Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribe1.5 million materials narratives generated by chatbots
The advent of artificial intelligence (AI) has enabled a comprehensive exploration of materials for various applications. However, AI models often prioritize frequently encountered materials in the scientific literature, limiting the selection of suitable candidates based on inherent physical and chemical properties. To address this imbalance, we have generated a dataset of 1,494,017 natural language-material paragraphs based on combined OQMD, Materials Project, JARVIS, COD and AFLOW2 databases, which are dominated by ab initio calculations and tend to be much more evenly distributed on the periodic table. The generated text narratives were then polled and scored by both human experts and ChatGPT-4, based on three rubrics: technical accuracy, language and structure, and relevance and depth of content, showing similar scores but with human-scored depth of content being the most lagging. The merger of multi-modality data sources and large language model (LLM) holds immense potential for AI frameworks to help the exploration and discovery of solid-state materials for specific applications.
MatterGen: a generative model for inorganic materials design
The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.
First Order Quantum Phase Transition in the Hybrid Metal-Mott Insulator Transition Metal Dichalcogenide 4Hb-TaS2
Coupling together distinct correlated and topologically non-trivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here we investigate the compound 4Hb-TaS_2 that interleaves the Mott-insulating state of 1T-TaS_2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS_2 and the low temperature superconducting phase it harbors. We reveal a thermodynamic phase diagram that hosts a first order quantum phase transition between a correlated Kondo cluster state and a flat band state in which the Kondo cluster becomes depleted. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo cluster and the flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.
Crystal-GFN: sampling crystals with desirable properties and constraints
Accelerating material discovery holds the potential to greatly help mitigate the climate crisis. Discovering new solid-state materials such as electrocatalysts, super-ionic conductors or photovoltaic materials can have a crucial impact, for instance, in improving the efficiency of renewable energy production and storage. In this paper, we introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials, namely the space group, composition and lattice parameters. This domain-inspired approach enables the flexible incorporation of physical and structural hard constraints, as well as the use of any available predictive model of a desired physicochemical property as an objective function. To design stable materials, one must target the candidates with the lowest formation energy. Here, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench. The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
Multi-property directed generative design of inorganic materials through Wyckoff-augmented transfer learning
Accelerated materials discovery is an urgent demand to drive advancements in fields such as energy conversion, storage, and catalysis. Property-directed generative design has emerged as a transformative approach for rapidly discovering new functional inorganic materials with multiple desired properties within vast and complex search spaces. However, this approach faces two primary challenges: data scarcity for functional properties and the multi-objective optimization required to balance competing tasks. Here, we present a multi-property-directed generative framework designed to overcome these limitations and enhance site symmetry-compliant crystal generation beyond P1 (translational) symmetry. By incorporating Wyckoff-position-based data augmentation and transfer learning, our framework effectively handles sparse and small functional datasets, enabling the generation of new stable materials simultaneously conditioned on targeted space group, band gap, and formation energy. Using this approach, we identified previously unknown thermodynamically and lattice-dynamically stable semiconductors in tetragonal, trigonal, and cubic systems, with bandgaps ranging from 0.13 to 2.20 eV, as validated by density functional theory (DFT) calculations. Additionally, we assessed their thermoelectric descriptors using DFT, indicating their potential suitability for thermoelectric applications. We believe our integrated framework represents a significant step forward in generative design of inorganic materials.
Electronic properties and transport in metal/2D material/metal vertical junctions
We simulate the electronic and transport properties of metal/two-dimensional material/metal vertical heterostructures, with a focus on graphene, hexagonal boron nitride and two phases of molybdenum diselenide. Using density functional theory and non-equilibrium Green's function, we assess how stacking configurations and material thickness impact important properties, such as density of states, potential barriers and conductivity. For monolayers, strong orbital hybridization with the metallic electrodes significantly alters the electronic characteristics, with the formation of states within the gap of the semiconducting 2D materials. Trilayers reveal the critical role of interlayer coupling, where the middle layer retains its intrinsic properties, thus influencing the overall conductivity. Our findings highlight the potential for customized multilayer designs to optimize electronic device performance based on two-dimensional materials.
A molecular Ferroelectric thin film of imidazolium perchlorate on Silicon
Molecular ferroelectric materials have attracted widespread attention due to their abundant chemical diversity, structural tunability, low synthesis temperature, and high flexibility. Meanwhile, the integration of molecular ferroelectric materials and Si is still challenging, while the fundamental understanding of the ferroelectric switching process is still lacking. Herein, we have successfully synthesized the imidazole perchlorate (ImClO4) single crystals and a series of high-quality highly-oriented thin films on a Si substrate. A high inverse piezoelectric coefficient (55.7 pm/V) is demonstrated for the thin films. Two types of domain bands can be observed (in the size of a few microns): type-I band tilts ~60{\deg} with respect to the horizontal axis, while the type-II band is perpendicular to the horizontal axis. Most of the domain walls (DWs) are 180{\deg} DWs for the two bands, while some 109{\deg} DWs can also be observed. Interestingly, the DWs in type-I band are curved, charged domain walls; while the 180{\deg} DWs in type-II band are straight, noncharged domain walls. After applying +20 V for 5 s through a PFM tip, the 180{\deg} DWs in type-I band shrink first, then disconnect from the band boundary, forming a needle-like domain with a size of ~100 nm. The needle-like domain will extend toward the band boundary after an inverse bias is applied (-20 V), and expand along the band boundary after touching the boundary. Whereas for the type-II domain band, the 180{\deg} DWs are more mobile than the 109{\deg} domain walls, which displaces ~500 nm after applying +20 V. While such displacement is much shorter after the application of a negative bias for the same duration, starting from the positively poled sample. We hope to spur further interest in the on-chip design of the molecular ferroelectrics based electronic devices.
Perovskite-R1: A Domain-Specialized LLM for Intelligent Discovery of Precursor Additives and Experimental Design
Perovskite solar cells (PSCs) have rapidly emerged as a leading contender in next-generation photovoltaic technologies, owing to their exceptional power conversion efficiencies and advantageous material properties. Despite these advances, challenges such as long-term stability, environmental sustainability, and scalable manufacturing continue to hinder their commercialization. Precursor additive engineering has shown promise in addressing these issues by enhancing both the performance and durability of PSCs. However, the explosive growth of scientific literature and the complex interplay of materials, processes, and device architectures make it increasingly difficult for researchers to efficiently access, organize, and utilize domain knowledge in this rapidly evolving field. To address this gap, we introduce Perovskite-R1, a specialized large language model (LLM) with advanced reasoning capabilities tailored for the discovery and design of PSC precursor additives. By systematically mining and curating 1,232 high-quality scientific publications and integrating a comprehensive library of 33,269 candidate materials, we constructed a domain-specific instruction-tuning dataset using automated question-answer generation and chain-of-thought reasoning. Fine-tuning the QwQ-32B model on this dataset resulted in Perovskite-R1, which can intelligently synthesize literature insights and generate innovative and practical solutions for defect passivation and the selection of precursor additives. Experimental validation of several model-proposed strategies confirms their effectiveness in improving material stability and performance. Our work demonstrates the potential of domain-adapted LLMs in accelerating materials discovery and provides a closed-loop framework for intelligent, data-driven advancements in perovskite photovoltaic research.
Towards Fully-Automated Materials Discovery via Large-Scale Synthesis Dataset and Expert-Level LLM-as-a-Judge
Materials synthesis is vital for innovations such as energy storage, catalysis, electronics, and biomedical devices. Yet, the process relies heavily on empirical, trial-and-error methods guided by expert intuition. Our work aims to support the materials science community by providing a practical, data-driven resource. We have curated a comprehensive dataset of 17K expert-verified synthesis recipes from open-access literature, which forms the basis of our newly developed benchmark, AlchemyBench. AlchemyBench offers an end-to-end framework that supports research in large language models applied to synthesis prediction. It encompasses key tasks, including raw materials and equipment prediction, synthesis procedure generation, and characterization outcome forecasting. We propose an LLM-as-a-Judge framework that leverages large language models for automated evaluation, demonstrating strong statistical agreement with expert assessments. Overall, our contributions offer a supportive foundation for exploring the capabilities of LLMs in predicting and guiding materials synthesis, ultimately paving the way for more efficient experimental design and accelerated innovation in materials science.
Multimodal Learning for Materials
Artificial intelligence is transforming computational materials science, improving the prediction of material properties, and accelerating the discovery of novel materials. Recently, publicly available material data repositories have grown rapidly. This growth encompasses not only more materials, but also a greater variety and quantity of their associated properties. Existing machine learning efforts in materials science focus primarily on single-modality tasks, i.e., relationships between materials and a single physical property, thus not taking advantage of the rich and multimodal set of material properties. Here, we introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials. We demonstrate our framework's potential using data from the Materials Project database on multiple axes: (i) MultiMat achieves state-of-the-art performance for challenging material property prediction tasks; (ii) MultiMat enables novel and accurate material discovery via latent space similarity, enabling screening for stable materials with desired properties; and (iii) MultiMat encodes interpretable emergent features that may provide novel scientific insights.
An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning
The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.
MatterGPT: A Generative Transformer for Multi-Property Inverse Design of Solid-State Materials
Inverse design of solid-state materials with desired properties represents a formidable challenge in materials science. Although recent generative models have demonstrated potential, their adoption has been hindered by limitations such as inefficiency, architectural constraints and restricted open-source availability. The representation of crystal structures using the SLICES (Simplified Line-Input Crystal-Encoding System) notation as a string of characters enables the use of state-of-the-art natural language processing models, such as Transformers, for crystal design. Drawing inspiration from the success of GPT models in generating coherent text, we trained a generative Transformer on the next-token prediction task to generate solid-state materials with targeted properties. We demonstrate MatterGPT's capability to generate de novo crystal structures with targeted single properties, including both lattice-insensitive (formation energy) and lattice-sensitive (band gap) properties. Furthermore, we extend MatterGPT to simultaneously target multiple properties, addressing the complex challenge of multi-objective inverse design of crystals. Our approach showcases high validity, uniqueness, and novelty in generated structures, as well as the ability to generate materials with properties beyond the training data distribution. This work represents a significant step forward in computational materials discovery, offering a powerful and open tool for designing materials with tailored properties for various applications in energy, electronics, and beyond.
Closed-loop Error Correction Learning Accelerates Experimental Discovery of Thermoelectric Materials
The exploration of thermoelectric materials is challenging considering the large materials space, combined with added exponential degrees of freedom coming from doping and the diversity of synthetic pathways. Here we seek to incorporate historical data and update and refine it using experimental feedback by employing error-correction learning (ECL). We thus learn from prior datasets and then adapt the model to differences in synthesis and characterization that are otherwise difficult to parameterize. We then apply this strategy to discovering thermoelectric materials where we prioritize synthesis at temperatures < 300{\deg}C. We document a previously unreported chemical family of thermoelectric materials, PbSe:SnSb, finding that the best candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power factor more than 2x that of PbSe. Our investigations show that our closed-loop experimentation strategy reduces the required number of experiments to find an optimized material by as much as 3x compared to high-throughput searches powered by state-of-the-art machine learning models. We also observe that this improvement is dependent on the accuracy of prior in a manner that exhibits diminishing returns, and after a certain accuracy is reached, it is factors associated with experimental pathways that dictate the trends.
