new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

Taming Preference Mode Collapse via Directional Decoupling Alignment in Diffusion Reinforcement Learning

Recent studies have demonstrated significant progress in aligning text-to-image diffusion models with human preference via Reinforcement Learning from Human Feedback. However, while existing methods achieve high scores on automated reward metrics, they often lead to Preference Mode Collapse (PMC)-a specific form of reward hacking where models converge on narrow, high-scoring outputs (e.g., images with monolithic styles or pervasive overexposure), severely degrading generative diversity. In this work, we introduce and quantify this phenomenon, proposing DivGenBench, a novel benchmark designed to measure the extent of PMC. We posit that this collapse is driven by over-optimization along the reward model's inherent biases. Building on this analysis, we propose Directional Decoupling Alignment (D^2-Align), a novel framework that mitigates PMC by directionally correcting the reward signal. Specifically, our method first learns a directional correction within the reward model's embedding space while keeping the model frozen. This correction is then applied to the reward signal during the optimization process, preventing the model from collapsing into specific modes and thereby maintaining diversity. Our comprehensive evaluation, combining qualitative analysis with quantitative metrics for both quality and diversity, reveals that D^2-Align achieves superior alignment with human preference.

GD-ML AMAP-ML
·
Dec 30, 2025 2

Burstormer: Burst Image Restoration and Enhancement Transformer

On a shutter press, modern handheld cameras capture multiple images in rapid succession and merge them to generate a single image. However, individual frames in a burst are misaligned due to inevitable motions and contain multiple degradations. The challenge is to properly align the successive image shots and merge their complimentary information to achieve high-quality outputs. Towards this direction, we propose Burstormer: a novel transformer-based architecture for burst image restoration and enhancement. In comparison to existing works, our approach exploits multi-scale local and non-local features to achieve improved alignment and feature fusion. Our key idea is to enable inter-frame communication in the burst neighborhoods for information aggregation and progressive fusion while modeling the burst-wide context. However, the input burst frames need to be properly aligned before fusing their information. Therefore, we propose an enhanced deformable alignment module for aligning burst features with regards to the reference frame. Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions. After multi-level alignment and enrichment, we re-emphasize on inter-frame communication within burst using a cyclic burst sampling module. Finally, the inter-frame information is aggregated using the proposed burst feature fusion module followed by progressive upsampling. Our Burstormer outperforms state-of-the-art methods on burst super-resolution, burst denoising and burst low-light enhancement. Our codes and pretrained models are available at https:// github.com/akshaydudhane16/Burstormer

  • 5 authors
·
Apr 3, 2023

Dynamic Classifier-Free Diffusion Guidance via Online Feedback

Classifier-free guidance (CFG) is a cornerstone of text-to-image diffusion models, yet its effectiveness is limited by the use of static guidance scales. This "one-size-fits-all" approach fails to adapt to the diverse requirements of different prompts; moreover, prior solutions like gradient-based correction or fixed heuristic schedules introduce additional complexities and fail to generalize. In this work, we challeng this static paradigm by introducing a framework for dynamic CFG scheduling. Our method leverages online feedback from a suite of general-purpose and specialized small-scale latent-space evaluations, such as CLIP for alignment, a discriminator for fidelity and a human preference reward model, to assess generation quality at each step of the reverse diffusion process. Based on this feedback, we perform a greedy search to select the optimal CFG scale for each timestep, creating a unique guidance schedule tailored to every prompt and sample. We demonstrate the effectiveness of our approach on both small-scale models and the state-of-the-art Imagen 3, showing significant improvements in text alignment, visual quality, text rendering and numerical reasoning. Notably, when compared against the default Imagen 3 baseline, our method achieves up to 53.8% human preference win-rate for overall preference, a figure that increases up to to 55.5% on prompts targeting specific capabilities like text rendering. Our work establishes that the optimal guidance schedule is inherently dynamic and prompt-dependent, and provides an efficient and generalizable framework to achieve it.

  • 8 authors
·
Sep 19, 2025

LLM-ForcedAligner: A Non-Autoregressive and Accurate LLM-Based Forced Aligner for Multilingual and Long-Form Speech

Forced alignment (FA) predicts start and end timestamps for words or characters in speech, but existing methods are language-specific and prone to cumulative temporal shifts. The multilingual speech understanding and long-sequence processing abilities of speech large language models (SLLMs) make them promising for FA in multilingual, crosslingual, and long-form speech settings. However, directly applying the next-token prediction paradigm of SLLMs to FA results in hallucinations and slow inference. To bridge the gap, we propose LLM-ForcedAligner, reformulating FA as a slot-filling paradigm: timestamps are treated as discrete indices, and special timestamp tokens are inserted as slots into the transcript. Conditioned on the speech embeddings and the transcript with slots, the SLLM directly predicts the time indices at slots. During training, causal attention masking with non-shifted input and label sequences allows each slot to predict its own timestamp index based on itself and preceding context, with loss computed only at slot positions. Dynamic slot insertion enables FA at arbitrary positions. Moreover, non-autoregressive inference is supported, avoiding hallucinations and improving speed. Experiments across multilingual, crosslingual, and long-form speech scenarios show that LLM-ForcedAligner achieves a 69%~78% relative reduction in accumulated averaging shift compared with prior methods. The checkpoint and inference code will be released later.

  • 6 authors
·
Jan 26

Decouple before Align: Visual Disentanglement Enhances Prompt Tuning

Prompt tuning (PT), as an emerging resource-efficient fine-tuning paradigm, has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models. This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context than the object-oriented textual modality. Correspondingly, coarsely aligning these two modalities could result in the biased attention, driving the model to merely focus on the context area. To address this, we propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept. First, we propose to explicitly decouple the visual modality into the foreground and background representation via exploiting coarse-and-fine visual segmenting cues, and then both of these decoupled patterns are aligned with the original foreground texts and the hand-crafted background classes, thereby symmetrically strengthening the modal alignment. To further enhance the visual concentration, we propose a visual pull-push regularization tailored for the foreground-background patterns, directing the original visual representation towards unbiased attention on the region-of-interest object. We demonstrate the power of architecture-free DAPT through few-shot learning, base-to-novel generalization, and data-efficient learning, all of which yield superior performance across prevailing benchmarks. Our code will be released at https://github.com/Ferenas/DAPT.

  • 6 authors
·
Aug 1, 2025