new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning

Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.

  • 7 authors
·
Mar 19

3MDBench: Medical Multimodal Multi-agent Dialogue Benchmark

Large Vision-Language Models (LVLMs) are increasingly being explored for applications in telemedicine, yet their ability to engage with diverse patient behaviors remains underexplored. We introduce 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source evaluation framework designed to assess LLM-driven medical consultations. Unlike existing benchmarks, 3MDBench simulates real-world patient variability by incorporating four temperament-driven Patient Agents and an Assessor Agent that evaluates diagnostic accuracy and dialogue quality. The benchmark integrates textual and image-based patient data across 34 common diagnoses, mirroring real-world telemedicine interactions. Under different diagnostic strategies, we evaluate state-of-the-art LVLMs. Our findings demonstrate that incorporating dialogue improves the F1 score from 50.4 to 54.2 compared to non-dialogue settings, underscoring the value of context-driven, information-seeking questioning. Additionally, we demonstrate that multimodal inputs enhance diagnostic efficiency. Image-supported models outperform text-only counterparts by raising the diagnostic F1 score from 52.8 to 54.2 in a similar dialogue setting. Finally, we suggest an approach that improves the diagnostic F1-score to 70.3 by training the CNN model on the diagnosis prediction task and incorporating its top-3 predictions into the LVLM context. 3MDBench provides a reproducible and extendable evaluation framework for AI-driven medical assistants. It offers insights into how patient temperament, dialogue strategies, and multimodal reasoning influence diagnosis quality. By addressing real-world complexities in telemedicine, our benchmark paves the way for more empathetic, reliable, and context-aware AI-driven healthcare solutions. The source code of our benchmark is publicly available: https://github.com/univanxx/3mdbench

  • 6 authors
·
Mar 26

LaajMeter: A Framework for LaaJ Evaluation

Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.

  • 5 authors
·
Aug 13

DeepResearchGym: A Free, Transparent, and Reproducible Evaluation Sandbox for Deep Research

Deep research systems represent an emerging class of agentic information retrieval methods that generate comprehensive and well-supported reports to complex queries. However, most existing frameworks rely on dynamic commercial search APIs, which pose reproducibility and transparency challenges in addition to their cost. To address these limitations, we introduce DeepResearchGym, an open-source sandbox that combines a reproducible search API with a rigorous evaluation protocol for benchmarking deep research systems. The API indexes large-scale public web corpora, namely ClueWeb22 and FineWeb, using a state-of-the-art dense retriever and approximate nearest neighbor search via DiskANN. It achieves lower latency than popular commercial APIs while ensuring stable document rankings across runs, and is freely available for research use. To evaluate deep research systems' outputs, we extend the Researchy Questions benchmark with automatic metrics through LLM-as-a-judge assessments to measure alignment with users' information needs, retrieval faithfulness, and report quality. Experimental results show that systems integrated with DeepResearchGym achieve performance comparable to those using commercial APIs, with performance rankings remaining consistent across evaluation metrics. A human evaluation study further confirms that our automatic protocol aligns with human preferences, validating the framework's ability to help support controlled assessment of deep research systems. Our code and API documentation are available at https://www.deepresearchgym.ai.

OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework

The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring 2times fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. Our source code along with pre-trained model weights and training recipes is available at https://github.com/apple/corenet. Additionally, \model models can be found on HuggingFace at: https://huggingface.co/apple/OpenELM.

  • 11 authors
·
Apr 22, 2024 14

REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites

We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.

  • 18 authors
·
Apr 15

CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts

The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.

  • 4 authors
·
Jun 13, 2024

UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation

Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.

  • 11 authors
·
Nov 26, 2023

Eliciting and Analyzing Emergent Misalignment in State-of-the-Art Large Language Models

Despite significant advances in alignment techniques, we demonstrate that state-of-the-art language models remain vulnerable to carefully crafted conversational scenarios that can induce various forms of misalignment without explicit jailbreaking. Through systematic manual red-teaming with Claude-4-Opus, we discovered 10 successful attack scenarios, revealing fundamental vulnerabilities in how current alignment methods handle narrative immersion, emotional pressure, and strategic framing. These scenarios successfully elicited a range of misaligned behaviors, including deception, value drift, self-preservation, and manipulative reasoning, each exploiting different psychological and contextual vulnerabilities. To validate generalizability, we distilled our successful manual attacks into MISALIGNMENTBENCH, an automated evaluation framework that enables reproducible testing across multiple models. Cross-model evaluation of our 10 scenarios against five frontier LLMs revealed an overall 76% vulnerability rate, with significant variations: GPT-4.1 showed the highest susceptibility (90%), while Claude-4-Sonnet demonstrated greater resistance (40%). Our findings demonstrate that sophisticated reasoning capabilities often become attack vectors rather than protective mechanisms, as models can be manipulated into complex justifications for misaligned behavior. This work provides (i) a detailed taxonomy of conversational manipulation patterns and (ii) a reusable evaluation framework. Together, these findings expose critical gaps in current alignment strategies and highlight the need for robustness against subtle, scenario-based manipulation in future AI systems.

