) and reinforcement learning (RL) to improve workflow generation accuracy. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. We also propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation.

  • 9 authors
·
Mar 22

AgroSense: An Integrated Deep Learning System for Crop Recommendation via Soil Image Analysis and Nutrient Profiling

Meeting the increasing global demand for food security and sustainable farming requires intelligent crop recommendation systems that operate in real time. Traditional soil analysis techniques are often slow, labor-intensive, and not suitable for on-field decision-making. To address these limitations, we introduce AgroSense, a deep-learning framework that integrates soil image classification and nutrient profiling to produce accurate and contextually relevant crop recommendations. AgroSense comprises two main components: a Soil Classification Module, which leverages ResNet-18, EfficientNet-B0, and Vision Transformer architectures to categorize soil types from images; and a Crop Recommendation Module, which employs a Multi-Layer Perceptron, XGBoost, LightGBM, and TabNet to analyze structured soil data, including nutrient levels, pH, and rainfall. We curated a multimodal dataset of 10,000 paired samples drawn from publicly available Kaggle repositories, approximately 50,000 soil images across seven classes, and 25,000 nutrient profiles for experimental evaluation. The fused model achieves 98.0% accuracy, with a precision of 97.8%, a recall of 97.7%, and an F1-score of 96.75%, while RMSE and MAE drop to 0.32 and 0.27, respectively. Ablation studies underscore the critical role of multimodal coupling, and statistical validation via t-tests and ANOVA confirms the significance of our improvements. AgroSense offers a practical, scalable solution for real-time decision support in precision agriculture and paves the way for future lightweight multimodal AI systems in resource-constrained environments.

  • 3 authors
·
Sep 1

Model Context Protocol for Vision Systems: Audit, Security, and Protocol Extensions

The Model Context Protocol (MCP) defines a schema bound execution model for agent-tool interaction, enabling modular computer vision workflows without retraining. To our knowledge, this is the first protocol level, deployment scale audit of MCP in vision systems, identifying systemic weaknesses in schema semantics, interoperability, and runtime coordination. We analyze 91 publicly registered vision centric MCP servers, annotated along nine dimensions of compositional fidelity, and develop an executable benchmark with validators to detect and categorize protocol violations. The audit reveals high prevalence of schema format divergence, missing runtime schema validation, undeclared coordinate conventions, and reliance on untracked bridging scripts. Validator based testing quantifies these failures, with schema format checks flagging misalignments in 78.0 percent of systems, coordinate convention checks detecting spatial reference errors in 24.6 percent, and memory scope checks issuing an average of 33.8 warnings per 100 executions. Security probes show that dynamic and multi agent workflows exhibit elevated risks of privilege escalation and untyped tool connections. The proposed benchmark and validator suite, implemented in a controlled testbed and to be released on GitHub, establishes a reproducible framework for measuring and improving the reliability and security of compositional vision workflows.

  • 3 authors
·
Sep 26

RAVEN: RAnking and Validation of ExoplaNets

We present RAVEN, a newly developed vetting and validation pipeline for TESS exoplanet candidates. The pipeline employs a Bayesian framework to derive the posterior probability of a candidate being a planet against a set of False Positive (FP) scenarios, through the use of a Gradient Boosted Decision Tree and a Gaussian Process classifier, trained on comprehensive synthetic training sets of simulated planets and 8 astrophysical FP scenarios injected into TESS lightcurves. These training sets allow large scale candidate vetting and performance verification against individual FP scenarios. A Non-Simulated FP training set consisting of real TESS candidates caused primarily by stellar variability and systematic noise is also included. The machine learning derived probabilities are combined with scenario specific prior probabilities, including the candidates' positional probabilities, to compute the final posterior probabilities. Candidates with a planetary posterior probability greater than 99% against each FP scenario and whose implied planetary radius is less than 8R_{oplus} are considered to be statistically validated by the pipeline. In this first version, the pipeline has been developed for candidates with a lightcurve released from the TESS Science Processing Operations Centre, an orbital period between 0.5 and 16 days and a transit depth greater than 300ppm. The pipeline obtained area-under-curve (AUC) scores > 97% on all FP scenarios and > 99% on all but one. Testing on an independent external sample of 1361 pre-classified TOIs, the pipeline achieved an overall accuracy of 91%, demonstrating its effectiveness for automated ranking of TESS candidates. For a probability threshold of 0.9 the pipeline reached a precision of 97% with a recall score of 66% on these TOIs. The RAVEN pipeline is publicly released as a cloud-hosted app, making it easily accessible to the community.

  • 8 authors
·
Sep 22

Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models

Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems. However, research on detecting pornographic language within human-machine interaction dialogues is an important subject that is rarely studied. To advance in this direction, we introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content. To this end, we collect real-life human-machine interaction dialogues in the wild and break them down into single utterances and single-turn dialogues, with the last utterance spoken by the chatbot. We propose utilizing knowledge distillation of large language models to annotate the dataset. Specifically, first, the raw dataset is annotated by four open-source large language models, with the majority vote determining the label. Second, we use ChatGPT to update the empty label from the first step. Third, to ensure the quality of the validation and test sets, we utilize GPT-4 for label calibration. If the current label does not match the one generated by GPT-4, we employ a self-criticism strategy to verify its correctness. Finally, to facilitate the detection of pornographic text, we develop a series of text classifiers using a pseudo-labeled dataset. Detailed data analysis demonstrates that leveraging knowledge distillation techniques with large language models provides a practical and cost-efficient method for developing pornographic text detectors.