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
The ability to discover new materials with desirable properties is critical for numerous applications from helping mitigate climate change to advances in next generation computing hardware. AI has the potential to accelerate materials discovery and design by more effectively exploring the chemical space compared to other computational methods or by trial-and-error. While substantial progress has been made on AI for materials data, benchmarks, and models, a barrier that has emerged is the lack of publicly available training data and open pre-trained models. To address this, we present a Meta FAIR release of the Open Materials 2024 (OMat24) large-scale open dataset and an accompanying set of pre-trained models. OMat24 contains over 110 million density functional theory (DFT) calculations focused on structural and compositional diversity. Our EquiformerV2 models achieve state-of-the-art performance on the Matbench Discovery leaderboard and are capable of predicting ground-state stability and formation energies to an F1 score above 0.9 and an accuracy of 20 meV/atom, respectively. We explore the impact of model size, auxiliary denoising objectives, and fine-tuning on performance across a range of datasets including OMat24, MPtraj, and Alexandria. The open release of the OMat24 dataset and models enables the research community to build upon our efforts and drive further advancements in AI-assisted materials science.
TOMATOES: Topology and Material Optimization for Latent Heat Thermal Energy Storage Devices
Latent heat thermal energy storage (LHTES) systems are compelling candidates for energy storage, primarily owing to their high storage density. Improving their performance is crucial for developing the next-generation efficient and cost effective devices. Topology optimization (TO) has emerged as a powerful computational tool to design LHTES systems by optimally distributing a high-conductivity material (HCM) and a phase change material (PCM). However, conventional TO typically limits to optimizing the geometry for a fixed, pre-selected materials. This approach does not leverage the large and expanding databases of novel materials. Consequently, the co-design of material and geometry for LHTES remains a challenge and unexplored. To address this limitation, we present an automated design framework for the concurrent optimization of material choice and topology. A key challenge is the discrete nature of material selection, which is incompatible with the gradient-based methods used for TO. We overcome this by using a data-driven variational autoencoder (VAE) to project discrete material databases for both the HCM and PCM onto continuous and differentiable latent spaces. These continuous material representations are integrated into an end-to-end differentiable, transient nonlinear finite-element solver that accounts for phase change. We demonstrate this framework on a problem aimed at maximizing the discharged energy within a specified time, subject to cost constraints. The effectiveness of the proposed method is validated through several illustrative examples.
Subgap spectroscopy along hybrid nanowires by nm-thick tunnel barriers
Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor-superconductor nanostructures when searching for Majorana zero modes (MZMs). Typically, semiconductor sections controlled by local gates at the ends of hybrids serve as tunnel barriers. Besides detecting states only at the hybrid ends, such gate-defined tunnel probes can cause the formation of non-topological subgap states that mimic MZMs. Here, we develop an alternative type of tunnel probes to overcome these limitations. After the growth of an InSb-Al hybrid nanowire, a precisely controlled in-situ oxidation of the Al shell is performed to yield a nm-thick Al oxide layer. In such thin isolating layer, tunnel probes can be arbitrarily defined at any position along the hybrid nanowire by shadow-wall angle-deposition of metallic leads. This allows us to make multiple tunnel probes along single nanowire hybrids and to successfully identify Andreev bound states (ABSs) of various spatial extension residing along the hybrids.
MatQnA: A Benchmark Dataset for Multi-modal Large Language Models in Materials Characterization and Analysis
Recently, large language models (LLMs) have achieved remarkable breakthroughs in general domains such as programming and writing, and have demonstrated strong potential in various scientific research scenarios. However, the capabilities of AI models in the highly specialized field of materials characterization and analysis have not yet been systematically or sufficiently validated. To address this gap, we present MatQnA, the first multi-modal benchmark dataset specifically designed for material characterization techniques. MatQnA includes ten mainstream characterization methods, such as X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), etc. We employ a hybrid approach combining LLMs with human-in-the-loop validation to construct high-quality question-answer pairs, integrating both multiple-choice and subjective questions. Our preliminary evaluation results show that the most advanced multi-modal AI models (e.g., GPT-4.1, Claude 4, Gemini 2.5, and Doubao Vision Pro 32K) have already achieved nearly 90% accuracy on objective questions in materials data interpretation and analysis tasks, demonstrating strong potential for applications in materials characterization and analysis. The MatQnA dataset is publicly available at https://huggingface.co/datasets/richardhzgg/matQnA.
Automated Extraction of Material Properties using LLM-based AI Agents
The rapid discovery of materials is constrained by the lack of large, machine-readable datasets that couple performance metrics with structural context. Existing databases are either small, manually curated, or biased toward first principles results, leaving experimental literature underexploited. We present an agentic, large language model (LLM)-driven workflow that autonomously extracts thermoelectric and structural-properties from about 10,000 full-text scientific articles. The pipeline integrates dynamic token allocation, zeroshot multi-agent extraction, and conditional table parsing to balance accuracy against computational cost. Benchmarking on 50 curated papers shows that GPT-4.1 achieves the highest accuracy (F1 = 0.91 for thermoelectric properties and 0.82 for structural fields), while GPT-4.1 Mini delivers nearly comparable performance (F1 = 0.89 and 0.81) at a fraction of the cost, enabling practical large scale deployment. Applying this workflow, we curated 27,822 temperature resolved property records with normalized units, spanning figure of merit (ZT), Seebeck coefficient, conductivity, resistivity, power factor, and thermal conductivity, together with structural attributes such as crystal class, space group, and doping strategy. Dataset analysis reproduces known thermoelectric trends, such as the superior performance of alloys over oxides and the advantage of p-type doping, while also surfacing broader structure-property correlations. To facilitate community access, we release an interactive web explorer with semantic filters, numeric queries, and CSV export. This study delivers the largest LLM-curated thermoelectric dataset to date, provides a reproducible and cost-profiled extraction pipeline, and establishes a foundation for scalable, data-driven materials discovery beyond thermoelectrics.
An open-source robust machine learning platform for real-time detection and classification of 2D material flakes
The most widely used method for obtaining high-quality two-dimensional materials is through mechanical exfoliation of bulk crystals. Manual identification of suitable flakes from the resulting random distribution of crystal thicknesses and sizes on a substrate is a time-consuming, tedious task. Here, we present a platform for fully automated scanning, detection, and classification of two-dimensional materials, the source code of which we make openly available. Our platform is designed to be accurate, reliable, fast, and versatile in integrating new materials, making it suitable for everyday laboratory work. The implementation allows fully automated scanning and analysis of wafers with an average inference time of 100 ms for images of 2.3 Mpixels. The developed detection algorithm is based on a combination of the flakes' optical contrast toward the substrate and their geometric shape. We demonstrate that it is able to detect the majority of exfoliated flakes of various materials, with an average recall (AR50) between 67% and 89%. We also show that the algorithm can be trained with as few as five flakes of a given material, which we demonstrate for the examples of few-layer graphene, WSe_2, MoSe_2, CrI_3, 1T-TaS_2 and hexagonal BN. Our platform has been tested over a two-year period, during which more than 10^6 images of multiple different materials were acquired by over 30 individual researchers.
Synergistic Fusion of Multi-Source Knowledge via Evidence Theory for High-Entropy Alloy Discovery
Discovering novel high-entropy alloys (HEAs) with desirable properties is challenging due to the vast compositional space and complex phase formation mechanisms. Efficient exploration of this space requires a strategic approach that integrates heterogeneous knowledge sources. Here, we propose a framework that systematically combines knowledge extracted from computational material datasets with domain knowledge distilled from scientific literature using large language models (LLMs). A central feature of this approach is the explicit consideration of element substitutability, identifying chemically similar elements that can be interchanged to potentially stabilize desired HEAs. Dempster-Shafer theory, a mathematical framework for reasoning under uncertainty, is employed to model and combine substitutabilities based on aggregated evidence from multiple sources. The framework predicts the phase stability of candidate HEA compositions and is systematically evaluated on both quaternary alloy systems, demonstrating superior performance compared to baseline machine learning models and methods reliant on single-source evidence in cross-validation experiments. By leveraging multi-source knowledge, the framework retains robust predictive power even when key elements are absent from the training data, underscoring its potential for knowledge transfer and extrapolation. Furthermore, the enhanced interpretability of the methodology offers insights into the fundamental factors governing HEA formation. Overall, this work provides a promising strategy for accelerating HEA discovery by integrating computational and textual knowledge sources, enabling efficient exploration of vast compositional spaces with improved generalization and interpretability.
Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials
Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.
JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods
Lack of rigorous reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have been developed previously to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated platform with multiple data modalities with both perfect and defect materials data is still lacking. This work introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with custom tasks and enables contributions in the form of dataset, code, and meta-data submissions. We cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES), Force-fields (FF), Quantum Computation (QC) and Experiments (EXP). For AI, we cover several types of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing results to experiment. For FF, we compare multiple approaches for material property predictions. For QC, we benchmark Hamiltonian simulations using various quantum algorithms and circuits. Finally, for experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281 contributions to 274 benchmarks using 152 methods with more than 8 million data-points, and the leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://pages.nist.gov/jarvis_leaderboard
LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval and Distillation
Reducing hallucination of Large Language Models (LLMs) is imperative for use in the sciences where reproducibility is crucial. However, LLMs inherently lack long-term memory, making it a nontrivial, ad hoc, and inevitably biased task to fine-tune them on domain-specific literature and data. Here we introduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework of multiple data-aware reasoning-and-acting (ReAct) agents that dynamically interact with computational and experimental data on Materials Project (MP). Without fine-tuning, LLaMP demonstrates an ability to comprehend and integrate various modalities of materials science concepts, fetch relevant data stores on the fly, process higher-order data (such as crystal structures and elastic tensors), and summarize multi-step procedures for solid-state synthesis. We show that LLaMP effectively corrects errors in GPT-3.5's intrinsic knowledge, reducing a 5.21% MAPE on frequently-documented bandgaps and a significant 1103.54% MAPE on formation energies -- errors that GPT-3.5 seems to derive from mixed data sources. Additionally, LLaMP substantially reduces the hallucinated volumetric strain in a diamond cubic silicon structure from 66.3% to 0. The proposed framework offers an intuitive and nearly hallucination-free approach to exploring materials informatics and establishes a pathway for knowledge distillation and fine-tuning other language models. We envision the framework as a valuable component for scientific hypotheses and a foundation for future autonomous laboratories where multiple LLM agents communicate and cooperate with robotics to drive material synthesis and chemical reactions without hard-coded human logic and intervention.
AtomGPT: Atomistic Generative Pre-trained Transformer for Forward and Inverse Materials Design
Large language models (LLMs) such as generative pretrained transformers (GPTs) have shown potential for various commercial applications, but their applicability for materials design remains underexplored. In this article, we introduce AtomGPT, a model specifically developed for materials design based on transformer architectures, to demonstrate the capability for both atomistic property prediction and structure generation. We show that a combination of chemical and structural text descriptions can efficiently predict material properties with accuracy comparable to graph neural network models, including formation energies, electronic bandgaps from two different methods and superconducting transition temperatures. Furthermore, we demonstrate that AtomGPT can generate atomic structures for tasks such as designing new superconductors, with the predictions validated through density functional theory calculations. This work paves the way for leveraging LLMs in forward and inverse materials design, offering an efficient approach to the discovery and optimization of materials.
All that structure matches does not glitter
Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends critically on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction taskx2014generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains approx40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 dataset. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms N, and two containing only identical structures but with different unit cells. We also propose a new split for the perov-5 dataset which ensures polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.