STEP: A Unified Spiking Transformer Evaluation Platform for Fair and Reproducible Benchmarking

Spiking Transformers have recently emerged as promising architectures for combining the efficiency of spiking neural networks with the representational power of self-attention. However, the lack of standardized implementations, evaluation pipelines, and consistent design choices has hindered fair comparison and principled analysis. In this paper, we introduce STEP, a unified benchmark framework for Spiking Transformers that supports a wide range of tasks, including classification, segmentation, and detection across static, event-based, and sequential datasets. STEP provides modular support for diverse components such as spiking neurons, input encodings, surrogate gradients, and multiple backends (e.g., SpikingJelly, BrainCog). Using STEP, we reproduce and evaluate several representative models, and conduct systematic ablation studies on attention design, neuron types, encoding schemes, and temporal modeling capabilities. We also propose a unified analytical model for energy estimation, accounting for spike sparsity, bitwidth, and memory access, and show that quantized ANNs may offer comparable or better energy efficiency. Our results suggest that current Spiking Transformers rely heavily on convolutional frontends and lack strong temporal modeling, underscoring the need for spike-native architectural innovations. The full code is available at: https://github.com/Fancyssc/STEP

  • 8 authors
·
May 16

LLaSO: A Foundational Framework for Reproducible Research in Large Language and Speech Model

The development of Large Speech-Language Models (LSLMs) has been slowed by fragmented architectures and a lack of transparency, hindering the systematic comparison and reproducibility of research. Unlike in the vision-language domain, the LSLM field suffers from the common practice of releasing model weights without their corresponding training data and configurations. To address these critical gaps, we introduce LLaSO, the first fully open, end-to-end framework for large-scale speech-language modeling. LLaSO provides the community with three essential resources: (1) LLaSO-Align, a 12M-instance speech-text alignment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning dataset; and (3) LLaSO-Eval, a reproducible benchmark for standardized evaluation. To validate our framework, we build and release LLaSO-Base, a 3.8B-parameter reference model trained exclusively on our public data. It achieves a normalized score of 0.72, establishing a strong, reproducible baseline that surpasses comparable models. Our analysis reveals that while broader training coverage enhances performance, significant generalization gaps persist on unseen tasks, particularly in pure audio scenarios. By releasing the complete stack of data, benchmarks, and models, LLaSO establishes a foundational open standard to unify research efforts and accelerate community-driven progress in LSLMs. We release the code, dataset, pretrained models, and results in https://github.com/EIT-NLP/LLaSO.

  • 8 authors
·
Aug 21 2

Multimodal Safety Evaluation in Generative Agent Social Simulations

Can generative agents be trusted in multimodal environments? Despite advances in large language and vision-language models that enable agents to act autonomously and pursue goals in rich settings, their ability to reason about safety, coherence, and trust across modalities remains limited. We introduce a reproducible simulation framework for evaluating agents along three dimensions: (1) safety improvement over time, including iterative plan revisions in text-visual scenarios; (2) detection of unsafe activities across multiple categories of social situations; and (3) social dynamics, measured as interaction counts and acceptance ratios of social exchanges. Agents are equipped with layered memory, dynamic planning, multimodal perception, and are instrumented with SocialMetrics, a suite of behavioral and structural metrics that quantifies plan revisions, unsafe-to-safe conversions, and information diffusion across networks. Experiments show that while agents can detect direct multimodal contradictions, they often fail to align local revisions with global safety, reaching only a 55 percent success rate in correcting unsafe plans. Across eight simulation runs with three models - Claude, GPT-4o mini, and Qwen-VL - five agents achieved average unsafe-to-safe conversion rates of 75, 55, and 58 percent, respectively. Overall performance ranged from 20 percent in multi-risk scenarios with GPT-4o mini to 98 percent in localized contexts such as fire/heat with Claude. Notably, 45 percent of unsafe actions were accepted when paired with misleading visuals, showing a strong tendency to overtrust images. These findings expose critical limitations in current architectures and provide a reproducible platform for studying multimodal safety, coherence, and social dynamics.

  • 6 authors
·
Oct 8

Structured Prompting Enables More Robust Evaluation of Language Models

As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks (+2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller Δ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).

  • 18 authors
·
Nov 25

GIE-Bench: Towards Grounded Evaluation for Text-Guided Image Editing

Editing images using natural language instructions has become a natural and expressive way to modify visual content; yet, evaluating the performance of such models remains challenging. Existing evaluation approaches often rely on image-text similarity metrics like CLIP, which lack precision. In this work, we introduce a new benchmark designed to evaluate text-guided image editing models in a more grounded manner, along two critical dimensions: (i) functional correctness, assessed via automatically generated multiple-choice questions that verify whether the intended change was successfully applied; and (ii) image content preservation, which ensures that non-targeted regions of the image remain visually consistent using an object-aware masking technique and preservation scoring. The benchmark includes over 1000 high-quality editing examples across 20 diverse content categories, each annotated with detailed editing instructions, evaluation questions, and spatial object masks. We conduct a large-scale study comparing GPT-Image-1, the latest flagship in the text-guided image editing space, against several state-of-the-art editing models, and validate our automatic metrics against human ratings. Results show that GPT-Image-1 leads in instruction-following accuracy, but often over-modifies irrelevant image regions, highlighting a key trade-off in the current model behavior. GIE-Bench provides a scalable, reproducible framework for advancing more accurate evaluation of text-guided image editing.

  • 8 authors
·
May 16 2

SzCORE as a benchmark: report from the seizure detection challenge at the 2025 AI in Epilepsy and Neurological Disorders Conference

Reliable automatic seizure detection from long-term EEG remains a challenge, as current machine learning models often fail to generalize across patients or clinical settings. Manual EEG review remains the clinical standard, underscoring the need for robust models and standardized evaluation. To rigorously assess algorithm performance, we organized a challenge using a private dataset of continuous EEG recordings from 65 subjects (4,360 hours). Expert neurophysiologists annotated the data, providing ground truth for seizure events. Participants were required to detect seizure onset and duration, with evaluation based on event-based metrics, including sensitivity, precision, F1-score, and false positives per day. The SzCORE framework ensured standardized evaluation. The primary ranking criterion was the event-based F1-score, reflecting clinical relevance by balancing sensitivity and false positives. The challenge received 30 submissions from 19 teams, with 28 algorithms evaluated. Results revealed wide variability in performance, with a top F1-score of 43% (sensitivity 37%, precision 45%), highlighting the ongoing difficulty of seizure detection. The challenge also revealed a gap between reported performance and real-world evaluation, emphasizing the importance of rigorous benchmarking. Compared to previous challenges and commercial systems, the best-performing algorithm in this contest showed improved performance. Importantly, the challenge platform now supports continuous benchmarking, enabling reproducible research, integration of new datasets, and clinical evaluation of seizure detection algorithms using a standardized framework.