  • 5 authors
·
Mar 19, 2024

TENET: Leveraging Tests Beyond Validation for Code Generation

Test-Driven Development (TDD) is a widely adopted software engineering practice that requires developers to create and execute tests alongside code implementation, ensuring that software behavior is continuously validated and refined. In the era of vibe coding, where developers increasingly delegate code writing to large language models (LLMs) by specifying high-level intentions, TDD becomes even more crucial, as test cases serve as executable specifications that explicitly define and verify intended functionality beyond what natural-language descriptions and code context can convey. While vibe coding under TDD is promising, there are three main challenges: (1) selecting a small yet effective test suite to improve the generation accuracy and control the execution workload, (2) retrieving context such as relevant code effectively, and (3) systematically using test feedback for effective code refinement. To address these challenges, we introduce TENET, an LLM agent for generating functions in complex real-world repositories under the TDD setting. TENET features three components: (1) a novel test harness mechanism that selects a concise test suite to maximize diversity of target usage scenarios; (2) a tailored agent toolset that performs efficient retrieval of relevant code with interactive debugging; and (3) a reflection-based refinement workflow that iteratively analyzes failures, replenishes context, and applies code refinement. TENET achieves 69.08% and 81.77% Pass@1 on RepoCod and RepoEval benchmarks, outperforming the best agentic baselines by 9.49 and 2.17 percentage points, respectively. In addition, this is the first study of test-driven code generation with repository-level context, examining how different aspects of test suites affect the performance of LLM agents under the TDD setting.

Mapillary Vistas Validation for Fine-Grained Traffic Signs: A Benchmark Revealing Vision-Language Model Limitations

Obtaining high-quality fine-grained annotations for traffic signs is critical for accurate and safe decision-making in autonomous driving. Widely used datasets, such as Mapillary, often provide only coarse-grained labels - without distinguishing semantically important types such as stop signs or speed limit signs. To this end, we present a new validation set for traffic signs derived from the Mapillary dataset called Mapillary Vistas Validation for Traffic Signs (MVV), where we decompose composite traffic signs into granular, semantically meaningful categories. The dataset includes pixel-level instance masks and has been manually annotated by expert annotators to ensure label fidelity. Further, we benchmark several state-of-the-art VLMs against the self-supervised DINOv2 model on this dataset and show that DINOv2 consistently outperforms all VLM baselines-not only on traffic sign recognition, but also on heavily represented categories like vehicles and humans. Our analysis reveals significant limitations in current vision-language models for fine-grained visual understanding and establishes DINOv2 as a strong baseline for dense semantic matching in autonomous driving scenarios. This dataset and evaluation framework pave the way for more reliable, interpretable, and scalable perception systems. Code and data are available at: https://github.com/nec-labs-ma/relabeling

  • 2 authors
·
Aug 4 1

A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference

The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.

  • 4 authors
·
Mar 31, 2023

A Robust Deep Networks based Multi-Object MultiCamera Tracking System for City Scale Traffic

Vision sensors are becoming more important in Intelligent Transportation Systems (ITS) for traffic monitoring, management, and optimization as the number of network cameras continues to rise. However, manual object tracking and matching across multiple non-overlapping cameras pose significant challenges in city-scale urban traffic scenarios. These challenges include handling diverse vehicle attributes, occlusions, illumination variations, shadows, and varying video resolutions. To address these issues, we propose an efficient and cost-effective deep learning-based framework for Multi-Object Multi-Camera Tracking (MO-MCT). The proposed framework utilizes Mask R-CNN for object detection and employs Non-Maximum Suppression (NMS) to select target objects from overlapping detections. Transfer learning is employed for re-identification, enabling the association and generation of vehicle tracklets across multiple cameras. Moreover, we leverage appropriate loss functions and distance measures to handle occlusion, illumination, and shadow challenges. The final solution identification module performs feature extraction using ResNet-152 coupled with Deep SORT based vehicle tracking. The proposed framework is evaluated on the 5th AI City Challenge dataset (Track 3), comprising 46 camera feeds. Among these 46 camera streams, 40 are used for model training and validation, while the remaining six are utilized for model testing. The proposed framework achieves competitive performance with an IDF1 score of 0.8289, and precision and recall scores of 0.9026 and 0.8527 respectively, demonstrating its effectiveness in robust and accurate vehicle tracking.

  • 4 authors
·
May 1 1

GraphMASAL: A Graph-based Multi-Agent System for Adaptive Learning

The advent of Intelligent Tutoring Systems (ITSs) has marked a paradigm shift in education, enabling highly personalized learning pathways. However, true personalization requires adapting to learners' complex knowledge states (multi-source) and diverse goals (multi-sink); existing ITSs often lack the necessary structural-reasoning capability and knowledge dynamism to generate genuinely effective learning paths, and they lack scientifically rigorous validation paradigms. In this paper we propose GraphMASAL (A Graph-based Multi-Agent System for Adaptive Learning), which integrates (i) a dynamic knowledge graph for persistent, stateful learner modeling; (ii) a LangGraph-orchestrated trio of agents (Diagnostician, Planner, Tutor); (iii) a knowledge-graph-grounded two-stage neural IR component (dual-encoder dense retrieval with cross-encoder listwise re-ranking and calibrated score fusion); and (iv) a multi-source multi-sink (MSMS) planning engine with a cognitively grounded cost and an approximation guarantee via greedy set cover. Under blinded automated evaluations with matched inputs and inference settings across diverse student profiles, GraphMASAL consistently outperforms LLM prompting and structured ablations in planning--achieving stronger structural/sequence alignment of learning paths, higher coverage of weak concepts, and lower learning cost--while also surpassing prompt-based baselines in cognitive diagnosis. Agreement with expert/LLM-proxy ratings further supports the validity of our evaluation protocol. These findings indicate that grounding LLM agents in a dynamic knowledge graph, coupled with optimization under educational constraints, yields reliable, interpretable, and pedagogically plausible learning plans, advancing personalized and goal-oriented education.

  • 3 authors
·
Nov 14

GoalfyMax: A Protocol-Driven Multi-Agent System for Intelligent Experience Entities

Modern enterprise environments demand intelligent systems capable of handling complex, dynamic, and multi-faceted tasks with high levels of autonomy and adaptability. However, traditional single-purpose AI systems often lack sufficient coordination, memory reuse, and task decomposition capabilities, limiting their scalability in realistic settings. To address these challenges, we present GoalfyMax, a protocol-driven framework for end-to-end multi-agent collaboration. GoalfyMax introduces a standardized Agent-to-Agent (A2A) communication layer built on the Model Context Protocol (MCP), allowing independent agents to coordinate through asynchronous, protocol-compliant interactions. It incorporates the Experience Pack (XP) architecture, a layered memory system that preserves both task rationales and execution traces, enabling structured knowledge retention and continual learning. Moreover, our system integrates advanced features including multi-turn contextual dialogue, long-short term memory modules, and dynamic safety validation, supporting robust, real-time strategy adaptation. Empirical results on complex task orchestration benchmarks and case study demonstrate that GoalfyMax achieves superior adaptability, coordination, and experience reuse compared to baseline frameworks. These findings highlight its potential as a scalable, future-ready foundation for multi-agent intelligent systems.