3D Multiphase Heterogeneous Microstructure Generation Using Conditional Latent Diffusion Models
The ability to generate 3D multiphase microstructures on-demand with targeted attributes can greatly accelerate the design of advanced materials. Here, we present a conditional latent diffusion model (LDM) framework that rapidly synthesizes high-fidelity 3D multiphase microstructures tailored to user specifications. Using this approach, we generate diverse two-phase and three-phase microstructures at high resolution (volumes of 128 times 128 times 64 voxels, representing >10^6 voxels each) within seconds, overcoming the scalability and time limitations of traditional simulation-based methods. Key design features, such as desired volume fractions and tortuosities, are incorporated as controllable inputs to guide the generative process, ensuring that the output structures meet prescribed statistical and topological targets. Moreover, the framework predicts corresponding manufacturing (processing) parameters for each generated microstructure, helping to bridge the gap between digital microstructure design and experimental fabrication. While demonstrated on organic photovoltaic (OPV) active-layer morphologies, the flexible architecture of our approach makes it readily adaptable to other material systems and microstructure datasets. By combining computational efficiency, adaptability, and experimental relevance, this framework addresses major limitations of existing methods and offers a powerful tool for accelerated materials discovery.
Oxidation State Dynamics and Emerging Patterns in Magnetite
Magnetite is an important mineral with many interesting applications related to its magnetic, electrical and thermal properties. Typically studied by electronic structure calculations, these methods are unable to capture the complex ion dynamics at relevant temperatures, time and length scales. We present a hybrid Monte Carlo/Molecular Dynamics (MC/MD) method based on iron oxidation state exchange for accurate atomistic modelling of bulk magnetite, magnetite surfaces and nanoparticles that captures the complex ionic dynamics. By comparing oxidation state patterns with those obtained from density functional theory, we confirmed the accuracy of our approach. Lattice distortions leading to the stabilisation of excess charges and a critical surface thickness at which the oxidation states transition from ordered to disordered were observed. This simple yet efficient approach paves the way for elucidating aspects of oxidation state ordering of inverse spinel structures in general and battery materials in particular.
Enhancing T_{c} in a composite superconductor/metal bilayer system: a dynamical cluster approximation study
It has been proposed that the superconducting transition temperature T_{c} of an unconventional superconductor with a large pairing scale but strong phase fluctuations can be enhanced by coupling it to a metal. However, the general efficacy of this approach across different parameter regimes remains an open question. Using the dynamical cluster approximation, we study this question in a system composed of an attractive Hubbard layer in the intermediate coupling regime, where the magnitude of the attractive Coulomb interaction |U| is slightly larger than the bandwidth W, hybridized with a noninteracting metallic layer. We find that while the superconducting transition becomes more mean-field-like with increasing interlayer hopping, the superconducting transition temperature T_{c} exhibits a nonmonotonic dependence on the strength of the hybridization t_{perp}. This behavior arises from a reduction of the effective pairing interaction in the correlated layer that out-competes the growth in the intrinsic pair-field susceptibility induced by the coupling to the metallic layer. We find that the largest T_{c} inferred here for the composite system is below the maximum value currently estimated for the isolated negative-U Hubbard model.
Perovskite-LLM: Knowledge-Enhanced Large Language Models for Perovskite Solar Cell Research
The rapid advancement of perovskite solar cells (PSCs) has led to an exponential growth in research publications, creating an urgent need for efficient knowledge management and reasoning systems in this domain. We present a comprehensive knowledge-enhanced system for PSCs that integrates three key components. First, we develop Perovskite-KG, a domain-specific knowledge graph constructed from 1,517 research papers, containing 23,789 entities and 22,272 relationships. Second, we create two complementary datasets: Perovskite-Chat, comprising 55,101 high-quality question-answer pairs generated through a novel multi-agent framework, and Perovskite-Reasoning, containing 2,217 carefully curated materials science problems. Third, we introduce two specialized large language models: Perovskite-Chat-LLM for domain-specific knowledge assistance and Perovskite-Reasoning-LLM for scientific reasoning tasks. Experimental results demonstrate that our system significantly outperforms existing models in both domain-specific knowledge retrieval and scientific reasoning tasks, providing researchers with effective tools for literature review, experimental design, and complex problem-solving in PSC research.
MODNet -- accurate and interpretable property predictions for limited materials datasets by feature selection and joint-learning
In order to make accurate predictions of material properties, current machine-learning approaches generally require large amounts of data, which are often not available in practice. In this work, an all-round framework is presented which relies on a feedforward neural network, the selection of physically-meaningful features and, when applicable, joint-learning. Next to being faster in terms of training time, this approach is shown to outperform current graph-network models on small datasets. In particular, the vibrational entropy at 305 K of crystals is predicted with a mean absolute test error of 0.009 meV/K/atom (four times lower than previous studies). Furthermore, joint-learning reduces the test error compared to single-target learning and enables the prediction of multiple properties at once, such as temperature functions. Finally, the selection algorithm highlights the most important features and thus helps understanding the underlying physics.
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks
Leveraging new data sources is a key step in accelerating the pace of materials design and discovery. To complement the strides in synthesis planning driven by historical, experimental, and computed data, we present an automated method for connecting scientific literature to synthesis insights. Starting from natural language text, we apply word embeddings from language models, which are fed into a named entity recognition model, upon which a conditional variational autoencoder is trained to generate syntheses for arbitrary materials. We show the potential of this technique by predicting precursors for two perovskite materials, using only training data published over a decade prior to their first reported syntheses. We demonstrate that the model learns representations of materials corresponding to synthesis-related properties, and that the model's behavior complements existing thermodynamic knowledge. Finally, we apply the model to perform synthesizability screening for proposed novel perovskite compounds.
Defining structural gradient hardening through Type II back stress for heterostructured materials
The recently proposed term "heterostructured (HS) materials" serves as an umbrella classification encompassing a wide range of materials that hold great promise for enhanced mechanical properties. Most HS materials exhibit back-stress strengthening, as is typical for all plastically non-homogeneous materials. To better embody the distinctiveness of materials crafted via innovative heterostructuring, here we introduce the concept of "structural gradient hardening" (SGH), which captures an essential feature of HS materials and complements traditional strengthening mechanisms. SGH refers to the extra strengthening that arises from a characteristic gradient structure introduced by heterostructuring, beyond what is predicted by the rule of mixtures. This distinction is useful, as the overall back stress can in fact be partitioned into Type I and Type II components, with the latter specifically quantifying the extra hardening originating from the structural and strain gradients established by heterostructuring, as articulated in this Viewpoint article.
PLaID++: A Preference Aligned Language Model for Targeted Inorganic Materials Design
Discovering novel materials is critical for technological advancements such as solar cells, batteries, and carbon capture. However, the development of new materials is constrained by a slow and expensive trial-and-error process. To accelerate this pipeline, we introduce PLaID++, a Large Language Model (LLM) fine-tuned for stable and property-guided crystal generation. We fine-tune Qwen-2.5 7B to generate crystal structures using a novel Wyckoff-based text representation. We show that generation can be effectively guided with a reinforcement learning technique based on Direct Preference Optimization (DPO), with sampled structures categorized by their stability, novelty, and space group. By encoding symmetry constraints directly into text and guiding model outputs towards desirable chemical space, PLaID++ generates structures that are thermodynamically stable, unique, and novel at a sim50\% greater rate than prior methods and conditionally generates structures with desired space group properties. Our experiments highlight the effectiveness of iterative DPO, achieving sim115\% and sim50\% improvements in unconditional and space group conditioned generation, respectively, compared to fine-tuning alone. Our work demonstrates the potential of adapting post-training techniques from natural language processing to materials design, paving the way for targeted and efficient discovery of novel materials.
A Prompt-Engineered Large Language Model, Deep Learning Workflow for Materials Classification
Large language models (LLMs) have demonstrated rapid progress across a wide array of domains. Owing to the very large number of parameters and training data in LLMs, these models inherently encompass an expansive and comprehensive materials knowledge database, far exceeding the capabilities of individual researcher. Nonetheless, devising methods to harness the knowledge embedded within LLMs for the design and discovery of novel materials remains a formidable challenge. We introduce a general approach for addressing materials classification problems, which incorporates LLMs, prompt engineering, and deep learning. Utilizing a dataset of metallic glasses as a case study, our methodology achieved an improvement of up to 463% in prediction accuracy compared to conventional classification models. These findings underscore the potential of leveraging textual knowledge generated by LLMs for materials especially in the common situation where datasets are sparse, thereby promoting innovation in materials discovery and design.
AB5 type multicomponent TiVCoNiMn2 high-entropy alloy
Recent theoretical and practical research has focused on multi-component High Entropy Alloys (HEAs), which have superior mechanical and functional properties than standard alloys based on a single major element, thereby establishing a new field. A multi-component HEA contains five or more primary elements at concentrations ranging from 5 to 35 atomic percent. We examined the microstructure and mechanical properties of TiVCoNiMn2 HEA. The mixing enthalpy and other thermodynamic parameters were determined using Meidma's model. TiVCoNiMn2 exhibits a mixing enthalpy of -15.6 kJ/mol and an atomic radius mismatch of approximately 10.03%. HEA is derived from both hydride and non-hydride-producing elements. This could be a useful hydrogen storage material. The hydrogen absorption/desorption capabilities of these HEAs are promising.
Classification-based detection and quantification of cross-domain data bias in materials discovery
It stands to reason that the amount and the quality of data is of key importance for setting up accurate AI-driven models. Among others, a fundamental aspect to consider is the bias introduced during sample selection in database generation. This is particularly relevant when a model is trained on a specialized dataset to predict a property of interest, and then applied to forecast the same property over samples having a completely different genesis. Indeed, the resulting biased model will likely produce unreliable predictions for many of those out-of-the-box samples. Neglecting such an aspect may hinder the AI-based discovery process, even when high quality, sufficiently large and highly reputable data sources are available. In this regard, with superconducting and thermoelectric materials as two prototypical case studies in the field of energy material discovery, we present and validate a new method (based on a classification strategy) capable of detecting, quantifying and circumventing the presence of cross-domain data bias.
A Deep-learning Model for Fast Prediction of Vacancy Formation in Diverse Materials
The presence of point defects such as vacancies plays an important role in material design. Here, we demonstrate that a graph neural network (GNN) model trained only on perfect materials can also be used to predict vacancy formation energies (E_{vac}) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations with reasonable accuracy and show the potential that GNNs are able to capture a functional form for energy predictions. To test this strategy, we developed a DFT dataset of 508 E_{vac} consisting of 3D elemental solids, alloys, oxides, nitrides, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192494 E_{vac} for 55723 materials in the JARVIS-DFT database.
Disentangling lattice and electronic contributions to the metal-insulator transition from bulk vs. layer confined RNiO_3
In complex oxide materials, changes in electronic properties are often associated with changes in crystal structure, raising the question of the relative roles of the electronic and lattice effects in driving the metal-insulator transition. This paper presents a combined theoretical and experimental analysis of the dependence of the metal-insulator transition of NdNiO_3 on crystal structure, specifically comparing properties of bulk materials to one and two layer samples of NdNiO_3 grown between multiple electronically inert NdAlO_3 counterlayers in a superlattice. The comparison amplifies and validates a theoretical approach developed in previous papers and disentangles the electronic and lattice contributions, through an independent variation of each. In bulk NdNiO_3 the correlations are not strong enough to drive a metal-insulator transition by themselves: a lattice distortion is required. Ultra-thin films exhibit two additional electronic effects and one lattice-related effect. The electronic effects are quantum confinement, leading to dimensional reduction of the electronic Hamiltonian, and an increase in electronic bandwidth due to counterlayer induced bond angle changes. We find that the confinement effect is much more important. The lattice effect is an increase in stiffness due to the cost of propagation of the lattice disproportionation into the confining material.