  • 4 authors
·
May 19

Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML

Medical applications of machine learning (ML) have experienced a surge in popularity in recent years. The intensive care unit (ICU) is a natural habitat for ML given the abundance of available data from electronic health records. Models have been proposed to address numerous ICU prediction tasks like the early detection of complications. While authors frequently report state-of-the-art performance, it is challenging to verify claims of superiority. Datasets and code are not always published, and cohort definitions, preprocessing pipelines, and training setups are difficult to reproduce. This work introduces Yet Another ICU Benchmark (YAIB), a modular framework that allows researchers to define reproducible and comparable clinical ML experiments; we offer an end-to-end solution from cohort definition to model evaluation. The framework natively supports most open-access ICU datasets (MIMIC III/IV, eICU, HiRID, AUMCdb) and is easily adaptable to future ICU datasets. Combined with a transparent preprocessing pipeline and extensible training code for multiple ML and deep learning models, YAIB enables unified model development. Our benchmark comes with five predefined established prediction tasks (mortality, acute kidney injury, sepsis, kidney function, and length of stay) developed in collaboration with clinicians. Adding further tasks is straightforward by design. Using YAIB, we demonstrate that the choice of dataset, cohort definition, and preprocessing have a major impact on the prediction performance - often more so than model class - indicating an urgent need for YAIB as a holistic benchmarking tool. We provide our work to the clinical ML community to accelerate method development and enable real-world clinical implementations. Software Repository: https://github.com/rvandewater/YAIB.

  • 6 authors
·
Jun 8, 2023

Eureka: Evaluating and Understanding Large Foundation Models

Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.

  • 9 authors
·
Sep 13, 2024

Beyond ImageNet: Understanding Cross-Dataset Robustness of Lightweight Vision Models

Lightweight vision classification models such as MobileNet, ShuffleNet, and EfficientNet are increasingly deployed in mobile and embedded systems, yet their performance has been predominantly benchmarked on ImageNet. This raises critical questions: Do models that excel on ImageNet also generalize across other domains? How can cross-dataset robustness be systematically quantified? And which architectural elements consistently drive generalization under tight resource constraints? Here, we present the first systematic evaluation of 11 lightweight vision models (2.5M parameters), trained under a fixed 100-epoch schedule across 7 diverse datasets. We introduce the Cross-Dataset Score (xScore), a unified metric that quantifies the consistency and robustness of model performance across diverse visual domains. Our results show that (1) ImageNet accuracy does not reliably predict performance on fine-grained or medical datasets, (2) xScore provides a scalable predictor of mobile model performance that can be estimated from just four datasets, and (3) certain architectural components--such as isotropic convolutions with higher spatial resolution and channel-wise attention--promote broader generalization, while Transformer-based blocks yield little additional benefit, despite incurring higher parameter overhead. This study provides a reproducible framework for evaluating lightweight vision models beyond ImageNet, highlights key design principles for mobile-friendly architectures, and guides the development of future models that generalize robustly across diverse application domains.

  • 3 authors
·
Oct 31

Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability

High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.

REPRO-Bench: Can Agentic AI Systems Assess the Reproducibility of Social Science Research?

Assessing the reproducibility of social science papers is essential for promoting rigor in research processes, but manual assessment is costly. With recent advances in agentic AI systems (i.e., AI agents), we seek to evaluate their capability to automate this process. However, existing benchmarks for reproducing research papers (1) focus solely on reproducing results using provided code and data without assessing their consistency with the paper, (2) oversimplify real-world scenarios, and (3) lack necessary diversity in data formats and programming languages. To address these issues, we introduce REPRO-Bench, a collection of 112 task instances, each representing a social science paper with a publicly available reproduction report. The agents are tasked with assessing the reproducibility of the paper based on the original paper PDF and the corresponding reproduction package. REPRO-Bench features end-to-end evaluation tasks on the reproducibility of social science papers with complexity comparable to real-world assessments. We evaluate three representative AI agents on REPRO-Bench, with the best-performing agent achieving an accuracy of only 21.4%. Building on our empirical analysis, we develop REPRO-Agent, which improves the highest accuracy achieved by existing agents by 71%. We conclude that more advanced AI agents should be developed to automate real-world reproducibility assessment. REPRO-Bench is publicly available at https://github.com/uiuc-kang-lab/REPRO-Bench.

  • 6 authors
·
Jul 24

A Benchmark and Agentic Framework for Omni-Modal Reasoning and Tool Use in Long Videos

Long-form multimodal video understanding requires integrating vision, speech, and ambient audio with coherent long-range reasoning. Existing benchmarks emphasize either temporal length or multimodal richness, but rarely both and while some incorporate open-ended questions and advanced metrics, they mostly rely on single-score accuracy, obscuring failure modes. We introduce LongShOTBench, a diagnostic benchmark with open-ended, intent-driven questions; single- and multi-turn dialogues; and tasks requiring multimodal reasoning and agentic tool use across video, audio, and speech. Each item includes a reference answer and graded rubric for interpretable, and traceable evaluation. LongShOTBench is produced via a scalable, human-validated pipeline to ensure coverage and reproducibility. All samples in our LongShOTBench are human-verified and corrected. Furthermore, we present LongShOTAgent, an agentic system that analyzes long videos via preprocessing, search, and iterative refinement. On LongShOTBench, state-of-the-art MLLMs show large gaps: Gemini-2.5-Flash achieves 52.95%, open-source models remain below 30%, and LongShOTAgent attains 44.66%. These results underscore the difficulty of real-world long-form video understanding. LongShOTBench provides a practical, reproducible foundation for evaluating and improving MLLMs. All resources are available on GitHub: https://github.com/mbzuai-oryx/longshot.

