- Domain-Specific Machine Translation to Translate Medicine Brochures in English to Sorani Kurdish Access to Kurdish medicine brochures is limited, depriving Kurdish-speaking communities of critical health information. To address this problem, we developed a specialized Machine Translation (MT) model to translate English medicine brochures into Sorani Kurdish using a parallel corpus of 22,940 aligned sentence pairs from 319 brochures, sourced from two pharmaceutical companies in the Kurdistan Region of Iraq (KRI). We trained a Statistical Machine Translation (SMT) model using the Moses toolkit, conducting seven experiments that resulted in BLEU scores ranging from 22.65 to 48.93. We translated three new brochures to improve the evaluation process and encountered unknown words. We addressed unknown words through post-processing with a medical dictionary, resulting in BLEU scores of 56.87, 31.05, and 40.01. Human evaluation by native Kurdish-speaking pharmacists, physicians, and medicine users showed that 50% of professionals found the translations consistent, while 83.3% rated them accurate. Among users, 66.7% considered the translations clear and felt confident using the medications. 2 authors · Jan 23
2 DILA: Dictionary Label Attention for Mechanistic Interpretability in High-dimensional Multi-label Medical Coding Prediction Predicting high-dimensional or extreme multilabels, such as in medical coding, requires both accuracy and interpretability. Existing works often rely on local interpretability methods, failing to provide comprehensive explanations of the overall mechanism behind each label prediction within a multilabel set. We propose a mechanistic interpretability module called DIctionary Label Attention (\method) that disentangles uninterpretable dense embeddings into a sparse embedding space, where each nonzero element (a dictionary feature) represents a globally learned medical concept. Through human evaluations, we show that our sparse embeddings are more human understandable than its dense counterparts by at least 50 percent. Our automated dictionary feature identification pipeline, leveraging large language models (LLMs), uncovers thousands of learned medical concepts by examining and summarizing the highest activating tokens for each dictionary feature. We represent the relationships between dictionary features and medical codes through a sparse interpretable matrix, enhancing the mechanistic and global understanding of the model's predictions while maintaining competitive performance and scalability without extensive human annotation. 3 authors · Sep 16, 2024
- EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19. 11 authors · Apr 16, 2023
1 DictAS: A Framework for Class-Generalizable Few-Shot Anomaly Segmentation via Dictionary Lookup Recent vision-language models (e.g., CLIP) have demonstrated remarkable class-generalizable ability to unseen classes in few-shot anomaly segmentation (FSAS), leveraging supervised prompt learning or fine-tuning on seen classes. However, their cross-category generalization largely depends on prior knowledge of real seen anomaly samples. In this paper, we propose a novel framework, namely DictAS, which enables a unified model to detect visual anomalies in unseen object categories without any retraining on the target data, only employing a few normal reference images as visual prompts. The insight behind DictAS is to transfer dictionary lookup capabilities to the FSAS task for unseen classes via self-supervised learning, instead of merely memorizing the normal and abnormal feature patterns from the training set. Specifically, DictAS mainly consists of three components: (1) **Dictionary Construction** - to simulate the index and content of a real dictionary using features from normal reference images. (2) **Dictionary Lookup** - to retrieve queried region features from the dictionary via a sparse lookup strategy. When a query feature cannot be retrieved, it is classified as an anomaly. (3) **Query Discrimination Regularization**- to enhance anomaly discrimination by making abnormal features harder to retrieve from the dictionary. To achieve this, Contrastive Query Constraint and Text Alignment Constraint are further proposed. Extensive experiments on seven public industrial and medical datasets demonstrate that DictAS consistently outperforms state-of-the-art FSAS methods. 10 authors · Aug 19