A New Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal, CaP_3
Using an evolutionary algorithm in combination with first-principles density functional theory calculations, we identify two-dimensional (2D) CaP_3 monolayer as a new Dirac semimetal due to inversion and nonsymmorphic spatial symmetries of the structure. This new topological material, composed of light elements, exhibits high structural stability (higher than the phase known in the literature), which is confirmed by thermodynamic and kinetic stability analysis. Moreover, it satisfies the electron filling criteria, so that its Dirac state is located near the Fermi level. The existence of the Dirac state predicted by the theoretical symmetry analysis is also confirmed by first-principles electronic band structure calculations. We find that the energy position of the Dirac state can be tuned by strain, while the Dirac state is unstable against an external electric field since it breaks the spatial inversion symmetry. Our findings should be instrumental in the development of 2D Dirac fermions based on light elements for their application in nanoelectronic devices and topological electronics.
InSe: a two-dimensional semiconductor with superior flexibility
Two-dimensional Indium Selenide (InSe) has attracted extensive attention recently due to its record-high charge carrier mobility and photoresponsivity in the fields of electronics and optoelectronics. Nevertheless, the mechanical properties of this material in the ultra-thin regime have not been investigated yet. Here, we present our efforts to determine the Young's modulus of thin InSe (~1-2 layers to ~40 layers) flakes experimentally by using buckling-based methodology. We find that the Young's modulus has a value of 23.1 +- 5.2 GPa, one of the lowest values reported up to date for crystalline two-dimensional materials. This superior flexibility can be very attractive for different applications, such as strain engineering and flexible electronics.
A machine learning route between band mapping and band structure
Electronic band structure (BS) and crystal structure are the two complementary identifiers of solid state materials. While convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting quasiparticle dispersion (closely related to BS) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
FlowMM: Generating Materials with Riemannian Flow Matching
Crystalline materials are a fundamental component in next-generation technologies, yet modeling their distribution presents unique computational challenges. Of the plausible arrangements of atoms in a periodic lattice only a vanishingly small percentage are thermodynamically stable, which is a key indicator of the materials that can be experimentally realized. Two fundamental tasks in this area are to (a) predict the stable crystal structure of a known composition of elements and (b) propose novel compositions along with their stable structures. We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks while being more efficient and more flexible than competing methods. We generalize Riemannian Flow Matching to suit the symmetries inherent to crystals: translation, rotation, permutation, and periodic boundary conditions. Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures compared with diffusion models. In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations, demonstrating that it is about 3x more efficient, in terms of integration steps, at finding stable materials compared to previous open methods.
Cambricon-LLM: A Chiplet-Based Hybrid Architecture for On-Device Inference of 70B LLM
Deploying advanced large language models on edge devices, such as smartphones and robotics, is a growing trend that enhances user data privacy and network connectivity resilience while preserving intelligent capabilities. However, such a task exhibits single-batch computing with incredibly low arithmetic intensity, which poses the significant challenges of huge memory footprint and bandwidth demands on limited edge resources. To address these issues, we introduce Cambricon-LLM, a chiplet-based hybrid architecture with NPU and a dedicated NAND flash chip to enable efficient on-device inference of 70B LLMs. Such a hybrid architecture utilizes both the high computing capability of NPU and the data capacity of the NAND flash chip, with the proposed hardware-tiling strategy that minimizes the data movement overhead between NPU and NAND flash chip. Specifically, the NAND flash chip, enhanced by our innovative in-flash computing and on-die ECC techniques, excels at performing precise lightweight on-die processing. Simultaneously, the NPU collaborates with the flash chip for matrix operations and handles special function computations beyond the flash's on-die processing capabilities. Overall, Cambricon-LLM enables the on-device inference of 70B LLMs at a speed of 3.44 token/s, and 7B LLMs at a speed of 36.34 token/s, which is over 22X to 45X faster than existing flash-offloading technologies, showing the potentiality of deploying powerful LLMs in edge devices.
SuperMat: Construction of a linked annotated dataset from superconductors-related publications
A growing number of papers are published in the area of superconducting materials science. However, novel text and data mining (TDM) processes are still needed to efficiently access and exploit this accumulated knowledge, paving the way towards data-driven materials design. Herein, we present SuperMat (Superconductor Materials), an annotated corpus of linked data derived from scientific publications on superconductors, which comprises 142 articles, 16052 entities, and 1398 links that are characterised into six categories: the names, classes, and properties of materials; links to their respective superconducting critical temperature (Tc); and parametric conditions such as applied pressure or measurement methods. The construction of SuperMat resulted from a fruitful collaboration between computer scientists and material scientists, and its high quality is ensured through validation by domain experts. The quality of the annotation guidelines was ensured by satisfactory Inter Annotator Agreement (IAA) between the annotators and the domain experts. SuperMat includes the dataset, annotation guidelines, and annotation support tools that use automatic suggestions to help minimise human errors.
L^2M^3OF: A Large Language Multimodal Model for Metal-Organic Frameworks
Large language models have demonstrated remarkable reasoning capabilities across diverse natural language tasks. However, comparable breakthroughs in scientific discovery are more limited, because understanding complex physical phenomena demands multifaceted representations far beyond language alone. A compelling example is the design of functional materials such as MOFs-critical for a range of impactful applications like carbon capture and hydrogen storage. Navigating their vast and intricate design space in language-based representations interpretable by LLMs is challenging due to the numerous possible three-dimensional atomic arrangements and strict reticular rules of coordination geometry and topology. Despite promising early results in LLM-assisted discovery for simpler materials systems, MOF design remains heavily reliant on tacit human expertise rarely codified in textual information alone. To overcome this barrier, we introduce L2M3OF, the first multimodal LLM for MOFs. L2M3OF integrates crystal representation learning with language understanding to process structural, textual, and knowledge modalities jointly. L2M3OF employs a pre-trained crystal encoder with a lightweight projection layer to compress structural information into a token space, enabling efficient alignment with language instructions. To facilitate training and evaluation, we curate a structure-property-knowledge database of crystalline materials and benchmark L2M3OF against state-of-the-art closed-source LLMs such as GPT-5, Gemini-2.5-Pro and DeepSeek-R1. Experiments show that L2M3OF outperforms leading text-based closed-source LLMs in property prediction and knowledge generation tasks, despite using far fewer parameters. These results highlight the importance of multimodal approaches for porous material understanding and establish L2M3OF as a foundation for next-generation AI systems in materials discovery.
Agent-based Learning of Materials Datasets from Scientific Literature
Advancements in machine learning and artificial intelligence are transforming materials discovery. Yet, the availability of structured experimental data remains a bottleneck. The vast corpus of scientific literature presents a valuable and rich resource of such data. However, manual dataset creation from these resources is challenging due to issues in maintaining quality and consistency, scalability limitations, and the risk of human error and bias. Therefore, in this work, we develop a chemist AI agent, powered by large language models (LLMs), to overcome these challenges by autonomously creating structured datasets from natural language text, ranging from sentences and paragraphs to extensive scientific research articles. Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles, scientists, the Internet and other tools altogether. We benchmark the performance of our approach in three different information extraction tasks with various levels of complexity, including solid-state impurity doping, metal-organic framework (MOF) chemical formula, and property relations. Our results demonstrate that our zero-shot agent, with the appropriate tools, is capable of attaining performance that is either superior or comparable to the state-of-the-art fine-tuned materials information extraction methods. This approach simplifies compilation of machine learning-ready datasets for various materials discovery applications, and significantly ease the accessibility of advanced natural language processing tools for novice users in natural language. The methodology in this work is developed as an open-source software on https://github.com/AI4ChemS/Eunomia.
Sparks of Artificial General Intelligence(AGI) in Semiconductor Material Science: Early Explorations into the Next Frontier of Generative AI-Assisted Electron Micrograph Analysis
Characterizing materials with electron micrographs poses significant challenges for automated labeling due to the complex nature of nanomaterial structures. To address this, we introduce a fully automated, end-to-end pipeline that leverages recent advances in Generative AI. It is designed for analyzing and understanding the microstructures of semiconductor materials with effectiveness comparable to that of human experts, contributing to the pursuit of Artificial General Intelligence (AGI) in nanomaterial identification. Our approach utilizes Large MultiModal Models (LMMs) such as GPT-4V, alongside text-to-image models like DALLE-3. We integrate a GPT-4 guided Visual Question Answering (VQA) method to analyze nanomaterial images, generate synthetic nanomaterial images via DALLE-3, and employ in-context learning with few-shot prompting in GPT-4V for accurate nanomaterial identification. Our method surpasses traditional techniques by enhancing the precision of nanomaterial identification and optimizing the process for high-throughput screening.
Crystal Diffusion Variational Autoencoder for Periodic Material Generation
Generating the periodic structure of stable materials is a long-standing challenge for the material design community. This task is difficult because stable materials only exist in a low-dimensional subspace of all possible periodic arrangements of atoms: 1) the coordinates must lie in the local energy minimum defined by quantum mechanics, and 2) global stability also requires the structure to follow the complex, yet specific bonding preferences between different atom types. Existing methods fail to incorporate these factors and often lack proper invariances. We propose a Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical inductive bias of material stability. By learning from the data distribution of stable materials, the decoder generates materials in a diffusion process that moves atomic coordinates towards a lower energy state and updates atom types to satisfy bonding preferences between neighbors. Our model also explicitly encodes interactions across periodic boundaries and respects permutation, translation, rotation, and periodic invariances. We significantly outperform past methods in three tasks: 1) reconstructing the input structure, 2) generating valid, diverse, and realistic materials, and 3) generating materials that optimize a specific property. We also provide several standard datasets and evaluation metrics for the broader machine learning community.
Accelerating the Search for Superconductors Using Machine Learning
Prediction of critical temperature (T_c) of a superconductor remains a significant challenge in condensed matter physics. While the BCS theory explains superconductivity in conventional superconductors, there is no framework to predict T_c of unconventional, higher T_{c} superconductors. Quantum Structure Diagrams (QSD) were successful in establishing structure-property relationship for superconductors, quasicrystals, and ferroelectric materials starting from chemical composition. Building on the QSD ideas, we demonstrate that the principal component analysis of superconductivity data uncovers the clustering of various classes of superconductors. We use machine learning analysis and cleaned databases of superconductors to develop predictive models of T_c of a superconductor using its chemical composition. Earlier studies relied on datasets with inconsistencies, leading to suboptimal predictions. To address this, we introduce a data-cleaning workflow to enhance the statistical quality of superconducting databases by eliminating redundancies and resolving inconsistencies. With this improvised database, we apply a supervised machine learning framework and develop a Random Forest model to predict superconductivity and T_c as a function of descriptors motivated from Quantum Structure Diagrams. We demonstrate that this model generalizes effectively in reasonably accurate prediction of T_{c} of compounds outside the database. We further employ our model to systematically screen materials across materials databases as well as various chemically plausible combinations of elements and predict Tl_{5}Ba_{6}Ca_{6}Cu_{9}O_{29} to exhibit superconductivity with a T_{c} sim 105 K. Being based on the descriptors used in QSD's, our model bypasses structural information and predicts T_{c} merely from the chemical composition.
Scalable Diffusion for Materials Generation
Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
Convolutional Neural Networks and Volcano Plots: Screening and Prediction of Two-Dimensional Single-Atom Catalysts
Single-atom catalysts (SACs) have emerged as frontiers for catalyzing chemical reactions, yet the diverse combinations of active elements and support materials, the nature of coordination environments, elude traditional methodologies in searching optimal SAC systems with superior catalytic performance. Herein, by integrating multi-branch Convolutional Neural Network (CNN) analysis models to hybrid descriptor based activity volcano plot, 2D SAC system composed of diverse metallic single atoms anchored on six type of 2D supports, including graphitic carbon nitride, nitrogen-doped graphene, graphene with dual-vacancy, black phosphorous, boron nitride, and C2N, are screened for efficient CO2RR. Starting from establishing a correlation map between the adsorption energies of intermediates and diverse electronic and elementary descriptors, sole singular descriptor lost magic to predict catalytic activity. Deep learning method utilizing multi-branch CNN model therefore was employed, using 2D electronic density of states as input to predict adsorption energies. Hybrid-descriptor enveloping both C- and O-types of CO2RR intermediates was introduced to construct volcano plots and limiting potential periodic table, aiming for intuitive screening of catalyst candidates for efficient CO2 reduction to CH4. The eDOS occlusion experiments were performed to unravel individual orbital contribution to adsorption energy. To explore the electronic scale principle governing practical engineering catalytic CO2RR activity, orbitalwise eDOS shifting experiments based on CNN model were employed. The study involves examining the adsorption energy and, consequently, catalytic activities while varying supported single atoms. This work offers a tangible framework to inform both theoretical screening and experimental synthesis, thereby paving the way for systematically designing efficient SACs.