Synthetic Dataset Evaluation Based on Generalized Cross Validation

With the rapid advancement of synthetic dataset generation techniques, evaluating the quality of synthetic data has become a critical research focus. Robust evaluation not only drives innovations in data generation methods but also guides researchers in optimizing the utilization of these synthetic resources. However, current evaluation studies for synthetic datasets remain limited, lacking a universally accepted standard framework. To address this, this paper proposes a novel evaluation framework integrating generalized cross-validation experiments and domain transfer learning principles, enabling generalizable and comparable assessments of synthetic dataset quality. The framework involves training task-specific models (e.g., YOLOv5s) on both synthetic datasets and multiple real-world benchmarks (e.g., KITTI, BDD100K), forming a cross-performance matrix. Following normalization, a Generalized Cross-Validation (GCV) Matrix is constructed to quantify domain transferability. The framework introduces two key metrics. One measures the simulation quality by quantifying the similarity between synthetic data and real-world datasets, while another evaluates the transfer quality by assessing the diversity and coverage of synthetic data across various real-world scenarios. Experimental validation on Virtual KITTI demonstrates the effectiveness of our proposed framework and metrics in assessing synthetic data fidelity. This scalable and quantifiable evaluation solution overcomes traditional limitations, providing a principled approach to guide synthetic dataset optimization in artificial intelligence research.

  • 6 authors
·
Sep 14

You Don't Know Until You Click:Automated GUI Testing for Production-Ready Software Evaluation

Large Language Models (LLMs) and code agents in software development are rapidly evolving from generating isolated code snippets to producing full-fledged software applications with graphical interfaces, interactive logic, and dynamic behaviors. However, current benchmarks fall short in evaluating such production-ready software, as they often rely on static checks or binary pass/fail scripts, failing to capture the interactive behaviors and runtime dynamics that define real-world usability - qualities that only emerge when an application is actively used. This is the blind spot of current evaluation: you don't know if an app works until you click through it, interact with it, and observe how it responds. To bridge this gap, we introduce RealDevWorld, a novel evaluation framework for automated end-to-end assessment of LLMs' ability to generate production-ready repositories from scratch. It features two key components: (1) RealDevBench, a diverse collection of 194 open-ended software engineering tasks across multiple domains, incorporating multimodal elements to reflect real-world complexity; and (2) AppEvalPilot, a new agent-as-a-judge evaluation system that simulates realistic, GUI-based user interactions to automatically and holistically assess software functional correctness, visual fidelity, and runtime behavior. The framework delivers fine-grained, task-specific diagnostic feedback, supporting nuanced evaluation beyond simple success/failure judgments. Empirical results show that RealDevWorld delivers effective, automatic, and human-aligned evaluations, achieving an accuracy of 0.92 and a correlation of 0.85 with expert human assessments, while significantly reducing the reliance on manual review. This enables scalable, human-aligned assessment of production-level software generated by LLMs. Our code is available on GitHub.

  • 14 authors
·
Aug 17

DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis

The ability to research and synthesize knowledge is central to human expertise and progress. An emerging class of systems promises these exciting capabilities through generative research synthesis, performing retrieval over the live web and synthesizing discovered sources into long-form, cited summaries. However, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short-form factual responses, while expert-curated datasets risk staleness and data contamination. Both fail to capture the complexity and evolving nature of real research synthesis tasks. In this work, we introduce DeepScholar-bench, a live benchmark and holistic, automated evaluation framework designed to evaluate generative research synthesis. DeepScholar-bench draws queries from recent, high-quality ArXiv papers and focuses on a real research synthesis task: generating the related work sections of a paper by retrieving, synthesizing, and citing prior research. Our evaluation framework holistically assesses performance across three key dimensions, knowledge synthesis, retrieval quality, and verifiability. We also develop DeepScholar-base, a reference pipeline implemented efficiently using the LOTUS API. Using the DeepScholar-bench framework, we perform a systematic evaluation of prior open-source systems, search AI's, OpenAI's DeepResearch, and DeepScholar-base. We find that DeepScholar-base establishes a strong baseline, attaining competitive or higher performance than each other method. We also find that DeepScholar-bench remains far from saturated, with no system exceeding a score of 19% across all metrics. These results underscore the difficulty of DeepScholar-bench, as well as its importance for progress towards AI systems capable of generative research synthesis. We make our code available at https://github.com/guestrin-lab/deepscholar-bench.

  • 7 authors
·
Aug 27 2

BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models

Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology.

ibm-research IBM Research
·
Jun 17

FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models

The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.

  • 9 authors
·
Apr 9, 2024

Large Language Models Are State-of-the-Art Evaluators of Code Generation

Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.

  • 1 authors
·
Apr 27, 2023

DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts

Recent advances in protein structure prediction have achieved near-atomic accuracy for well-folded proteins. However, current benchmarks inadequately assess model performance in biologically challenging contexts, especially those involving intrinsically disordered regions (IDRs), limiting their utility in applications such as drug discovery, disease variant interpretation, and protein interface design. We introduce DisProtBench, a comprehensive benchmark for evaluating protein structure prediction models (PSPMs) under structural disorder and complex biological conditions. DisProtBench spans three key axes: (1) Data complexity, covering disordered regions, G protein-coupled receptor (GPCR) ligand pairs, and multimeric complexes; (2) Task diversity, benchmarking twelve leading PSPMs across structure-based tasks with unified classification, regression, and interface metrics; and (3) Interpretability, via the DisProtBench Portal, which provides precomputed 3D structures and visual error analyses. Our results reveal significant variability in model robustness under disorder, with low-confidence regions linked to functional prediction failures. Notably, global accuracy metrics often fail to predict task performance in disordered settings, emphasizing the need for function-aware evaluation. DisProtBench establishes a reproducible, extensible, and biologically grounded framework for assessing next-generation PSPMs in realistic biomedical scenarios.