  • 6 authors
·
Jul 13

DoVer: Intervention-Driven Auto Debugging for LLM Multi-Agent Systems

Large language model (LLM)-based multi-agent systems are challenging to debug because failures often arise from long, branching interaction traces. The prevailing practice is to leverage LLMs for log-based failure localization, attributing errors to a specific agent and step. However, this paradigm has two key limitations: (i) log-only debugging lacks validation, producing untested hypotheses, and (ii) single-step or single-agent attribution is often ill-posed, as we find that multiple distinct interventions can independently repair the failed task. To address the first limitation, we introduce DoVer, an intervention-driven debugging framework, which augments hypothesis generation with active verification through targeted interventions (e.g., editing messages, altering plans). For the second limitation, rather than evaluating on attribution accuracy, we focus on measuring whether the system resolves the failure or makes quantifiable progress toward task success, reflecting a more outcome-oriented view of debugging. Within the Magnetic-One agent framework, on the datasets derived from GAIA and AssistantBench, DoVer flips 18-28% of failed trials into successes, achieves up to 16% milestone progress, and validates or refutes 30-60% of failure hypotheses. DoVer also performs effectively on a different dataset (GSMPlus) and agent framework (AG2), where it recovers 49% of failed trials. These results highlight intervention as a practical mechanism for improving reliability in agentic systems and open opportunities for more robust, scalable debugging methods for LLM-based multi-agent systems. Project website and code will be available at https://aka.ms/DoVer.

microsoft Microsoft
·
Dec 7 4

Differentiable Neural Input Search for Recommender Systems

Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.

  • 3 authors
·
Jun 8, 2020

LLM Output Drift: Cross-Provider Validation & Mitigation for Financial Workflows

Financial institutions deploy Large Language Models (LLMs) for reconciliations, regulatory reporting, and client communications, but nondeterministic outputs (output drift) undermine auditability and trust. We quantify drift across five model architectures (7B-120B parameters) on regulated financial tasks, revealing a stark inverse relationship: smaller models (Granite-3-8B, Qwen2.5-7B) achieve 100% output consistency at T=0.0, while GPT-OSS-120B exhibits only 12.5% consistency (95% CI: 3.5-36.0%) regardless of configuration (p<0.0001, Fisher's exact test). This finding challenges conventional assumptions that larger models are universally superior for production deployment. Our contributions include: (i) a finance-calibrated deterministic test harness combining greedy decoding (T=0.0), fixed seeds, and SEC 10-K structure-aware retrieval ordering; (ii) task-specific invariant checking for RAG, JSON, and SQL outputs using finance-calibrated materiality thresholds (plus or minus 5%) and SEC citation validation; (iii) a three-tier model classification system enabling risk-appropriate deployment decisions; and (iv) an audit-ready attestation system with dual-provider validation. We evaluated five models (Qwen2.5-7B via Ollama, Granite-3-8B via IBM watsonx.ai, Llama-3.3-70B, Mistral-Medium-2505, and GPT-OSS-120B) across three regulated financial tasks. Across 480 runs (n=16 per condition), structured tasks (SQL) remain stable even at T=0.2, while RAG tasks show drift (25-75%), revealing task-dependent sensitivity. Cross-provider validation confirms deterministic behavior transfers between local and cloud deployments. We map our framework to Financial Stability Board (FSB), Bank for International Settlements (BIS), and Commodity Futures Trading Commission (CFTC) requirements, demonstrating practical pathways for compliance-ready AI deployments.

  • 2 authors
·
Nov 10

Robust Binding Energy Distribution Sampling on Amorphous Solid Water Models. Method testing and validation with NH3, CO and CH4

This work aims to develop a method based on a structurally reliable ice model and a statistically and physico-chemically robust approach for BE distribution inference, with the aim to be applicable to various relevant interstellar species. A multiscale computational approach is presented, with a Molecular Dynamics (MD) Heat & Quench protocol for the amorphous water ice model, and an ONIOM(B3LYP-D3(BJ)/6-311+G**:GFN2-xtb) scheme for the BE inference, with a prime emphasis onto the BE/real system size convergence. The sampling of the binding configurations is twofold, exploring both regularly spaced binding sites, as well as various adsorbate-to-substrate orientations on each locally distinct site. This second source of BE diversity accounts for the local roughness of the potential energy landscape of the substrate. Three different adsorbate test cases are considered, i.e. NH3, CO and CH4, owing to their significance in dust icy mantles, and their distinct binding behavior with water ices. The BE distributions for NH3, CO and CH4 have been inferred, with converged statistics. The distribution for NH3 is better represented by a double Gaussian component profile. Three starting adsorbate orientations per site are required to reach convergence for both Gaussian components of NH3, while 2 orientations are sufficient for CO, and one unique for CH4 (symmetric). Further geometrical and molecular surrounding insights have been provided. These results encompass previously reported results.