MatSKRAFT: A framework for large-scale materials knowledge extraction from scientific tables
Scientific progress increasingly depends on synthesizing knowledge across vast literature, yet most experimental data remains trapped in semi-structured formats that resist systematic extraction and analysis. Here, we present MatSKRAFT, a computational framework that automatically extracts and integrates materials science knowledge from tabular data at unprecedented scale. Our approach transforms tables into graph-based representations processed by constraint-driven GNNs that encode scientific principles directly into model architecture. MatSKRAFT significantly outperforms state-of-the-art large language models, achieving F1 scores of 88.68 for property extraction and 71.35 for composition extraction, while processing data 19-496times faster than them (compared to the slowest and the fastest models, respectively) with modest hardware requirements. Applied to nearly 69,000 tables from more than 47,000 research publications, we construct a comprehensive database containing over 535,000 entries, including 104,000 compositions that expand coverage beyond major existing databases, pending manual validation. This systematic approach reveals previously overlooked materials with distinct property combinations and enables data-driven discovery of composition-property relationships forming the cornerstone of materials and scientific discovery.
Preference Learning from Physics-Based Feedback: Tuning Language Models to Design BCC/B2 Superalloys
We apply preference learning to the task of language model-guided design of novel structural alloys. In contrast to prior work that focuses on generating stable inorganic crystals, our approach targets the synthesizeability of a specific structural class: BCC/B2 superalloys, an underexplored family of materials with potential applications in extreme environments. Using three open-weight models (LLaMA-3.1, Gemma-2, and OLMo-2), we demonstrate that language models can be optimized for multiple design objectives using a single, unified reward signal through Direct Preference Optimization (DPO). Unlike prior approaches that rely on heuristic or human-in-the-loop feedback (costly), our reward signal is derived from thermodynamic phase calculations, offering a scientifically grounded criterion for model tuning. To our knowledge, this is the first demonstration of preference-tuning a language model using physics-grounded feedback for structural alloy design. The resulting framework is general and extensible, providing a path forward for intelligent design-space exploration across a range of physical science domains.
Hybridization Gap and Edge States in Strain-layer InAs/In0.5Ga0.5Sb Quantum Spin Hall Insulator
The hybridization gap in strained-layer InAs/InxGa1-xSb quantum spin Hall insulators (QSHIs) is significantly enhanced compared to binary InAs/GaSb QSHI structures, where the typical indium composition, x, ranges between 0.2 and 0.4. This enhancement prompts a critical question: to what extent can quantum wells (QWs) be strained while still preserving the fundamental QSHI phase? In this study, we demonstrate the controlled molecular beam epitaxial (MBE) growth of highly strained-layer QWs with an indium composition of x = 0.5. These structures possess a substantial compressive strain within the In0.5Ga0.5Sb QW. Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films, indicating coherent lattice structures and the absence of visible dislocations. Transport measurements further reveal that the QSHI phase in InAs/In0.5Ga0.5Sb QWs is robust and protected by time-reversal symmetry. Notably, the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field. This behavior is in agreement with the Z2 topological property predicted by the Bernevig-Hughes-Zhang (BHZ) model, confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning
We develop a multi-step workflow for the discovery of conventional superconductors, starting with a Bardeen Cooper Schrieffer inspired pre-screening of 1736 materials with high Debye temperature and electronic density of states. Next, we perform electron-phonon coupling calculations for 1058 of them to establish a large and systematic database of BCS superconducting properties. Using the McMillan-Allen-Dynes formula, we identify 105 dynamically stable materials with transition temperatures, Tc>5 K. Additionally, we analyze trends in our dataset and individual materials including MoN, VC, VTe, KB6, Ru3NbC, V3Pt, ScN, LaN2, RuO2, and TaC. We demonstrate that deep-learning(DL) models can predict superconductor properties faster than direct first principles computations. Notably, we find that by predicting the Eliashberg function as an intermediate quantity, we can improve model performance versus a direct DL prediction of Tc. We apply the trained models on the crystallographic open database and pre-screen candidates for further DFT calculations.
Reliable End-to-End Material Information Extraction from the Literature with Source-Tracked Multi-Stage Large Language Models
Data-driven materials discovery requires large-scale experimental datasets, yet most of the information remains trapped in unstructured literature. Existing extraction efforts often focus on a limited set of features and have not addressed the integrated composition-processing-microstructure-property relationships essential for understanding materials behavior, thereby posing challenges for building comprehensive databases. To address this gap, we propose a multi-stage information extraction pipeline powered by large language models, which captures 47 features spanning composition, processing, microstructure, and properties exclusively from experimentally reported materials. The pipeline integrates iterative extraction with source tracking to enhance both accuracy and reliability. Evaluations at the feature level (independent attributes) and tuple level (interdependent features) yielded F1 scores around 0.96. Compared with single-pass extraction without source tracking, our approach improved F1 scores of microstructure category by 10.0% (feature level) and 13.7% (tuple level), and reduced missed materials from 49 to 13 out of 396 materials in 100 articles on precipitate-containing multi-principal element alloys (miss rate reduced from 12.4% to 3.3%). The pipeline enables scalable and efficient literature mining, producing databases with high precision, minimal omissions, and zero false positives. These datasets provide trustworthy inputs for machine learning and materials informatics, while the modular design generalizes to diverse material classes, enabling comprehensive materials information extraction.
Cross Learning between Electronic Structure Theories for Unifying Molecular, Surface, and Inorganic Crystal Foundation Force Fields
Creating a single unified interatomic potential capable of attaining ab initio accuracy across all chemistry remains a long-standing challenge in computational chemistry and materials science. This work introduces a training protocol for foundation machine-learning interatomic potentials (MLIPs) that bridge molecular, surface, and materials chemistry through cross-domain learning. First, we introduce enhancements to the MACE architecture that improve its performance on chemically diverse databases by increasing weight sharing across chemical elements and introducing non-linear factors into the tensor decomposition of the product basis. Second, we develop a multi-head replay post-training methodology that enables efficient knowledge transfer across diverse chemical domains. By fine-tuning on datasets at different levels of electronic structure theory, including inorganic crystals, molecular systems, surface chemistry, and reactive organic chemistry, we demonstrate that a single unified model achieves state-of-the-art performance across several chemical domains. Comprehensive benchmarking reveals superior cross-domain transferability compared with existing specialised and multi-task models, with notable improvements in molecular and surface properties while maintaining state-of-the-art performance in materials-property prediction.
Quantifying chemical short-range order in metallic alloys
Metallic alloys often form phases - known as solid solutions - in which chemical elements are spread out on the same crystal lattice in an almost random manner. The tendency of certain chemical motifs to be more common than others is known as chemical short-range order (SRO) and it has received substantial consideration in alloys with multiple chemical elements present in large concentrations due to their extreme configurational complexity (e.g., high-entropy alloys). Short-range order renders solid solutions "slightly less random than completely random", which is a physically intuitive picture, but not easily quantifiable due to the sheer number of possible chemical motifs and their subtle spatial distribution on the lattice. Here we present a multiscale method to predict and quantify the SRO state of an alloy with atomic resolution, incorporating machine learning techniques to bridge the gap between electronic-structure calculations and the characteristic length scale of SRO. The result is an approach capable of predicting SRO length scale in agreement with experimental measurements while comprehensively correlating SRO with fundamental quantities such as local lattice distortions. This work advances the quantitative understanding of solid-solution phases, paving the way for SRO rigorous incorporation into predictive mechanical and thermodynamic models.
MoMa: A Modular Deep Learning Framework for Material Property Prediction
Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train then fine-tune paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a Modular framework for Materials that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and continual learning experiments further highlight MoMa's potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.
Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design
A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.
Accelerating Materials Design via LLM-Guided Evolutionary Search
Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA
Gate-tunable Exchange Bias and Voltage-controlled Magnetization Switching in a van der Waals Ferromagnet
The discovery of van der Waals magnets has established a new domain in the field of magnetism, opening novel pathways for the electrical control of magnetic properties. In this context, Fe3GeTe2 (FGT) emerges as an exemplary candidate owing to its intrinsic metallic properties, which facilitate the interplay of both charge and spin degrees of freedom. Here, the bidirectional voltage control of exchange bias (EB) effect in a perpendicularly magnetized all-van der Waals FGT/O-FGT/hBN heterostructure is demonstrated. The antiferromagnetic O-FGT layer is formed by naturally oxidizing the FGT surface. The observed EB magnitude reaches 1.4 kOe with a blocking temperature (150 K) reaching close to the Curie temperature of FGT. Both the exchange field and the blocking temperature values are among the highest in the context of layered materials. The EB modulation exhibits a linear dependence on the gate voltage and its polarity, observable in both positive and negative field cooling (FC) experiments. Additionally, gate voltage-controlled magnetization switching, highlighting the potential of FGT-based heterostructures is demonstrated in advanced spintronic devices. These findings display a methodology to modulate the magnetism of van der Waals magnets offering new avenues for the development of high-performance magnetic devices.
Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction
Matbench Discovery simulates the deployment of machine learning (ML) energy models in a high-throughput search for stable inorganic crystals. We address the disconnect between (i) thermodynamic stability and formation energy and (ii) in-domain vs out-of-distribution performance. Alongside this paper, we publish a Python package to aid with future model submissions and a growing online leaderboard with further insights into trade-offs between various performance metrics. To answer the question which ML methodology performs best at materials discovery, our initial release explores a variety of models including random forests, graph neural networks (GNN), one-shot predictors, iterative Bayesian optimizers and universal interatomic potentials (UIP). Ranked best-to-worst by their test set F1 score on thermodynamic stability prediction, we find CHGNet > M3GNet > MACE > ALIGNN > MEGNet > CGCNN > CGCNN+P > Wrenformer > BOWSR > Voronoi tessellation fingerprints with random forest. The top 3 models are UIPs, the winning methodology for ML-guided materials discovery, achieving F1 scores of ~0.6 for crystal stability classification and discovery acceleration factors (DAF) of up to 5x on the first 10k most stable predictions compared to dummy selection from our test set. We also highlight a sharp disconnect between commonly used global regression metrics and more task-relevant classification metrics. Accurate regressors are susceptible to unexpectedly high false-positive rates if those accurate predictions lie close to the decision boundary at 0 eV/atom above the convex hull where most materials are. Our results highlight the need to focus on classification metrics that actually correlate with improved stability hit rate.
Crystal Structure Generation with Autoregressive Large Language Modeling
The generation of plausible crystal structures is often the first step in predicting the structure and properties of a material from its chemical composition. Quickly generating and predicting inorganic crystal structures is important for the discovery of new materials, which can target applications such as energy or electronic devices. However, most current methods for crystal structure prediction are computationally expensive, slowing the pace of innovation. Seeding structure prediction algorithms with quality generated candidates can overcome a major bottleneck. Here, we introduce CrystaLLM, a methodology for the versatile generation of crystal structures, based on the autoregressive large language modeling (LLM) of the Crystallographic Information File (CIF) format. Trained on millions of CIF files, CrystaLLM focuses on modeling crystal structures through text. CrystaLLM can produce plausible crystal structures for a wide range of inorganic compounds unseen in training, as demonstrated by ab initio simulations. The integration with predictors of formation energy permits the use of a Monte Carlo Tree Search algorithm to improve the generation of meaningful structures. Our approach challenges conventional representations of crystals, and demonstrates the potential of LLMs for learning effective 'world models' of crystal chemistry, which will lead to accelerated discovery and innovation in materials science.