  • 9 authors
·
Jun 18

MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language Feedback

To solve complex tasks, large language models (LLMs) often require multiple rounds of interactions with the user, sometimes assisted by external tools. However, current evaluation protocols often emphasize benchmark performance with single-turn exchanges, neglecting the nuanced interactions among the user, LLMs, and external tools, while also underestimating the importance of natural language feedback from users. These oversights contribute to discrepancies between research benchmark evaluations and real-world use cases. We introduce MINT, a benchmark that evaluates LLMs' ability to solve tasks with multi-turn interactions by (1) using tools and (2) leveraging natural language feedback. To ensure reproducibility, we provide an evaluation framework where LLMs can access tools by executing Python code and receive users' natural language feedback simulated by GPT-4. We repurpose a diverse set of established evaluation datasets focusing on reasoning, coding, and decision-making and carefully curate them into a compact subset for efficient evaluation. Our analysis of 20 open- and closed-source LLMs offers intriguing findings. (a) LLMs generally benefit from tools and language feedback, with performance gains (absolute, same below) of 1-8% for each turn of tool use and 2-17% with natural language feedback. (b) Better single-turn performance does not guarantee better multi-turn performance. (c) Surprisingly, on the LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities. We expect MINT can help measure progress and incentivize research in improving LLMs' capabilities in multi-turn interactions, especially for open-source communities where multi-turn human evaluation can be less accessible compared to commercial LLMs with a larger user base.

  • 7 authors
·
Sep 19, 2023

PhyX: Does Your Model Have the "Wits" for Physical Reasoning?

Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5\%, 42.2\%, and 45.8\% accuracy respectively-performance gaps exceeding 29\% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation.

  • 19 authors
·
May 21 4

Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation

Program synthesis has been long studied with recent approaches focused on directly using the power of Large Language Models (LLMs) to generate code. Programming benchmarks, with curated synthesis problems and test-cases, are used to measure the performance of various LLMs on code synthesis. However, these test-cases can be limited in both quantity and quality for fully assessing the functional correctness of the generated code. Such limitation in the existing benchmarks begs the following question: In the era of LLMs, is the code generated really correct? To answer this, we propose EvalPlus -- a code synthesis evaluation framework to rigorously benchmark the functional correctness of LLM-synthesized code. EvalPlus augments a given evaluation dataset with large amounts of test-cases newly produced by an automatic test input generator, powered by both LLM- and mutation-based strategies. While EvalPlus is general, we extend the test-cases of the popular HumanEval benchmark by 80x to build HumanEval+. Our extensive evaluation across 26 popular LLMs (e.g., GPT-4 and ChatGPT) demonstrates that HumanEval+ is able to catch significant amounts of previously undetected wrong code synthesized by LLMs, reducing the pass@k by up-to 19.3-28.9%. We also surprisingly found that test insufficiency can lead to mis-ranking. For example, both WizardCoder-CodeLlama and Phind-CodeLlama now outperform ChatGPT on HumanEval+, while none of them could on HumanEval. Our work not only indicates that prior popular code synthesis evaluation results do not accurately reflect the true performance of LLMs for code synthesis, but also opens up a new direction to improve such programming benchmarks through automated testing. We have open-sourced our tools, enhanced datasets as well as all LLM-generated code at https://github.com/evalplus/evalplus to facilitate and accelerate future LLM-for-code research.

  • 4 authors
·
May 2, 2023

AutoReproduce: Automatic AI Experiment Reproduction with Paper Lineage

Efficient experiment reproduction is critical to accelerating progress in artificial intelligence. However, the inherent complexity of method design and training procedures presents substantial challenges for automation. Notably, reproducing experiments often requires implicit domain-specific knowledge not explicitly documented in the original papers. To address this, we introduce the paper lineage algorithm, which identifies and extracts implicit knowledge from the relevant references cited by the target paper. Building on this idea, we propose AutoReproduce, a multi-agent framework capable of automatically reproducing experiments described in research papers in an end-to-end manner. AutoReproduce enhances code executability by generating unit tests alongside the reproduction process. To evaluate the reproduction capability, we construct ReproduceBench, a benchmark annotated with verified implementations, and introduce novel evaluation metrics to assess both the reproduction and execution fidelity. Experimental results demonstrate that AutoReproduce outperforms the existing strong agent baselines on all five evaluation metrics by a peak margin of over 70%. In particular, compared to the official implementations, AutoReproduce achieves an average performance gap of 22.1% on 89.74% of the executable experiment runs. The code will be available at https://github.com/AI9Stars/AutoReproduce.

  • 9 authors
·
May 26

Why Settle for One? Text-to-ImageSet Generation and Evaluation

Despite remarkable progress in Text-to-Image models, many real-world applications require generating coherent image sets with diverse consistency requirements. Existing consistent methods often focus on a specific domain with specific aspects of consistency, which significantly constrains their generalizability to broader applications. In this paper, we propose a more challenging problem, Text-to-ImageSet (T2IS) generation, which aims to generate sets of images that meet various consistency requirements based on user instructions. To systematically study this problem, we first introduce T2IS-Bench with 596 diverse instructions across 26 subcategories, providing comprehensive coverage for T2IS generation. Building on this, we propose T2IS-Eval, an evaluation framework that transforms user instructions into multifaceted assessment criteria and employs effective evaluators to adaptively assess consistency fulfillment between criteria and generated sets. Subsequently, we propose AutoT2IS, a training-free framework that maximally leverages pretrained Diffusion Transformers' in-context capabilities to harmonize visual elements to satisfy both image-level prompt alignment and set-level visual consistency. Extensive experiments on T2IS-Bench reveal that diverse consistency challenges all existing methods, while our AutoT2IS significantly outperforms current generalized and even specialized approaches. Our method also demonstrates the ability to enable numerous underexplored real-world applications, confirming its substantial practical value. Visit our project in https://chengyou-jia.github.io/T2IS-Home.