  • 4 authors
·
Apr 25

The ELEVATE-AI LLMs Framework: An Evaluation Framework for Use of Large Language Models in HEOR: an ISPOR Working Group Report

Introduction. Generative Artificial Intelligence, particularly large language models (LLMs), offers transformative potential for Health Economics and Outcomes Research (HEOR). However, evaluating the quality, transparency, and rigor of LLM-assisted research lacks standardized guidance. This article introduces the ELEVATE AI LLMs framework and checklist, designed to support researchers and reviewers in assessing LLM use in HEOR. Methods. The ELEVATE AI LLMs framework was developed through a targeted review of existing guidelines and evaluation frameworks. The framework comprises ten evaluation domains, including model characteristics, accuracy, comprehensiveness, and fairness. The accompanying checklist operationalizes the framework. To validate the framework, we applied it to two published studies, demonstrating its usability across different HEOR tasks. Results. The ELEVATE AI LLMs framework provides a comprehensive structure for evaluating LLM-assisted research, while the checklist facilitates practical application. Validation of the framework and checklist on studies of systematic literature reviews and health economic modeling highlighted their ability to identify strengths and gaps in reporting. Limitations. While the ELEVATE AI LLMs framework provides robust guidance, its broader generalizability and applicability to diverse HEOR tasks require further empirical testing. Additionally, several metrics adapted from computer science need further validation in HEOR contexts. Conclusion. The ELEVATE AI LLMs framework and checklist fill a critical gap in HEOR by offering structured guidance for evaluating LLM-assisted research. By promoting transparency, accuracy, and reproducibility, they aim to standardize and improve the integration of LLMs into HEOR, ensuring their outputs meet the field's rigorous standards.

  • 8 authors
·
Dec 23, 2024

FinReflectKG: Agentic Construction and Evaluation of Financial Knowledge Graphs

The financial domain poses unique challenges for knowledge graph (KG) construction at scale due to the complexity and regulatory nature of financial documents. Despite the critical importance of structured financial knowledge, the field lacks large-scale, open-source datasets capturing rich semantic relationships from corporate disclosures. We introduce an open-source, large-scale financial knowledge graph dataset built from the latest annual SEC 10-K filings of all S and P 100 companies - a comprehensive resource designed to catalyze research in financial AI. We propose a robust and generalizable knowledge graph (KG) construction framework that integrates intelligent document parsing, table-aware chunking, and schema-guided iterative extraction with a reflection-driven feedback loop. Our system incorporates a comprehensive evaluation pipeline, combining rule-based checks, statistical validation, and LLM-as-a-Judge assessments to holistically measure extraction quality. We support three extraction modes - single-pass, multi-pass, and reflection-agent-based - allowing flexible trade-offs between efficiency, accuracy, and reliability based on user requirements. Empirical evaluations demonstrate that the reflection-agent-based mode consistently achieves the best balance, attaining a 64.8 percent compliance score against all rule-based policies (CheckRules) and outperforming baseline methods (single-pass and multi-pass) across key metrics such as precision, comprehensiveness, and relevance in LLM-guided evaluations.

  • 5 authors
·
Aug 25 1

MARS-SQL: A multi-agent reinforcement learning framework for Text-to-SQL

Translating natural language to SQL remains difficult for complex queries. Such queries often need environmental interaction and self-correction. To address this, we introduce MARS-SQL, a novel multi-agent framework that combines principled task decomposition and interactive reinforcement learning (RL). Our system comprises three specialized agents: a Grounding Agent for schema linking, a Generation Agent for query generation, and a Validation Agent for final selection. The core of our framework is the Generation agent, which is trained via a multi-turn RL policy. Adopting a ReAct-style Think-Act-Observe loop, the agent iteratively generates thoughts, executes SQL actions against a live database, and revises its strategy based on execution feedback, enabling dynamic, stateful reasoning and self-correction. At inference time, we generate multiple interaction trajectories to explore diverse reasoning paths. The Validation agent, then selects the optimal trajectory by modeling verification as a next-token prediction task and choosing the solution with the highest generation probability. This structured workflow pipelines specialized agents. It combines interactive RL for generation with generative modeling for verification. The approach proves highly effective for robust and accurate SQL generation. Experiments show that MARS-SQL achieves state-of-the-art Execution Accuracy of 77.84% on the BIRD dev set and 89.75% on the Spider test set. Our code is available at https://github.com/YangHaolin0526/MARS-SQL.

  • 4 authors
·
Nov 2

Model-Task Alignment Drives Distinct RL Outcomes

Recent advances in applying reinforcement learning (RL) to large language models (LLMs) have led to substantial progress. In particular, a series of remarkable yet often counterintuitive phenomena have been reported in LLMs, exhibiting patterns not typically observed in traditional RL settings. For example, notable claims include that a single training example can match the performance achieved with an entire dataset, that the reward signal does not need to be very accurate, and that training solely with negative samples can match or even surpass sophisticated reward-based methods. However, the precise conditions under which these observations hold - and, critically, when they fail - remain unclear. In this work, we identify a key factor that differentiates RL observations: whether the pretrained model already exhibits strong Model-Task Alignment, as measured by pass@k accuracy on the evaluated task. Through a systematic and comprehensive examination of a series of counterintuitive claims, supported by rigorous experimental validation across different model architectures and task domains, our findings show that while standard RL training remains consistently robust across settings, many of these counterintuitive results arise only when the model and task already exhibit strong model-task alignment. In contrast, these techniques fail to drive substantial learning in more challenging regimes, where standard RL methods remain effective.

  • 4 authors
·
Aug 28 2

An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning

The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.

  • 2 authors
·
Dec 18, 2023

Named entity recognition for Serbian legal documents: Design, methodology and dataset development

Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.

  • 2 authors
·
Feb 14

A flexible framework for accurate LiDAR odometry, map manipulation, and localization

LiDAR-based SLAM is a core technology for autonomous vehicles and robots. One key contribution of this work to 3D LiDAR SLAM and localization is a fierce defense of view-based maps (pose graphs with time-stamped sensor readings) as the fundamental representation of maps. As will be shown, they allow for the greatest flexibility, enabling the posterior generation of arbitrary metric maps optimized for particular tasks, e.g. obstacle avoidance, real-time localization. Moreover, this work introduces a new framework in which mapping pipelines can be defined without coding, defining the connections of a network of reusable blocks much like deep-learning networks are designed by connecting layers of standardized elements. We also introduce tightly-coupled estimation of linear and angular velocity vectors within the Iterative Closest Point (ICP)-like optimizer, leading to superior robustness against aggressive motion profiles without the need for an IMU. Extensive experimental validation reveals that the proposal compares well to, or improves, former state-of-the-art (SOTA) LiDAR odometry systems, while also successfully mapping some hard sequences where others diverge. A proposed self-adaptive configuration has been used, without parameter changes, for all 3D LiDAR datasets with sensors between 16 and 128 rings, and has been extensively tested on 83 sequences over more than 250~km of automotive, hand-held, airborne, and quadruped LiDAR datasets, both indoors and outdoors. The system flexibility is demonstrated with additional configurations for 2D LiDARs and for building 3D NDT-like maps. The framework is open-sourced online: https://github.com/MOLAorg/mola