Potential and Limitation of High-Frequency Cores and Caches
This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.
Foundational Large Language Models for Materials Research
Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to accelerate materials research through automated analysis and prediction. Still, their effective deployment requires domain-specific adaptation for understanding and solving domain-relevant tasks. Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models on an extensive corpus of materials literature and crystallographic data. Through systematic evaluation, we demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities. The specialized LLaMat-CIF variant demonstrates unprecedented capabilities in crystal structure generation, predicting stable crystals with high coverage across the periodic table. Intriguingly, despite LLaMA-3's superior performance in comparison to LLaMA-2, we observe that LLaMat-2 demonstrates unexpectedly enhanced domain-specific performance across diverse materials science tasks, including structured information extraction from text and tables, more particularly in crystal structure generation, a potential adaptation rigidity in overtrained LLMs. Altogether, the present work demonstrates the effectiveness of domain adaptation towards developing practically deployable LLM copilots for materials research. Beyond materials science, our findings reveal important considerations for domain adaptation of LLMs, such as model selection, training methodology, and domain-specific performance, which may influence the development of specialized scientific AI systems.
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing
An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material.
Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet
As the number of novel data-driven approaches to material science continues to grow, it is crucial to perform consistent quality, reliability and applicability assessments of model performance. In this paper, we benchmark the Materials Optimal Descriptor Network (MODNet) method and architecture against the recently released MatBench v0.1, a curated test suite of materials datasets. MODNet is shown to outperform current leaders on 6 of the 13 tasks, whilst closely matching the current leaders on a further 2 tasks; MODNet performs particularly well when the number of samples is below 10,000. Attention is paid to two topics of concern when benchmarking models. First, we encourage the reporting of a more diverse set of metrics as it leads to a more comprehensive and holistic comparison of model performance. Second, an equally important task is the uncertainty assessment of a model towards a target domain. Significant variations in validation errors can be observed, depending on the imbalance and bias in the training set (i.e., similarity between training and application space). By using an ensemble MODNet model, confidence intervals can be built and the uncertainty on individual predictions can be quantified. Imbalance and bias issues are often overlooked, and yet are important for successful real-world applications of machine learning in materials science and condensed matter.
Scalable Reactive Atomistic Dynamics with GAIA
The groundbreaking advance in materials and chemical research has been driven by the development of atomistic simulations. However, the broader applicability of the atomistic simulations remains restricted, as they inherently depend on energy models that are either inaccurate or computationally prohibitive. Machine learning interatomic potentials (MLIPs) have recently emerged as a promising class of energy models, but their deployment remains challenging due to the lack of systematic protocols for generating diverse training data. Here we automate the construction of training datasets to enable the development of general-purpose MLIPs, by introducing GAIA, an end-to-end framework to build a wide range of atomic arrangements. By employing systematic evaluation of metadynamics for effective structural exploration, GAIA overcomes the heuristic nature of conventional dataset generation. Using GAIA, we constructed Titan25, a benchmark-scale dataset, and trained MLIPs that closely match both static and dynamic density functional theory results. The models further reproduce experimental observations across reactive regimes, including detonation, coalescence, and catalytic activity. GAIA narrows the gap between experiment and simulation, and paves the way for the development of universal MLIPs that can reliably describe a wide spectrum of materials and chemical processes.
PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration
Complex chemical space and limited knowledge scope with biases holds immense challenge for human scientists, yet in automated materials discovery. Existing intelligent methods relies more on numerical computation, leading to inefficient exploration and results with hard-interpretability. To bridge this gap, we introduce a principles-guided material discovery system powered by language inferential multi-agent system (MAS), namely PriM. Our framework integrates automated hypothesis generation with experimental validation in a roundtable system of MAS, enabling systematic exploration while maintaining scientific rigor. Based on our framework, the case study of nano helix demonstrates higher materials exploration rate and property value while providing transparent reasoning pathways. This approach develops an automated-and-transparent paradigm for material discovery, with broad implications for rational design of functional materials. Code is publicly available at our https://github.com/amair-lab/PriM{GitHub}.
Hypothesis Generation for Materials Discovery and Design Using Goal-Driven and Constraint-Guided LLM Agents
Materials discovery and design are essential for advancing technology across various industries by enabling the development of application-specific materials. Recent research has leveraged Large Language Models (LLMs) to accelerate this process. We explore the potential of LLMs to generate viable hypotheses that, once validated, can expedite materials discovery. Collaborating with materials science experts, we curated a novel dataset from recent journal publications, featuring real-world goals, constraints, and methods for designing real-world applications. Using this dataset, we test LLM-based agents that generate hypotheses for achieving given goals under specific constraints. To assess the relevance and quality of these hypotheses, we propose a novel scalable evaluation metric that emulates the process a materials scientist would use to evaluate a hypothesis critically. Our curated dataset, proposed method, and evaluation framework aim to advance future research in accelerating materials discovery and design with LLMs.
Discovery and recovery of crystalline materials with property-conditioned transformers
Generative models have recently shown great promise for accelerating the design and discovery of new functional materials. Conditional generation enhances this capacity by allowing inverse design, where specific desired properties can be requested during the generation process. However, conditioning of transformer-based approaches, in particular, is constrained by discrete tokenisation schemes and the risk of catastrophic forgetting during fine-tuning. This work introduces CrystaLLM-π (property injection), a conditional autoregressive framework that integrates continuous property representations directly into the transformer's attention mechanism. Two architectures, Property-Key-Value (PKV) Prefix attention and PKV Residual attention, are presented. These methods bypass inefficient sequence-level tokenisation and preserve foundational knowledge from unsupervised pre-training on Crystallographic Information Files (CIFs) as textual input. We establish the efficacy of these mechanisms through systematic robustness studies and evaluate the framework's versatility across two distinct tasks. First, for structure recovery, the model processes high-dimensional, heterogeneous X-ray diffraction patterns, achieving structural accuracy competitive with specialised models and demonstrating applications to experimental structure recovery and polymorph differentiation. Second, for materials discovery, the model is fine-tuned on a specialised photovoltaic dataset to generate novel, stable candidates validated by Density Functional Theory (DFT). It implicitly learns to target optimal band gap regions for high photovoltaic efficiency, demonstrating a capability to map complex structure-property relationships. CrystaLLM-π provides a unified, flexible, and computationally efficient framework for inverse materials design.
Prediction of superconducting properties of materials based on machine learning models
The application of superconducting materials is becoming more and more widespread. Traditionally, the discovery of new superconducting materials relies on the experience of experts and a large number of "trial and error" experiments, which not only increases the cost of experiments but also prolongs the period of discovering new superconducting materials. In recent years, machine learning has been increasingly applied to materials science. Based on this, this manuscript proposes the use of XGBoost model to identify superconductors; the first application of deep forest model to predict the critical temperature of superconductors; the first application of deep forest to predict the band gap of materials; and application of a new sub-network model to predict the Fermi energy level of materials. Compared with our known similar literature, all the above algorithms reach state-of-the-art. Finally, this manuscript uses the above models to search the COD public dataset and identify 50 candidate superconducting materials with possible critical temperature greater than 90 K.
MatTools: Benchmarking Large Language Models for Materials Science Tools
Large language models (LLMs) are increasingly applied to materials science questions, including literature comprehension, property prediction, materials discovery and alloy design. At the same time, a wide range of physics-based computational approaches have been developed in which materials properties can be calculated. Here, we propose a benchmark application to evaluate the proficiency of LLMs to answer materials science questions through the generation and safe execution of codes based on such physics-based computational materials science packages. MatTools is built on two complementary components: a materials simulation tool question-answer (QA) benchmark and a real-world tool-usage benchmark. We designed an automated methodology to efficiently collect real-world materials science tool-use examples. The QA benchmark, derived from the pymatgen (Python Materials Genomics) codebase and documentation, comprises 69,225 QA pairs that assess the ability of an LLM to understand materials science tools. The real-world benchmark contains 49 tasks (138 subtasks) requiring the generation of functional Python code for materials property calculations. Our evaluation of diverse LLMs yields three key insights: (1)Generalists outshine specialists;(2)AI knows AI; and (3)Simpler is better. MatTools provides a standardized framework for assessing and improving LLM capabilities for materials science tool applications, facilitating the development of more effective AI systems for materials science and general scientific research.
Fast and Accurate Prediction of Material Properties with Three-Body Tight-Binding Model for the Periodic Table
Parameterized tight-binding models fit to first principles calculations can provide an efficient and accurate quantum mechanical method for predicting properties of molecules and solids. However, well-tested parameter sets are generally only available for a limited number of atom combinations, making routine use of this method difficult. Furthermore, most previous models consider only simple two-body interactions, which limits accuracy. To tackle these challenges, we develop a density functional theory database of nearly one million materials, which we use to fit a universal set of tight-binding parameters for 65 elements and their binary combinations. We include both two-body and three-body effective interaction terms in our model, plus self-consistent charge transfer, enabling our model to work for metallic, covalent, and ionic bonds with the same parameter set. To ensure predictive power, we adopt a learning framework where we repeatedly test the model on new low energy crystal structures and then add them to the fitting dataset, iterating until predictions improve. We distribute the materials database and tools developed in this work publicly.
DiffCrysGen: A Score-Based Diffusion Model for Design of Diverse Inorganic Crystalline Materials
Crystal structure generation is a foundational challenge in materials discovery, particularly in designing functional inorganic crystalline materials with desired properties. Most existing diffusion-based generative models for crystals rely on complex, hand-crafted priors and modular architectures to separately model atom types, atomic positions, and lattice parameters. These methods often require customized diffusion processes and conditional denoising, which can introduce additional model complexities and inconsistencies. Here we introduce DiffCrysGen, a fully data-driven, score-based diffusion model that jointly learns the distribution of all structural components in crystalline materials. With crystal structure representation as unified 2D matrices, DiffCrysGen bypasses the need for task-specific priors or decoupled modules, enabling end-to-end generation of atom types, fractional coordinates, and lattice parameters within a single framework. Our model learns crystallographic symmetry and chemical validity directly from large-scale datasets, allowing it to scale to complex materials discovery tasks. As a demonstration, we applied DiffCrysGen to the design of rare-earth-free magnetic materials with high saturation magnetization, showing its effectiveness in generating stable, diverse, and property-aligned candidates for sustainable magnet applications.
Polar nano-clusters in nominally paraelectric ceramics demonstrating high microwave tunability for wireless communication
Dielectric materials, with high tunability at microwave frequencies, are key components in the design of microwave communication systems. Dense Ba0.6Sr0.4TiO3 (BST) ceramics, with different grain sizes, were prepared in order to optimise the dielectric tunability via polar nano cluster effects. Dielectric permittivity and loss measurements were carried at both high and low frequencies and were supported by results from X-ray powder diffraction, scanning and transmission electron microscopies, Raman spectroscopy and piezoresponse force microscopy. The concentration of polar nano clusters, whose sizes are found to be in the range 20 to 50 nm, and the dielectric tunability increase with increasing grain size. A novel method for measurement of the microwave tunability in bulk dielectrics is presented. The highest tunability of 32% is achieved in ceramics with an average grain size of 10 um. The tunability of BST ceramics with applied DC field is demonstrated in a prototype small resonant antenna.