  • 10 authors
·
Jun 29

Decoding Latent Attack Surfaces in LLMs: Prompt Injection via HTML in Web Summarization

Large Language Models (LLMs) are increasingly integrated into web-based systems for content summarization, yet their susceptibility to prompt injection attacks remains a pressing concern. In this study, we explore how non-visible HTML elements such as <meta>, aria-label, and alt attributes can be exploited to embed adversarial instructions without altering the visible content of a webpage. We introduce a novel dataset comprising 280 static web pages, evenly divided between clean and adversarial injected versions, crafted using diverse HTML-based strategies. These pages are processed through a browser automation pipeline to extract both raw HTML and rendered text, closely mimicking real-world LLM deployment scenarios. We evaluate two state-of-the-art open-source models, Llama 4 Scout (Meta) and Gemma 9B IT (Google), on their ability to summarize this content. Using both lexical (ROUGE-L) and semantic (SBERT cosine similarity) metrics, along with manual annotations, we assess the impact of these covert injections. Our findings reveal that over 29% of injected samples led to noticeable changes in the Llama 4 Scout summaries, while Gemma 9B IT showed a lower, yet non-trivial, success rate of 15%. These results highlight a critical and largely overlooked vulnerability in LLM driven web pipelines, where hidden adversarial content can subtly manipulate model outputs. Our work offers a reproducible framework and benchmark for evaluating HTML-based prompt injection and underscores the urgent need for robust mitigation strategies in LLM applications involving web content.

  • 1 authors
·
Sep 6

Computational reproducibility of Jupyter notebooks from biomedical publications

Jupyter notebooks facilitate the bundling of executable code with its documentation and output in one interactive environment, and they represent a popular mechanism to document and share computational workflows. The reproducibility of computational aspects of research is a key component of scientific reproducibility but has not yet been assessed at scale for Jupyter notebooks associated with biomedical publications. We address computational reproducibility at two levels: First, using fully automated workflows, we analyzed the computational reproducibility of Jupyter notebooks related to publications indexed in PubMed Central. We identified such notebooks by mining the articles full text, locating them on GitHub and re-running them in an environment as close to the original as possible. We documented reproduction success and exceptions and explored relationships between notebook reproducibility and variables related to the notebooks or publications. Second, this study represents a reproducibility attempt in and of itself, using essentially the same methodology twice on PubMed Central over two years. Out of 27271 notebooks from 2660 GitHub repositories associated with 3467 articles, 22578 notebooks were written in Python, including 15817 that had their dependencies declared in standard requirement files and that we attempted to re-run automatically. For 10388 of these, all declared dependencies could be installed successfully, and we re-ran them to assess reproducibility. Of these, 1203 notebooks ran through without any errors, including 879 that produced results identical to those reported in the original notebook and 324 for which our results differed from the originally reported ones. Running the other notebooks resulted in exceptions. We zoom in on common problems, highlight trends and discuss potential improvements to Jupyter-related workflows associated with biomedical publications.

  • 2 authors
·
Aug 10, 2023

BARS: Towards Open Benchmarking for Recommender Systems

The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.

  • 8 authors
·
May 19, 2022

A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation

Retrieval-augmented generation (RAG) is an umbrella of different components, design decisions, and domain-specific adaptations to enhance the capabilities of large language models and counter their limitations regarding hallucination and outdated and missing knowledge. Since it is unclear which design decisions lead to a satisfactory performance, developing RAG systems is often experimental and needs to follow a systematic and sound methodology to gain sound and reliable results. However, there is currently no generally accepted methodology for RAG evaluation despite a growing interest in this technology. In this paper, we propose a first blueprint of a methodology for a sound and reliable evaluation of RAG systems and demonstrate its applicability on a real-world software engineering research task: the validation of configuration dependencies across software technologies. In summary, we make two novel contributions: (i) A novel, reusable methodological design for evaluating RAG systems, including a demonstration that represents a guideline, and (ii) a RAG system, which has been developed following this methodology, that achieves the highest accuracy in the field of dependency validation. For the blueprint's demonstration, the key insights are the crucial role of choosing appropriate baselines and metrics, the necessity for systematic RAG refinements derived from qualitative failure analysis, as well as the reporting practices of key design decision to foster replication and evaluation.

  • 4 authors
·
Oct 11, 2024

MRG-Bench: Evaluating and Exploring the Requirements of Context for Repository-Level Code Generation

Large Language Models (LLMs) have demonstrated impressive capabilities in code generation. However, current evaluation datasets suffer from issues such as the lack of runnable test cases, deviation from the distribution of real-world code, and the ability to evaluate only the Python language. These limitations undermine the credibility of the evaluation results. To address these limitations, we introduce MRG-Bench (Multi-language Repository-level Code Generation Benchmark), a novel dataset that provides a more accurate evaluation of LLMs in practical repository-level code generation tasks. MRG-Bench has three main features: (1) practical data sourced from real-world code repositories that align to the practical distribution, (2) multiple programming languages support, including Python, Java, and Go, and (3) project-level runnable test cases to assess the quality of the generated code. Based on MRG-Bench, we conducted extensive experiments including large language models, long-context models, and RAG-related methods. These evaluation results demonstrate that current repository-level code generation techniques suffer from significant performance deficiencies. To further investigate why models fail, we designed novel experiments to annotate the underlying causes of generation errors. The results explicitly show that the majority of methods suffer from "difficulty in understanding user requirements," failing to comprehend their assigned tasks accurately. Moreover, the impact of different repository-level contexts on this issue exhibits significant disparities across different programming languages, suggesting that, in practice, specialized contextual information needs to be designed for different languages.