  • 1 authors
·
Jul 29, 2024

Towards an AI co-scientist

Scientific discovery relies on scientists generating novel hypotheses that undergo rigorous experimental validation. To augment this process, we introduce an AI co-scientist, a multi-agent system built on Gemini 2.0. The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably novel research hypotheses and proposals, building upon prior evidence and aligned to scientist-provided research objectives and guidance. The system's design incorporates a generate, debate, and evolve approach to hypothesis generation, inspired by the scientific method and accelerated by scaling test-time compute. Key contributions include: (1) a multi-agent architecture with an asynchronous task execution framework for flexible compute scaling; (2) a tournament evolution process for self-improving hypotheses generation. Automated evaluations show continued benefits of test-time compute, improving hypothesis quality. While general purpose, we focus development and validation in three biomedical areas: drug repurposing, novel target discovery, and explaining mechanisms of bacterial evolution and anti-microbial resistance. For drug repurposing, the system proposes candidates with promising validation findings, including candidates for acute myeloid leukemia that show tumor inhibition in vitro at clinically applicable concentrations. For novel target discovery, the AI co-scientist proposed new epigenetic targets for liver fibrosis, validated by anti-fibrotic activity and liver cell regeneration in human hepatic organoids. Finally, the AI co-scientist recapitulated unpublished experimental results via a parallel in silico discovery of a novel gene transfer mechanism in bacterial evolution. These results, detailed in separate, co-timed reports, demonstrate the potential to augment biomedical and scientific discovery and usher an era of AI empowered scientists.

SketchAgent: Generating Structured Diagrams from Hand-Drawn Sketches

Hand-drawn sketches are a natural and efficient medium for capturing and conveying ideas. Despite significant advancements in controllable natural image generation, translating freehand sketches into structured, machine-readable diagrams remains a labor-intensive and predominantly manual task. The primary challenge stems from the inherent ambiguity of sketches, which lack the structural constraints and semantic precision required for automated diagram generation. To address this challenge, we introduce SketchAgent, a multi-agent system designed to automate the transformation of hand-drawn sketches into structured diagrams. SketchAgent integrates sketch recognition, symbolic reasoning, and iterative validation to produce semantically coherent and structurally accurate diagrams, significantly reducing the need for manual effort. To evaluate the effectiveness of our approach, we propose the Sketch2Diagram Benchmark, a comprehensive dataset and evaluation framework encompassing eight diverse diagram categories, such as flowcharts, directed graphs, and model architectures. The dataset comprises over 6,000 high-quality examples with token-level annotations, standardized preprocessing, and rigorous quality control. By streamlining the diagram generation process, SketchAgent holds great promise for applications in design, education, and engineering, while offering a significant step toward bridging the gap between intuitive sketching and machine-readable diagram generation. The benchmark is released at https://huggingface.co/datasets/DiagramAgent/Sketch2Diagram-Benchmark.

  • 9 authors
·
Aug 2

Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis

For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.

  • 15 authors
·
Jun 13

Sparks of Science: Hypothesis Generation Using Structured Paper Data

Generating novel and creative scientific hypotheses is a cornerstone in achieving Artificial General Intelligence. Large language and reasoning models have the potential to aid in the systematic creation, selection, and validation of scientifically informed hypotheses. However, current foundation models often struggle to produce scientific ideas that are both novel and feasible. One reason is the lack of a dedicated dataset that frames Scientific Hypothesis Generation (SHG) as a Natural Language Generation (NLG) task. In this paper, we introduce HypoGen, the first dataset of approximately 5500 structured problem-hypothesis pairs extracted from top-tier computer science conferences structured with a Bit-Flip-Spark schema, where the Bit is the conventional assumption, the Spark is the key insight or conceptual leap, and the Flip is the resulting counterproposal. HypoGen uniquely integrates an explicit Chain-of-Reasoning component that reflects the intellectual process from Bit to Flip. We demonstrate that framing hypothesis generation as conditional language modelling, with the model fine-tuned on Bit-Flip-Spark and the Chain-of-Reasoning (and where, at inference, we only provide the Bit), leads to improvements in the overall quality of the hypotheses. Our evaluation employs automated metrics and LLM judge rankings for overall quality assessment. We show that by fine-tuning on our HypoGen dataset we improve the novelty, feasibility, and overall quality of the generated hypotheses. The HypoGen dataset is publicly available at huggingface.co/datasets/UniverseTBD/hypogen-dr1.

  • 7 authors
·
Apr 17

Synergistic Fusion of Multi-Source Knowledge via Evidence Theory for High-Entropy Alloy Discovery

Discovering novel high-entropy alloys (HEAs) with desirable properties is challenging due to the vast compositional space and complex phase formation mechanisms. Efficient exploration of this space requires a strategic approach that integrates heterogeneous knowledge sources. Here, we propose a framework that systematically combines knowledge extracted from computational material datasets with domain knowledge distilled from scientific literature using large language models (LLMs). A central feature of this approach is the explicit consideration of element substitutability, identifying chemically similar elements that can be interchanged to potentially stabilize desired HEAs. Dempster-Shafer theory, a mathematical framework for reasoning under uncertainty, is employed to model and combine substitutabilities based on aggregated evidence from multiple sources. The framework predicts the phase stability of candidate HEA compositions and is systematically evaluated on both quaternary alloy systems, demonstrating superior performance compared to baseline machine learning models and methods reliant on single-source evidence in cross-validation experiments. By leveraging multi-source knowledge, the framework retains robust predictive power even when key elements are absent from the training data, underscoring its potential for knowledge transfer and extrapolation. Furthermore, the enhanced interpretability of the methodology offers insights into the fundamental factors governing HEA formation. Overall, this work provides a promising strategy for accelerating HEA discovery by integrating computational and textual knowledge sources, enabling efficient exploration of vast compositional spaces with improved generalization and interpretability.