HTSC-2025: A Benchmark Dataset of Ambient-Pressure High-Temperature Superconductors for AI-Driven Critical Temperature Prediction
The discovery of high-temperature superconducting materials holds great significance for human industry and daily life. In recent years, research on predicting superconducting transition temperatures using artificial intelligence~(AI) has gained popularity, with most of these tools claiming to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods. In this work, we present the HTSC-2025, an ambient-pressure high-temperature superconducting benchmark dataset. This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory, including the renowned X_2YH_6 system, perovskite MXH_3 system, M_3XH_8 system, cage-like BCN-doped metal atomic systems derived from LaH_{10} structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB_2. The HTSC-2025 benchmark has been open-sourced at https://github.com/xqh19970407/HTSC-2025 and will be continuously updated. This benchmark holds significant importance for accelerating the discovery of superconducting materials using AI-based methods.
MatText: Do Language Models Need More than Text & Scale for Materials Modeling?
Effectively representing materials as text has the potential to leverage the vast advancements of large language models (LLMs) for discovering new materials. While LLMs have shown remarkable success in various domains, their application to materials science remains underexplored. A fundamental challenge is the lack of understanding of how to best utilize text-based representations for materials modeling. This challenge is further compounded by the absence of a comprehensive benchmark to rigorously evaluate the capabilities and limitations of these text representations in capturing the complexity of material systems. To address this gap, we propose MatText, a suite of benchmarking tools and datasets designed to systematically evaluate the performance of language models in modeling materials. MatText encompasses nine distinct text-based representations for material systems, including several novel representations. Each representation incorporates unique inductive biases that capture relevant information and integrate prior physical knowledge about materials. Additionally, MatText provides essential tools for training and benchmarking the performance of language models in the context of materials science. These tools include standardized dataset splits for each representation, probes for evaluating sensitivity to geometric factors, and tools for seamlessly converting crystal structures into text. Using MatText, we conduct an extensive analysis of the capabilities of language models in modeling materials. Our findings reveal that current language models consistently struggle to capture the geometric information crucial for materials modeling across all representations. Instead, these models tend to leverage local information, which is emphasized in some of our novel representations. Our analysis underscores MatText's ability to reveal shortcomings of text-based methods for materials design.
The First Room-Temperature Ambient-Pressure Superconductor
For the first time in the world, we succeeded in synthesizing the room-temperature superconductor (T_c ge 400 K, 127^circC) working at ambient pressure with a modified lead-apatite (LK-99) structure. The superconductivity of LK-99 is proved with the Critical temperature (T_c), Zero-resistivity, Critical current (I_c), Critical magnetic field (H_c), and the Meissner effect. The superconductivity of LK-99 originates from minute structural distortion by a slight volume shrinkage (0.48 %), not by external factors such as temperature and pressure. The shrinkage is caused by Cu^{2+} substitution of Pb^{2+}(2) ions in the insulating network of Pb(2)-phosphate and it generates the stress. It concurrently transfers to Pb(1) of the cylindrical column resulting in distortion of the cylindrical column interface, which creates superconducting quantum wells (SQWs) in the interface. The heat capacity results indicated that the new model is suitable for explaining the superconductivity of LK-99. The unique structure of LK-99 that allows the minute distorted structure to be maintained in the interfaces is the most important factor that LK-99 maintains and exhibits superconductivity at room temperatures and ambient pressure.
Ultra-sensitive solid-state organic molecular microwave quantum receiver
High-accuracy microwave sensing is widely demanded in various fields, ranging from cosmology to microwave quantum technology. Quantum receivers based on inorganic solid-state spin systems are promising candidates for such purpose because of the stability and compatibility, but their best sensitivity is currently limited to a few pT/rm{Hz}. Here, by utilising an enhanced readout scheme with the state-of-the-art solid-state maser technology, we develop a robust microwave quantum receiver functioned by organic molecular spins at ambient conditions. Owing to the maser amplification, the sensitivity of the receiver achieves 6.14 pm 0.17 fT/rm{Hz} which exceeds three orders of magnitude than that of the inorganic solid-state quantum receivers. The heterodyne detection without additional local oscillators improves bandwidth of the receiver and allows frequency detection. The scheme can be extended to other solid-state spin systems without complicated control pulses and thus enables practical applications such as electron spin resonance spectroscopy, dark matter searches, and astronomical observations.
Atomic-scale factors that control the rate capability of nanostructured amorphous Si for high-energy-density batteries
Nanostructured Si is the most promising high-capacity anode material to substantially increase the energy density of Li-ion batteries. Among the remaining challenges is its low rate capability as compared to conventional materials. To understand better what controls the diffusion of Li in the amorphous Li-Si alloy, we use a novel machine-learning potential trained on more than 40,000 ab-initio calculations and nanosecond-scale molecular dynamics simulations, to visualize for the first time the delithiation of entire LiSi nanoparticles. Our results show that the Si host is not static but undergoes a dynamic rearrangement from isolated atoms, to chains, and clusters, with the Li diffusion strongly governed by this Si rearrangement. We find that the Li diffusivity is highest when Si segregates into clusters, so that Li diffusion proceeds via hopping between the Si clusters. The average size of Si clusters and the concentration range over which Si clustering occurs can thus function as design criteria for the development of rate-improved anodes based on modified Si.
Wyckoff Transformer: Generation of Symmetric Crystals
Crystal symmetry plays a fundamental role in determining its physical, chemical, and electronic properties such as electrical and thermal conductivity, optical and polarization behavior, and mechanical strength. Almost all known crystalline materials have internal symmetry. However, this is often inadequately addressed by existing generative models, making the consistent generation of stable and symmetrically valid crystal structures a significant challenge. We introduce WyFormer, a generative model that directly tackles this by formally conditioning on space group symmetry. It achieves this by using Wyckoff positions as the basis for an elegant, compressed, and discrete structure representation. To model the distribution, we develop a permutation-invariant autoregressive model based on the Transformer encoder and an absence of positional encoding. Extensive experimentation demonstrates WyFormer's compelling combination of attributes: it achieves best-in-class symmetry-conditioned generation, incorporates a physics-motivated inductive bias, produces structures with competitive stability, predicts material properties with competitive accuracy even without atomic coordinates, and exhibits unparalleled inference speed.
StableMaterials: Enhancing Diversity in Material Generation via Semi-Supervised Learning
We introduce StableMaterials, a novel approach for generating photorealistic physical-based rendering (PBR) materials that integrate semi-supervised learning with Latent Diffusion Models (LDMs). Our method employs adversarial training to distill knowledge from existing large-scale image generation models, minimizing the reliance on annotated data and enhancing the diversity in generation. This distillation approach aligns the distribution of the generated materials with that of image textures from an SDXL model, enabling the generation of novel materials that are not present in the initial training dataset. Furthermore, we employ a diffusion-based refiner model to improve the visual quality of the samples and achieve high-resolution generation. Finally, we distill a latent consistency model for fast generation in just four steps and propose a new tileability technique that removes visual artifacts typically associated with fewer diffusion steps. We detail the architecture and training process of StableMaterials, the integration of semi-supervised training within existing LDM frameworks and show the advantages of our approach. Comparative evaluations with state-of-the-art methods show the effectiveness of StableMaterials, highlighting its potential applications in computer graphics and beyond. StableMaterials is publicly available at https://gvecchio.com/stablematerials.
CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling
The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.
FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions
Material discovery is a critical area of research with the potential to revolutionize various fields, including carbon capture, renewable energy, and electronics. However, the immense scale of the chemical space makes it challenging to explore all possible materials experimentally. In this paper, we introduce FlowLLM, a novel generative model that combines large language models (LLMs) and Riemannian flow matching (RFM) to design novel crystalline materials. FlowLLM first fine-tunes an LLM to learn an effective base distribution of meta-stable crystals in a text representation. After converting to a graph representation, the RFM model takes samples from the LLM and iteratively refines the coordinates and lattice parameters. Our approach significantly outperforms state-of-the-art methods, increasing the generation rate of stable materials by over three times and increasing the rate for stable, unique, and novel crystals by sim50% - a huge improvement on a difficult problem. Additionally, the crystals generated by FlowLLM are much closer to their relaxed state when compared with another leading model, significantly reducing post-hoc computational cost.
Stacking disorder in novel ABAC-stacked brochantite
In geometrically frustrated magnetic systems, weak interactions or slight changes to the structure can tip the delicate balance of exchange interactions, sending the system into a different ground state. Brochantite, Cu_4SO_4(OH)_6, has a copper sublattice composed of distorted triangles, making it a likely host for frustrated magnetism, but exhibits stacking disorder. The lack of synthetic single crystals has limited research on the magnetism in brochantite to powders and natural mineral crystals. We grew crystals which we find to be a new polytype with a tendency toward ABAC stacking and some anion disorder, alongside the expected stacking disorder. Comparison to previous results on natural mineral specimens suggests that cation disorder is more deleterious to the magnetism than anion and stacking disorder. Our specific heat data suggest a double transition on cooling into the magnetically ordered state.
AutoMAT: A Hierarchical Framework for Autonomous Alloy Discovery
Alloy discovery is central to advancing modern industry but remains hindered by the vastness of compositional design space and the costly validation. Here, we present AutoMAT, a hierarchical and autonomous framework grounded in and validated by experiments, which integrates large language models, automated CALPHAD-based simulations, and AI-driven search to accelerate alloy design. Spanning the entire pipeline from ideation to validation, AutoMAT achieves high efficiency, accuracy, and interpretability without the need for manually curated large datasets. In a case study targeting a lightweight, high-strength alloy, AutoMAT identifies a titanium alloy with 8.1% lower density and comparable yield strength relative to the state-of-the-art reference, achieving the highest specific strength among all comparisons. In a second case targeting high-yield-strength high-entropy alloys, AutoMAT achieves a 28.2% improvement in yield strength over the base alloy. In both cases, AutoMAT reduces the discovery timeline from years to weeks, illustrating its potential as a scalable and versatile platform for next-generation alloy design.
MatPROV: A Provenance Graph Dataset of Material Synthesis Extracted from Scientific Literature
Synthesis procedures play a critical role in materials research, as they directly affect material properties. With data-driven approaches increasingly accelerating materials discovery, there is growing interest in extracting synthesis procedures from scientific literature as structured data. However, existing studies often rely on rigid, domain-specific schemas with predefined fields for structuring synthesis procedures or assume that synthesis procedures are linear sequences of operations, which limits their ability to capture the structural complexity of real-world procedures. To address these limitations, we adopt PROV-DM, an international standard for provenance information, which supports flexible, graph-based modeling of procedures. We present MatPROV, a dataset of PROV-DM-compliant synthesis procedures extracted from scientific literature using large language models. MatPROV captures structural complexities and causal relationships among materials, operations, and conditions through visually intuitive directed graphs. This representation enables machine-interpretable synthesis knowledge, opening opportunities for future research such as automated synthesis planning and optimization.
34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery
Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.
Unveiling Real Triple Degeneracies in Crystals: Exploring Link and Compound Structures
With their non-Abelian topological charges, real multi-bandgap systems challenge the conventional topological phase classifications. As the minimal sector of multi-bandgap systems, real triple degeneracies (RTPs), which serve as real 'Weyl points', lay the foundation for the research on real topological phases. However, experimental demonstration of physical systems with global band configurations consisting of multiple RTPs in crystals has not been reported. Here we present experimental evidence of RTPs in photonic meta-crystals, characterizing them using the Euler number, and establishing their connection with both Abelian and non-Abelian charges. By considering RTPs as the basic elements, we further propose the concept of a topological compound, akin to a chemical compound, where we find that certain phases are not topologically allowed. The topological classification of RTPs in crystals demonstrated in our work plays a similar role as the 'no-go' theorem in Weyl systems.