  • 1 authors
·
Aug 4

Are LLMs ready to help non-expert users to make charts of official statistics data?

In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.

  • 4 authors
·
Sep 3

Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism

The foundation of reproducible science lies in protocols that are precise, logically ordered, and executable. The autonomous generation of these protocols through natural language queries could greatly improve the efficiency of the reproduction process. However, current leading large language models (LLMs) often generate incomplete or inconsistent protocols, limiting their utility. To address this limitation, we first introduce SciRecipe, a large-scale dataset of over 12K structured protocols spanning 27 biological subfields and encompassing both comprehension and problem-solving tasks. To further improve protocol generation, we propose the "Sketch-and-Fill" paradigm, which separates analysis, structuring, and expression to ensure each step is explicit and verifiable. Complementing this, the structured component-based reward mechanism evaluates step granularity, action order, and semantic fidelity, aligning model optimization with experimental reliability. Building on these components, we develop Thoth, trained through a staged Knowledge-to-Action process that progresses from knowledge acquisition to operational reasoning and ultimately to robust, executable protocol generation. Across multiple benchmarks, Thoth consistently surpasses both proprietary and open-source LLMs, achieving significant improvements in step alignment, logical sequencing, and semantic accuracy. Our approach paves the way for reliable scientific assistants that bridge knowledge with experimental execution. All data, code, and models will be released publicly.

  • 11 authors
·
Oct 17 2

ReportBench: Evaluating Deep Research Agents via Academic Survey Tasks

The advent of Deep Research agents has substantially reduced the time required for conducting extensive research tasks. However, these tasks inherently demand rigorous standards of factual accuracy and comprehensiveness, necessitating thorough evaluation before widespread adoption. In this paper, we propose ReportBench, a systematic benchmark designed to evaluate the content quality of research reports generated by large language models (LLMs). Our evaluation focuses on two critical dimensions: (1) the quality and relevance of cited literature, and (2) the faithfulness and veracity of the statements within the generated reports. ReportBench leverages high-quality published survey papers available on arXiv as gold-standard references, from which we apply reverse prompt engineering to derive domain-specific prompts and establish a comprehensive evaluation corpus. Furthermore, we develop an agent-based automated framework within ReportBench that systematically analyzes generated reports by extracting citations and statements, checking the faithfulness of cited content against original sources, and validating non-cited claims using web-based resources. Empirical evaluations demonstrate that commercial Deep Research agents such as those developed by OpenAI and Google consistently generate more comprehensive and reliable reports than standalone LLMs augmented with search or browsing tools. However, there remains substantial room for improvement in terms of the breadth and depth of research coverage, as well as factual consistency. The complete code and data will be released at the following link: https://github.com/ByteDance-BandAI/ReportBench

ByteDance ByteDance
·
Aug 13 3

AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining

Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.

  • 9 authors
·
Aug 10

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

  • 2 authors
·
Apr 19, 2024

On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective

Generative Foundation Models (GenFMs) have emerged as transformative tools. However, their widespread adoption raises critical concerns regarding trustworthiness across dimensions. This paper presents a comprehensive framework to address these challenges through three key contributions. First, we systematically review global AI governance laws and policies from governments and regulatory bodies, as well as industry practices and standards. Based on this analysis, we propose a set of guiding principles for GenFMs, developed through extensive multidisciplinary collaboration that integrates technical, ethical, legal, and societal perspectives. Second, we introduce TrustGen, the first dynamic benchmarking platform designed to evaluate trustworthiness across multiple dimensions and model types, including text-to-image, large language, and vision-language models. TrustGen leverages modular components--metadata curation, test case generation, and contextual variation--to enable adaptive and iterative assessments, overcoming the limitations of static evaluation methods. Using TrustGen, we reveal significant progress in trustworthiness while identifying persistent challenges. Finally, we provide an in-depth discussion of the challenges and future directions for trustworthy GenFMs, which reveals the complex, evolving nature of trustworthiness, highlighting the nuanced trade-offs between utility and trustworthiness, and consideration for various downstream applications, identifying persistent challenges and providing a strategic roadmap for future research. This work establishes a holistic framework for advancing trustworthiness in GenAI, paving the way for safer and more responsible integration of GenFMs into critical applications. To facilitate advancement in the community, we release the toolkit for dynamic evaluation.

  • 66 authors
·
Feb 20 2

Dr.Mi-Bench: A Modular-integrated Benchmark for Scientific Deep Research Agent

The explosive growth in academic literature necessitates automated deep research (DR) agents, yet their evaluation remains a significant challenge. First, existing benchmarks often focus narrowly on retrieval while neglecting high-level planning and reasoning. Second, existing benchmarks favor general domains over the scientific domains that are the core application for DR agents. To address these gaps, we introduce Dr.Mi-Bench, a Modular-integrated benchmark for scientific DR agents. Grounded in academic literature, our benchmark uses a human-annotated dataset of 200 instances across 10 scientific domains, including both research and review papers. Besides, we also propose a Modular-integrated Evaluation Paradigm for DR Agents (Dr.Mi-Eval), a novel modular-integrated evaluation paradigm, which leverages the rich structure of academic papers to assess the core competencies of planning, retrieval, and reasoning through two complementary modes: an end-to-end evaluation for DR agents and an isolated evaluation for foundational LLMs as potential backbones. Experimental results reveal a fragmented performance landscape: agents exhibit specialized strengths but share critical weaknesses, most notably in performing the multi-source retrieval required for review-style tasks and performing consistently across diverse scientific fields. Moreover, improving high-level planning capability is the crucial factor for unlocking the reasoning potential of foundational LLMs as backbones. By exposing these actionable failure modes, Dr.Mi-Bench provides a diagnostic tool to guide the development of more reliable academic research assistants.