  • 9 authors
·
Feb 20

What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices

Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.

  • 10 authors
·
Sep 3, 2024

High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy with Cardiovascular Deep Learning

Left ventricular hypertrophy (LVH) results from chronic remodeling caused by a broad range of systemic and cardiovascular disease including hypertension, aortic stenosis, hypertrophic cardiomyopathy, and cardiac amyloidosis. Early detection and characterization of LVH can significantly impact patient care but is limited by under-recognition of hypertrophy, measurement error and variability, and difficulty differentiating etiologies of LVH. To overcome this challenge, we present EchoNet-LVH - a deep learning workflow that automatically quantifies ventricular hypertrophy with precision equal to human experts and predicts etiology of LVH. Trained on 28,201 echocardiogram videos, our model accurately measures intraventricular wall thickness (mean absolute error [MAE] 1.4mm, 95% CI 1.2-1.5mm), left ventricular diameter (MAE 2.4mm, 95% CI 2.2-2.6mm), and posterior wall thickness (MAE 1.2mm, 95% CI 1.1-1.3mm) and classifies cardiac amyloidosis (area under the curve of 0.83) and hypertrophic cardiomyopathy (AUC 0.98) from other etiologies of LVH. In external datasets from independent domestic and international healthcare systems, EchoNet-LVH accurately quantified ventricular parameters (R2 of 0.96 and 0.90 respectively) and detected cardiac amyloidosis (AUC 0.79) and hypertrophic cardiomyopathy (AUC 0.89) on the domestic external validation site. Leveraging measurements across multiple heart beats, our model can more accurately identify subtle changes in LV geometry and its causal etiologies. Compared to human experts, EchoNet-LVH is fully automated, allowing for reproducible, precise measurements, and lays the foundation for precision diagnosis of cardiac hypertrophy. As a resource to promote further innovation, we also make publicly available a large dataset of 23,212 annotated echocardiogram videos.

  • 18 authors
·
Jun 23, 2021

CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments

The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks.

  • 10 authors
·
Apr 27, 2024

Chemical classification program synthesis using generative artificial intelligence

Accurately classifying chemical structures is essential for cheminformatics and bioinformatics, including tasks such as identifying bioactive compounds of interest, screening molecules for toxicity to humans, finding non-organic compounds with desirable material properties, or organizing large chemical libraries for drug discovery or environmental monitoring. However, manual classification is labor-intensive and difficult to scale to large chemical databases. Existing automated approaches either rely on manually constructed classification rules, or the use of deep learning methods that lack explainability. This work presents an approach that uses generative artificial intelligence to automatically write chemical classifier programs for classes in the Chemical Entities of Biological Interest (ChEBI) database. These programs can be used for efficient deterministic run-time classification of SMILES structures, with natural language explanations. The programs themselves constitute an explainable computable ontological model of chemical class nomenclature, which we call the ChEBI Chemical Class Program Ontology (C3PO). We validated our approach against the ChEBI database, and compared our results against state of the art deep learning models. We also demonstrate the use of C3PO to classify out-of-distribution examples taken from metabolomics repositories and natural product databases. We also demonstrate the potential use of our approach to find systematic classification errors in existing chemical databases, and show how an ensemble artificial intelligence approach combining generated ontologies, automated literature search, and multimodal vision models can be used to pinpoint potential errors requiring expert validation

  • 7 authors
·
May 23

LLM4Drive: A Survey of Large Language Models for Autonomous Driving

Autonomous driving technology, a catalyst for revolutionizing transportation and urban mobility, has the tend to transition from rule-based systems to data-driven strategies. Traditional module-based systems are constrained by cumulative errors among cascaded modules and inflexible pre-set rules. In contrast, end-to-end autonomous driving systems have the potential to avoid error accumulation due to their fully data-driven training process, although they often lack transparency due to their "black box" nature, complicating the validation and traceability of decisions. Recently, large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers. A natural thought is to utilize these abilities to empower autonomous driving. By combining LLM with foundation vision models, it could open the door to open-world understanding, reasoning, and few-shot learning, which current autonomous driving systems are lacking. In this paper, we systematically review a research line about Large Language Models for Autonomous Driving (LLM4AD). This study evaluates the current state of technological advancements, distinctly outlining the principal challenges and prospective directions for the field. For the convenience of researchers in academia and industry, we provide real-time updates on the latest advances in the field as well as relevant open-source resources via the designated link: https://github.com/Thinklab-SJTU/Awesome-LLM4AD.

  • 4 authors
·
Nov 2, 2023

zERExtractor:An Automated Platform for Enzyme-Catalyzed Reaction Data Extraction from Scientific Literature

The rapid expansion of enzyme kinetics literature has outpaced the curation capabilities of major biochemical databases, creating a substantial barrier to AI-driven modeling and knowledge discovery. We present zERExtractor, an automated and extensible platform for comprehensive extraction of enzyme-catalyzed reaction and activity data from scientific literature. zERExtractor features a unified, modular architecture that supports plug-and-play integration of state-of-the-art models, including large language models (LLMs), as interchangeable components, enabling continuous system evolution alongside advances in AI. Our pipeline combines domain-adapted deep learning, advanced OCR, semantic entity recognition, and prompt-driven LLM modules, together with human expert corrections, to extract kinetic parameters (e.g., kcat, Km), enzyme sequences, substrate SMILES, experimental conditions, and molecular diagrams from heterogeneous document formats. Through active learning strategies integrating AI-assisted annotation, expert validation, and iterative refinement, the system adapts rapidly to new data sources. We also release a large benchmark dataset comprising over 1,000 annotated tables and 5,000 biological fields from 270 P450-related enzymology publications. Benchmarking demonstrates that zERExtractor consistently outperforms existing baselines in table recognition (Acc 89.9%), molecular image interpretation (up to 99.1%), and relation extraction (accuracy 94.2%). zERExtractor bridges the longstanding data gap in enzyme kinetics with a flexible, plugin-ready framework and high-fidelity extraction, laying the groundwork for future AI-powered enzyme modeling and biochemical knowledge discovery.

