new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 12

Cross-Modality Investigation on WESAD Stress Classification

Deep learning's growing prevalence has driven its widespread use in healthcare, where AI and sensor advancements enhance diagnosis, treatment, and monitoring. In mobile health, AI-powered tools enable early diagnosis and continuous monitoring of conditions like stress. Wearable technologies and multimodal physiological data have made stress detection increasingly viable, but model efficacy depends on data quality, quantity, and modality. This study develops transformer models for stress detection using the WESAD dataset, training on electrocardiograms (ECG), electrodermal activity (EDA), electromyography (EMG), respiration rate (RESP), temperature (TEMP), and 3-axis accelerometer (ACC) signals. The results demonstrate the effectiveness of single-modality transformers in analyzing physiological signals, achieving state-of-the-art performance with accuracy, precision and recall values in the range of 99.73% to 99.95% for stress detection. Furthermore, this study explores cross-modal performance and also explains the same using 2D visualization of the learned embedding space and quantitative analysis based on data variance. Despite the large body of work on stress detection and monitoring, the robustness and generalization of these models across different modalities has not been explored. This research represents one of the initial efforts to interpret embedding spaces for stress detection, providing valuable information on cross-modal performance.

  • 2 authors
·
Feb 25, 2025

Real-time respiratory motion forecasting with online learning of recurrent neural networks for accurate targeting in externally guided radiotherapy

In lung radiotherapy, infrared cameras can track reflective objects on the chest to estimate tumor motion due to breathing, but treatment system latencies hinder radiation beam precision. Real-time recurrent learning (RTRL) is a potential solution that can learn patterns within non-stationary respiratory data but has high complexity. This study assesses the capabilities of resource-efficient online RNN algorithms, namely unbiased online recurrent optimization (UORO), sparse-1 step approximation (SnAp-1), and decoupled neural interfaces (DNI) to forecast respiratory motion during radiotherapy treatment accurately. We use time series containing the 3D positions of external markers on the chest of healthy subjects. We propose efficient implementations for SnAp-1 and DNI that compress the influence and immediate Jacobian matrices and accurately update the linear coefficients used in credit assignment estimation, respectively. Data was originally sampled at 10Hz; we resampled it at 3.33Hz and 30Hz to analyze the effect of the sampling rate on performance. We use UORO, SnAp-1, and DNI to forecast each marker's 3D position with horizons h<=2.1s (the time interval in advance for which the prediction is made) and compare them with RTRL, least mean squares, kernel support vector regression, and linear regression. RNNs trained online achieved similar or better accuracy than most previous works using larger training databases and deep learning, even though we used only the first minute of each sequence to predict motion within that exact sequence. SnAp-1 had the lowest normalized root mean square errors (nRMSEs) averaged over the horizon values considered, equal to 0.335 and 0.157, at 3.33Hz and 10.0Hz, respectively. Similarly, UORO had the lowest nRMSE at 30Hz, equal to 0.086. DNI's inference time (6.8ms per time step at 30Hz, Intel Core i7-13700 CPU) was the lowest among the RNN methods.

  • 5 authors
·
Mar 3, 2024

Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach

Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.

  • 6 authors
·
Feb 18, 2025