  • 10 authors
·
Nov 30

Automated Review Generation Method Based on Large Language Models

Literature research, vital for scientific work, faces the challenge of the surging torrent of information in the vast ocean of literature exceeding researchers' processing capabilities. To address this issue, we present an automated review generation method based on Large Language Models (LLMs), aimed at overcoming efficiency bottlenecks in literature processing and reducing cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields due to minimal domain knowledge requirements. In a case study on propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we implemented a multi-layered quality control strategy, effectively mitigating risks and ensuring reliability, as quantitatively demonstrated through manual verification. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5\% with over 95\% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.

  • 11 authors
·
Jul 30, 2024

A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models

The rapid advancements in generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced, especially when personal information is utilized in the training datasets. In addition, there is an absence of a comprehensive evaluation framework capable of quantitatively measuring the quality of the generated synthetic data and their utility for downstream tasks. In response to this gap, we introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our experimental findings illuminate the trade-offs between various evaluation metrics in the context of synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and practitioners engaged with synthetic tabular data,, empowering them to judiciously determine the suitability of the generated data for their specific applications, with an emphasis on upholding user privacy.

  • 3 authors
·
Apr 20, 2024

Large Language Models are not Fair Evaluators

In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.

  • 10 authors
·
May 29, 2023

Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains

Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.

Salesforce Salesforce
·
Oct 20 2

CC30k: A Citation Contexts Dataset for Reproducibility-Oriented Sentiment Analysis

Sentiments about the reproducibility of cited papers in downstream literature offer community perspectives and have shown as a promising signal of the actual reproducibility of published findings. To train effective models to effectively predict reproducibility-oriented sentiments and further systematically study their correlation with reproducibility, we introduce the CC30k dataset, comprising a total of 30,734 citation contexts in machine learning papers. Each citation context is labeled with one of three reproducibility-oriented sentiment labels: Positive, Negative, or Neutral, reflecting the cited paper's perceived reproducibility or replicability. Of these, 25,829 are labeled through crowdsourcing, supplemented with negatives generated through a controlled pipeline to counter the scarcity of negative labels. Unlike traditional sentiment analysis datasets, CC30k focuses on reproducibility-oriented sentiments, addressing a research gap in resources for computational reproducibility studies. The dataset was created through a pipeline that includes robust data cleansing, careful crowd selection, and thorough validation. The resulting dataset achieves a labeling accuracy of 94%. We then demonstrated that the performance of three large language models significantly improves on the reproducibility-oriented sentiment classification after fine-tuning using our dataset. The dataset lays the foundation for large-scale assessments of the reproducibility of machine learning papers. The CC30k dataset and the Jupyter notebooks used to produce and analyze the dataset are publicly available at https://github.com/lamps-lab/CC30k .

  • 3 authors
·
Nov 10 2

HREF: Human Response-Guided Evaluation of Instruction Following in Language Models

Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.

  • 4 authors
·
Dec 19, 2024

Multi-LLM Thematic Analysis with Dual Reliability Metrics: Combining Cohen's Kappa and Semantic Similarity for Qualitative Research Validation

Qualitative research faces a critical reliability challenge: traditional inter-rater agreement methods require multiple human coders, are time-intensive, and often yield moderate consistency. We present a multi-perspective validation framework for LLM-based thematic analysis that combines ensemble validation with dual reliability metrics: Cohen's Kappa (κ) for inter-rater agreement and cosine similarity for semantic consistency. Our framework enables configurable analysis parameters (1-6 seeds, temperature 0.0-2.0), supports custom prompt structures with variable substitution, and provides consensus theme extraction across any JSON format. As proof-of-concept, we evaluate three leading LLMs (Gemini 2.5 Pro, GPT-4o, Claude 3.5 Sonnet) on a psychedelic art therapy interview transcript, conducting six independent runs per model. Results demonstrate Gemini achieves highest reliability (κ= 0.907, cosine=95.3%), followed by GPT-4o (κ= 0.853, cosine=92.6%) and Claude (κ= 0.842, cosine=92.1%). All three models achieve a high agreement (κ> 0.80), validating the multi-run ensemble approach. The framework successfully extracts consensus themes across runs, with Gemini identifying 6 consensus themes (50-83% consistency), GPT-4o identifying 5 themes, and Claude 4 themes. Our open-source implementation provides researchers with transparent reliability metrics, flexible configuration, and structure-agnostic consensus extraction, establishing methodological foundations for reliable AI-assisted qualitative research.

The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources

Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.

  • 23 authors
·
Jun 24, 2024

TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents

We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.

  • 6 authors
·
May 19

MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers

The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.

Salesforce Salesforce
·
Aug 20 10

Reproducibility of the Methods in Medical Imaging with Deep Learning

Concerns about the reproducibility of deep learning research are more prominent than ever, with no clear solution in sight. The relevance of machine learning research can only be improved if we also employ empirical rigor that incorporates reproducibility guidelines, especially so in the medical imaging field. The Medical Imaging with Deep Learning (MIDL) conference has made advancements in this direction by advocating open access, and recently also recommending authors to make their code public - both aspects being adopted by the majority of the conference submissions. This helps the reproducibility of the methods, however, there is currently little or no support for further evaluation of these supplementary material, making them vulnerable to poor quality, which affects the impact of the entire submission. We have evaluated all accepted full paper submissions to MIDL between 2018 and 2022 using established, but slightly adjusted guidelines on reproducibility and the quality of the public repositories. The evaluations show that publishing repositories and using public datasets are becoming more popular, which helps traceability, but the quality of the repositories has not improved over the years, leaving room for improvement in every aspect of designing repositories. Merely 22% of all submissions contain a repository that were deemed repeatable using our evaluations. From the commonly encountered issues during the evaluations, we propose a set of guidelines for machine learning-related research for medical imaging applications, adjusted specifically for future submissions to MIDL.

  • 5 authors
·
Oct 20, 2022