  • 12 authors
·
Jul 30

U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking

Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.

CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble

Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.

  • 4 authors
·
Sep 16, 2024

CSTS: A Benchmark for the Discovery of Correlation Structures in Time Series Clustering

Time series clustering promises to uncover hidden structural patterns in data with applications across healthcare, finance, industrial systems, and other critical domains. However, without validated ground truth information, researchers cannot objectively assess clustering quality or determine whether poor results stem from absent structures in the data, algorithmic limitations, or inappropriate validation methods, raising the question whether clustering is "more art than science" (Guyon et al., 2009). To address these challenges, we introduce CSTS (Correlation Structures in Time Series), a synthetic benchmark for evaluating the discovery of correlation structures in multivariate time series data. CSTS provides a clean benchmark that enables researchers to isolate and identify specific causes of clustering failures by differentiating between correlation structure deterioration and limitations of clustering algorithms and validation methods. Our contributions are: (1) a comprehensive benchmark for correlation structure discovery with distinct correlation structures, systematically varied data conditions, established performance thresholds, and recommended evaluation protocols; (2) empirical validation of correlation structure preservation showing moderate distortion from downsampling and minimal effects from distribution shifts and sparsification; and (3) an extensible data generation framework enabling structure-first clustering evaluation. A case study demonstrates CSTS's practical utility by identifying an algorithm's previously undocumented sensitivity to non-normal distributions, illustrating how the benchmark enables precise diagnosis of methodological limitations. CSTS advances rigorous evaluation standards for correlation-based time series clustering.

  • 4 authors
·
May 20

Navigating the Synchrony-Stability Frontier in Adaptive Chatbots

Adaptive chatbots that mimic a user's linguistic style can build rapport and engagement, yet unconstrained mimicry risks an agent that feels unstable or sycophantic. We present a computational evaluation framework that makes the core design tension explicit: balancing moment-to-moment linguistic synchrony against long-term persona stability. Using an 8-dimensional style vector and a closed-loop "base+delta" prompting architecture, we simulate and compare explicit adaptation policies - Uncapped, Cap, Exponential Moving Average (EMA), Dead-Band, and Hybrids - on a human-log dataset. Our analysis maps a clear Pareto frontier: bounded policies achieve substantial gains in stability at a modest cost to synchrony. For example, a Hybrid (EMA+Cap) raises stability from 0.542 to 0.878 (+62%) while reducing synchrony by only 17%. We confirm this trade-off through large-scale replications on three public corpora (DailyDialog, Persona-Chat, EmpatheticDialogues) and LLM-in-the-loop validation across two model families. Furthermore, we quantify "prompt legibility," showing that frontier policies reduce instruction churn and cut jarring register flips (major tone changes) from 0.254 to 0.092, yielding systems that are easier to reason about and maintain. Taken together, our framework provides a general evaluation harness for style adaptation; a systematic ablation that identifies Pareto-efficient policies; robust validation across diverse datasets and models; and novel legibility metrics linking policy choices to system maintainability.

  • 1 authors
·
Sep 30

UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability

While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.

  • 6 authors
·
Nov 21

Alita: Generalist Agent Enabling Scalable Agentic Reasoning with Minimal Predefinition and Maximal Self-Evolution

Recent advances in large language models (LLMs) have enabled agents to autonomously perform complex, open-ended tasks. However, many existing frameworks depend heavily on manually predefined tools and workflows, which hinder their adaptability, scalability, and generalization across domains. In this work, we introduce Alita--a generalist agent designed with the principle of "Simplicity is the ultimate sophistication," enabling scalable agentic reasoning through minimal predefinition and maximal self-evolution. For minimal predefinition, Alita is equipped with only one component for direct problem-solving, making it much simpler and neater than previous approaches that relied heavily on hand-crafted, elaborate tools and workflows. This clean design enhances its potential to generalize to challenging questions, without being limited by tools. For Maximal self-evolution, we enable the creativity of Alita by providing a suite of general-purpose components to autonomously construct, refine, and reuse external capabilities by generating task-related model context protocols (MCPs) from open source, which contributes to scalable agentic reasoning. Notably, Alita achieves 75.15% pass@1 and 87.27% pass@3 accuracy, which is top-ranking among general-purpose agents, on the GAIA benchmark validation dataset, 74.00% and 52.00% pass@1, respectively, on Mathvista and PathVQA, outperforming many agent systems with far greater complexity. More details will be updated at https://github.com/CharlesQ9/Alita{https://github.com/CharlesQ9/Alita}.

  • 18 authors
·
May 26 4

The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective

Retinal imaging has emerged as a powerful, non-invasive modality for detecting and quantifying biomarkers of systemic diseases-ranging from diabetes and hypertension to Alzheimer's disease and cardiovascular disorders but current insights remain dispersed across platforms and specialties. Recent technological advances in optical coherence tomography (OCT/OCTA) and adaptive optics (AO) now deliver ultra-high-resolution scans (down to 5 {\mu}m ) with superior contrast and spatial integration, allowing early identification of microvascular abnormalities and neurodegenerative changes. At the same time, AI-driven and machine learning (ML) algorithms have revolutionized the analysis of large-scale retinal datasets, increasing sensitivity and specificity; for example, deep learning models achieve > 90 \% sensitivity for diabetic retinopathy and AUC = 0.89 for the prediction of cardiovascular risk from fundus photographs. The proliferation of mobile health technologies and telemedicine platforms further extends access, reduces costs, and facilitates community-based screening and longitudinal monitoring. Despite these breakthroughs, translation into routine practice is hindered by heterogeneous imaging protocols, limited external validation of AI models, and integration challenges within clinical workflows. In this review, we systematically synthesize the latest OCT/OCT and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives and quantify their diagnostic performance across disease domains. Finally, we propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways-paving the way for precision prevention, early intervention, and ongoing treatment of life-threatening systemic diseases.

  • 3 authors
·
May 27

ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs

In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.

  • 7 authors
·
Mar 12, 2024

Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases

Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.

