new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Mechanically Interlocked Polymers in Dilute Solution under Shear and Extensional Flows: A Brownian Dynamics Study

Mechanically interlocked polymers (MIPs) are a novel class of polymer structures in which the components are connected by mechanical bonds instead of covalent bonds. We measure the single-molecule rheological properties of polyrotaxanes, daisy chains, and polycatenanes under steady shear and steady uniaxial extension using coarse-grained Brownian dynamics simulations with hydrodynamic interactions. We obtain key rheological features, including tumbling dynamics, molecular extension, stress, and viscosity. By systematically varying structural features, we demonstrate how MIP topology governs flow response. Compared to linear polymers, all three MIP architectures exhibit enhanced tumbling in shear flow and lower normal stress differences in extensional flow. While polyrotaxanes show higher shear and extensional viscosities, polycatenanes and daisy chains have lower viscosities. In extensional flow, polyrotaxanes and polycatenanes extend earlier than linear polymers. We find that mechanical bonds suppress shear thinning and alter the coil-stretch transition observed in linear polymers. These effects arise from the mechanically bonded rings in MIPs, which expand the polymer profile in gradient direction and increase backbone stiffness due to ring-backbone repulsions. This study provides key insights into MIP flow properties, providing the foundation for their systematic development in engineering applications.

  • 2 authors
·
Jun 16, 2025

Design, Integration, and Field Evaluation of a Robotic Blossom Thinning System for Tree Fruit Crops

The US apple industry relies heavily on semi-skilled manual labor force for essential field operations such as training, pruning, blossom and green fruit thinning, and harvesting. Blossom thinning is one of the crucial crop load management practices to achieve desired crop load, fruit quality, and return bloom. While several techniques such as chemical, and mechanical thinning are available for large-scale blossom thinning such approaches often yield unpredictable thinning results and may cause damage the canopy, spurs, and leaf tissue. Hence, growers still depend on laborious, labor intensive and expensive manual hand blossom thinning for desired thinning outcomes. This research presents a robotic solution for blossom thinning in apple orchards using a computer vision system with artificial intelligence, a six degrees of freedom robotic manipulator, and an electrically actuated miniature end-effector for robotic blossom thinning. The integrated robotic system was evaluated in a commercial apple orchard which showed promising results for targeted and selective blossom thinning. Two thinning approaches, center and boundary thinning, were investigated to evaluate the system ability to remove varying proportion of flowers from apple flower clusters. During boundary thinning the end effector was actuated around the cluster boundary while center thinning involved end-effector actuation only at the cluster centroid for a fixed duration of 2 seconds. The boundary thinning approach thinned 67.2% of flowers from the targeted clusters with a cycle time of 9.0 seconds per cluster, whereas center thinning approach thinned 59.4% of flowers with a cycle time of 7.2 seconds per cluster. When commercially adopted, the proposed system could help address problems faced by apple growers with current hand, chemical, and mechanical blossom thinning approaches.

  • 3 authors
·
Apr 10, 2023