- INSIGHTBUDDY-AI: Medication Extraction and Entity Linking using Large Language Models and Ensemble Learning Medication Extraction and Mining play an important role in healthcare NLP research due to its practical applications in hospital settings, such as their mapping into standard clinical knowledge bases (SNOMED-CT, BNF, etc.). In this work, we investigate state-of-the-art LLMs in text mining tasks on medications and their related attributes such as dosage, route, strength, and adverse effects. In addition, we explore different ensemble learning methods (Stack-Ensemble and Voting-Ensemble) to augment the model performances from individual LLMs. Our ensemble learning result demonstrated better performances than individually fine-tuned base models BERT, RoBERTa, RoBERTa-L, BioBERT, BioClinicalBERT, BioMedRoBERTa, ClinicalBERT, and PubMedBERT across general and specific domains. Finally, we build up an entity linking function to map extracted medical terminologies into the SNOMED-CT codes and the British National Formulary (BNF) codes, which are further mapped to the Dictionary of Medicines and Devices (dm+d), and ICD. Our model's toolkit and desktop applications are publicly available at https://github.com/HECTA-UoM/ensemble-NER. 3 authors · Sep 28, 2024
- Hiding Data Helps: On the Benefits of Masking for Sparse Coding Sparse coding, which refers to modeling a signal as sparse linear combinations of the elements of a learned dictionary, has proven to be a successful (and interpretable) approach in applications such as signal processing, computer vision, and medical imaging. While this success has spurred much work on provable guarantees for dictionary recovery when the learned dictionary is the same size as the ground-truth dictionary, work on the setting where the learned dictionary is larger (or over-realized) with respect to the ground truth is comparatively nascent. Existing theoretical results in this setting have been constrained to the case of noise-less data. We show in this work that, in the presence of noise, minimizing the standard dictionary learning objective can fail to recover the elements of the ground-truth dictionary in the over-realized regime, regardless of the magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of work on self-supervised learning, we propose a novel masking objective for which recovering the ground-truth dictionary is in fact optimal as the signal increases for a large class of data-generating processes. We corroborate our theoretical results with experiments across several parameter regimes showing that our proposed objective also enjoys better empirical performance than the standard reconstruction objective. 4 authors · Feb 24, 2023
- Instruction-tuned Large Language Models for Machine Translation in the Medical Domain Large Language Models (LLMs) have shown promising results on machine translation for high resource language pairs and domains. However, in specialised domains (e.g. medical) LLMs have shown lower performance compared to standard neural machine translation models. The consistency in the machine translation of terminology is crucial for users, researchers, and translators in specialised domains. In this study, we compare the performance between baseline LLMs and instruction-tuned LLMs in the medical domain. In addition, we introduce terminology from specialised medical dictionaries into the instruction formatted datasets for fine-tuning LLMs. The instruction-tuned LLMs significantly outperform the baseline models with automatic metrics. 1 authors · Aug 29, 2024
4 Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation We introduce a novel graph-based Retrieval-Augmented Generation (RAG) framework specifically designed for the medical domain, called MedGraphRAG, aimed at enhancing Large Language Model (LLM) capabilities and generating evidence-based results, thereby improving safety and reliability when handling private medical data. Our comprehensive pipeline begins with a hybrid static-semantic approach to document chunking, significantly improving context capture over traditional methods. Extracted entities are used to create a three-tier hierarchical graph structure, linking entities to foundational medical knowledge sourced from medical papers and dictionaries. These entities are then interconnected to form meta-graphs, which are merged based on semantic similarities to develop a comprehensive global graph. This structure supports precise information retrieval and response generation. The retrieval process employs a U-retrieve method to balance global awareness and indexing efficiency of the LLM. Our approach is validated through a comprehensive ablation study comparing various methods for document chunking, graph construction, and information retrieval. The results not only demonstrate that our hierarchical graph construction method consistently outperforms state-of-the-art models on multiple medical Q\&A benchmarks, but also confirms that the responses generated include source documentation, significantly enhancing the reliability of medical LLMs in practical applications. Code will be at: https://github.com/MedicineToken/Medical-Graph-RAG/tree/main 3 authors · Aug 7, 2024