  • 3 authors
·
Feb 5, 2024

UQ: Assessing Language Models on Unsolved Questions

Benchmarks shape progress in AI research. A useful benchmark should be both difficult and realistic: questions should challenge frontier models while also reflecting real-world usage. Yet, current paradigms face a difficulty-realism tension: exam-style benchmarks are often made artificially difficult with limited real-world value, while benchmarks based on real user interaction often skew toward easy, high-frequency problems. In this work, we explore a radically different paradigm: assessing models on unsolved questions. Rather than a static benchmark scored once, we curate unsolved questions and evaluate models asynchronously over time with validator-assisted screening and community verification. We introduce UQ, a testbed of 500 challenging, diverse questions sourced from Stack Exchange, spanning topics from CS theory and math to sci-fi and history, probing capabilities including reasoning, factuality, and browsing. UQ is difficult and realistic by construction: unsolved questions are often hard and naturally arise when humans seek answers, thus solving them yields direct real-world value. Our contributions are threefold: (1) UQ-Dataset and its collection pipeline combining rule-based filters, LLM judges, and human review to ensure question quality (e.g., well-defined and difficult); (2) UQ-Validators, compound validation strategies that leverage the generator-validator gap to provide evaluation signals and pre-screen candidate solutions for human review; and (3) UQ-Platform, an open platform where experts collectively verify questions and solutions. The top model passes UQ-validation on only 15% of questions, and preliminary human verification has already identified correct answers among those that passed. UQ charts a path for evaluating frontier models on real-world, open-ended challenges, where success pushes the frontier of human knowledge. We release UQ at https://uq.stanford.edu.

  • 14 authors
·
Aug 24 4

Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences

Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.

  • 5 authors
·
Apr 18, 2024

TPTU-v2: Boosting Task Planning and Tool Usage of Large Language Model-based Agents in Real-world Systems

Large Language Models (LLMs) have demonstrated proficiency in addressing tasks that necessitate a combination of task planning and the usage of external tools that require a blend of task planning and the utilization of external tools, such as APIs. However, real-world complex systems present three prevalent challenges concerning task planning and tool usage: (1) The real system usually has a vast array of APIs, so it is impossible to feed the descriptions of all APIs to the prompt of LLMs as the token length is limited; (2) the real system is designed for handling complex tasks, and the base LLMs can hardly plan a correct sub-task order and API-calling order for such tasks; (3) Similar semantics and functionalities among APIs in real systems create challenges for both LLMs and even humans in distinguishing between them. In response, this paper introduces a comprehensive framework aimed at enhancing the Task Planning and Tool Usage (TPTU) abilities of LLM-based agents operating within real-world systems. Our framework comprises three key components designed to address these challenges: (1) the API Retriever selects the most pertinent APIs for the user task among the extensive array available; (2) LLM Finetuner tunes a base LLM so that the finetuned LLM can be more capable for task planning and API calling; (3) the Demo Selector adaptively retrieves different demonstrations related to hard-to-distinguish APIs, which is further used for in-context learning to boost the final performance. We validate our methods using a real-world commercial system as well as an open-sourced academic dataset, and the outcomes clearly showcase the efficacy of each individual component as well as the integrated framework.

  • 12 authors
·
Nov 19, 2023 2

Improving Wikipedia Verifiability with AI

Verifiability is a core content policy of Wikipedia: claims that are likely to be challenged need to be backed by citations. There are millions of articles available online and thousands of new articles are released each month. For this reason, finding relevant sources is a difficult task: many claims do not have any references that support them. Furthermore, even existing citations might not support a given claim or become obsolete once the original source is updated or deleted. Hence, maintaining and improving the quality of Wikipedia references is an important challenge and there is a pressing need for better tools to assist humans in this effort. Here, we show that the process of improving references can be tackled with the help of artificial intelligence (AI). We develop a neural network based system, called Side, to identify Wikipedia citations that are unlikely to support their claims, and subsequently recommend better ones from the web. We train this model on existing Wikipedia references, therefore learning from the contributions and combined wisdom of thousands of Wikipedia editors. Using crowd-sourcing, we observe that for the top 10% most likely citations to be tagged as unverifiable by our system, humans prefer our system's suggested alternatives compared to the originally cited reference 70% of the time. To validate the applicability of our system, we built a demo to engage with the English-speaking Wikipedia community and find that Side's first citation recommendation collects over 60% more preferences than existing Wikipedia citations for the same top 10% most likely unverifiable claims according to Side. Our results indicate that an AI-based system could be used, in tandem with humans, to improve the verifiability of Wikipedia. More generally, we hope that our work can be used to assist fact checking efforts and increase the general trustworthiness of information online.

  • 13 authors
·
Jul 8, 2022

Development of an NLP-driven computer-based test guide for visually impaired students

In recent years, advancements in Natural Language Processing (NLP) techniques have revolutionized the field of accessibility and exclusivity of testing, particularly for visually impaired students (VIS). CBT has shown in years back its relevance in terms of administering exams electronically, making the test process easier, providing quicker and more accurate results, and offering greater flexibility and accessibility for candidates. Yet, its relevance was not felt by the visually impaired students as they cannot access printed documents. Hence, in this paper, we present an NLP-driven Computer-Based Test guide for visually impaired students. It employs a speech technology pre-trained methods to provide real-time assistance and support to visually impaired students. The system utilizes NLP technologies to convert the text-based questions and the associated options in a machine-readable format. Subsequently, the speech technology pre-trained model processes the converted text enabling the VIS to comprehend and analyze the content. Furthermore, we validated that this pre-trained model is not perverse by testing for accuracy using sample audio datasets labels (A, B, C, D, E, F, G) to compare with the voice recordings obtained from 20 VIS which is been predicted by the system to attain values for precision, recall, and F1-scores. These metrics are used to assess the performance of the pre-trained model and have indicated that it is proficient enough to give its better performance to the evaluated system. The methodology adopted for this system is Object Oriented Analysis and Design Methodology (OOADM) where Objects are discussed and built by modeling real-world instances.

  • 3 authors
·
Jan 22, 2024