A Unified Predictive and Generative Solution for Liquid Electrolyte Formulation
Liquid electrolytes are critical components of next-generation energy storage systems, enabling fast ion transport, minimizing interfacial resistance, and ensuring electrochemical stability for long-term battery performance. However, measuring electrolyte properties and designing formulations remain experimentally and computationally expensive. In this work, we present a unified framework for designing liquid electrolyte formulation, integrating a forward predictive model with an inverse generative approach. Leveraging both computational and experimental data collected from literature and extensive molecular simulations, we train a predictive model capable of accurately estimating electrolyte properties from ionic conductivity to solvation structure. Our physics-informed architecture preserves permutation invariance and incorporates empirical dependencies on temperature and salt concentration, making it broadly applicable to property prediction tasks across molecular mixtures. Furthermore, we introduce -- to the best of our knowledge -- the first generative machine learning framework for molecular mixture design, demonstrated on electrolyte systems. This framework supports multi-condition-constrained generation, addressing the inherently multi-objective nature of materials design. As a proof of concept, we experimentally identified three liquid electrolytes with both high ionic conductivity and anion-concentrated solvation structure. This unified framework advances data-driven electrolyte design and can be readily extended to other complex chemical systems beyond electrolytes.
Intragranular nucleation of tetrahedral precipitates and discontinuous precipitation in Cu-5wt%Ag
Both continuous and discontinuous precipitation is known to occur in CuAg alloys. The precipitation of Ag-rich phase has been experimentally investigated by atom probe tomography and transmission electron microscopy after ageing treatment of Cu-5%wtAg at 440^circC during 30'. Both continuously and discontinuously formed precipitates have been observed. The precipitates located inside the grains exhibit two different faceted shapes: tetrahedral and platelet-shaped precipitates. Dislocations accommodating the high misfit at the interface between the two phases have also been evidenced. Based on these experimental observations, we examine the thermodynamic effect of these dislocations on the nucleation barrier and show that the peculiar shapes are due to the interfacial anisotropy. The appropriate number of misfit dislocations relaxes the elastic stress and lead to energetically favorable precipitates. However, due to the large misfit between the parent and precipitate phases, discontinuous precipitation that is often reported for CuAg alloys can be a lower energetic path to transform the supersaturated solid solution. We suggest that the presence of vacancy clusters may assist intragranular nucleation and decrease
Striped Spin Density Wave in a Graphene/Black Phosphorous Heterostructure
A bilayer formed by stacking two distinct materials creates a moiré lattice, which can serve as a platform for novel electronic phases. In this work we study a unique example of such a system: the graphene-black phosphorus heterostructure (G/BP), which has been suggested to have an intricate band structure. Most notably, the valence band hosts a quasi-one-dimensional region in the Brillouin zone of high density of states, suggesting that various many-body electronic phases are likely to emerge. We derive an effective tight-binding model that reproduces this band structure, and explore the emergent broken-symmetry phases when interactions are introduced. Employing a mean-field analysis, we find that the favored ground-state exhibits a striped spin density wave (SDW) order, characterized by either one of two-fold degenerate wave-vectors that are tunable by gating. Further exploring the phase-diagram controlled by gate voltage and the interaction strength, we find that the SDW-ordered state undergoes a metal to insulator transition via an intermediate metallic phase which supports striped SDW correlations. Possible experimental signatures are discussed, in particular a highly anisotropic dispersion of the collective excitations which should be manifested in electric and thermal transport.
Superconductivity from buckled-honeycomb-vacancy ordering
Vacancies are prevalent and versatile in solid-state physics and materials science. The role of vacancies in strongly correlated materials, however, remains uncultivated until now. Here, we report the discovery of an unprecedented vacancy state forming an extended buckled-honeycomb-vacancy (BHV) ordering in Ir_{16}Sb_{18}. Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution. The phase diagram on vacancy ordering reveals the superconductivity competes with the BHV ordering. Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy formation energy and Fermi surface nesting with a wave vector of (1/3, 1/3, 0). The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level. The peculiarities of BHV ordering highlight the importance of "correlated vacancies" and may serve as a paradigm for exploring other non-trivial excitations and quantum criticality.
Automatic extraction of materials and properties from superconductors scientific literature
The automatic extraction of materials and related properties from the scientific literature is gaining attention in data-driven materials science (Materials Informatics). In this paper, we discuss Grobid-superconductors, our solution for automatically extracting superconductor material names and respective properties from text. Built as a Grobid module, it combines machine learning and heuristic approaches in a multi-step architecture that supports input data as raw text or PDF documents. Using Grobid-superconductors, we built SuperCon2, a database of 40324 materials and properties records from 37700 papers. The material (or sample) information is represented by name, chemical formula, and material class, and is characterized by shape, doping, substitution variables for components, and substrate as adjoined information. The properties include the Tc superconducting critical temperature and, when available, applied pressure with the Tc measurement method.
Flexible, Model-Agnostic Method for Materials Data Extraction from Text Using General Purpose Language Models
Accurate and comprehensive material databases extracted from research papers are critical for materials science and engineering but require significant human effort to develop. In this paper we present a simple method of extracting materials data from full texts of research papers suitable for quickly developing modest-sized databases. The method requires minimal to no coding, prior knowledge about the extracted property, or model training, and provides high recall and almost perfect precision in the resultant database. The method is fully automated except for one human-assisted step, which typically requires just a few hours of human labor. The method builds on top of natural language processing and large general language models but can work with almost any such model. The language models GPT-3/3.5, bart and DeBERTaV3 are evaluated here for comparison. We provide a detailed detailed analysis of the methods performance in extracting bulk modulus data, obtaining up to 90% precision at 96% recall, depending on the amount of human effort involved. We then demonstrate the methods broader effectiveness by developing a database of critical cooling rates for metallic glasses.
Generative Hierarchical Materials Search
Generative models trained at scale can now produce text, video, and more recently, scientific data such as crystal structures. In applications of generative approaches to materials science, and in particular to crystal structures, the guidance from the domain expert in the form of high-level instructions can be essential for an automated system to output candidate crystals that are viable for downstream research. In this work, we formulate end-to-end language-to-structure generation as a multi-objective optimization problem, and propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures. GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal (e.g., chemical formulae), and (2) a diffusion model that takes intermediate information as input and generates low-level continuous value crystal structures. GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures. During inference, GenMS leverages all three components to conduct a forward tree search over the space of possible structures. Experiments show that GenMS outperforms other alternatives of directly using language models to generate structures both in satisfying user request and in generating low-energy structures. We confirm that GenMS is able to generate common crystal structures such as double perovskites, or spinels, solely from natural language input, and hence can form the foundation for more complex structure generation in near future.
Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional materials
We introduce the use of Crystal Graph Convolutional Neural Networks (CGCNN), Fully Connected Neural Networks (FCNN) and XGBoost to predict thermoelectric properties. The dataset for the CGCNN is independent of Density Functional Theory (DFT) and only relies on the crystal and atomic information, while that for the FCNN is based on a rich attribute list mined from Materialsproject.org. The results show that the optimized FCNN is three layer deep and is able to predict the scattering-time independent thermoelectric powerfactor much better than the CGCNN (or XGBoost), suggesting that bonding and density of states descriptors informed from materials science knowledge obtained partially from DFT are vital to predict functional properties.
Strain-Balanced Low-Temperature-Grown Beryllium-Doped InGaAs/InAlAs Superlattices for High-Performance Terahertz Photoconductors under 1550 nm Laser Excitation
This study systematically investigates the photoconductive properties of low-temperature-grown Beryllium (Be)-doped InGaAs/InAlAs strain-balanced superlattices (SLs) grown by molecular beam epitaxy under stationary growth conditions on semi-insulating InP:Fe substrates. The stationary growth approach enabled precise control over lateral gradients in layer strain, composition, and thickness across a single wafer, while strain-balancing facilitated pseudomorphic growth to explore a wide range of structural parameters, providing a robust platform to study their influence on photoconductive performance. Structural characterization confirmed high crystalline quality and smooth surface morphology in all samples. Time-resolved pump-probe spectroscopy revealed subpicosecond carrier lifetimes, validating the effectiveness of strain balancing and Be doping in tuning ultrafast recombination dynamics. Hall effect measurements supported by 8-band k.p modeling revealed enhanced carrier mobility in strain-balanced SLs compared to lattice-matched structures, primarily due to reduced electron and hole effective masses and stronger quantum confinement. Additionally, optical absorption under 1550 nm excitation showed improved absorption coefficients for the strain-balanced structure, consistent with the reduction in bandgap energy predicted by theoretical modeling, thereby enhancing photon-to-carrier conversion efficiency. Furthermore, transmission electron microscopy provided first-time evidence of significant Be-induced interdiffusion at the strained SL interfaces, an important factor influencing carrier transport and dynamics. These findings position low-temperature-grown Be-doped InGaAs/InAlAs strain-balanced SLs as promising materials for high-performance broadband THz photoconductive detectors operating at telecom-compatible wavelengths.
Learning Smooth and Expressive Interatomic Potentials for Physical Property Prediction
Machine learning interatomic potentials (MLIPs) have become increasingly effective at approximating quantum mechanical calculations at a fraction of the computational cost. However, lower errors on held out test sets do not always translate to improved results on downstream physical property prediction tasks. In this paper, we propose testing MLIPs on their practical ability to conserve energy during molecular dynamic simulations. If passed, improved correlations are found between test errors and their performance on physical property prediction tasks. We identify choices which may lead to models failing this test, and use these observations to improve upon highly-expressive models. The resulting model, eSEN, provides state-of-the-art results on a range of physical property prediction tasks, including materials stability prediction, thermal conductivity prediction, and phonon calculations.
MaskTerial: A Foundation Model for Automated 2D Material Flake Detection
The detection and classification of exfoliated two-dimensional (2D) material flakes from optical microscope images can be automated using computer vision algorithms. This has the potential to increase the accuracy and objectivity of classification and the efficiency of sample fabrication, and it allows for large-scale data collection. Existing algorithms often exhibit challenges in identifying low-contrast materials and typically require large amounts of training data. Here, we present a deep learning model, called MaskTerial, that uses an instance segmentation network to reliably identify 2D material flakes. The model is extensively pre-trained using a synthetic data generator, that generates realistic microscopy images from unlabeled data. This results in a model that can to quickly adapt to new materials with as little as 5 to 10 images. Furthermore, an uncertainty estimation model is used to finally classify the predictions based on optical contrast. We evaluate our method on eight different datasets comprising five different 2D materials and demonstrate significant improvements over existing techniques in the detection of low-contrast materials such as hexagonal boron nitride.
Hybrid Quantum-Classical Model for Image Classification
This study presents a systematic comparison between hybrid quantum-classical neural networks and purely classical models across three benchmark datasets (MNIST, CIFAR100, and STL10) to evaluate their performance, efficiency, and robustness. The hybrid models integrate parameterized quantum circuits with classical deep learning architectures, while the classical counterparts use conventional convolutional neural networks (CNNs). Experiments were conducted over 50 training epochs for each dataset, with evaluations on validation accuracy, test accuracy, training time, computational resource usage, and adversarial robustness (tested with epsilon=0.1 perturbations).Key findings demonstrate that hybrid models consistently outperform classical models in final accuracy, achieving {99.38\% (MNIST), 41.69\% (CIFAR100), and 74.05\% (STL10) validation accuracy, compared to classical benchmarks of 98.21\%, 32.25\%, and 63.76\%, respectively. Notably, the hybrid advantage scales with dataset complexity, showing the most significant gains on CIFAR100 (+9.44\%) and STL10 (+10.29\%). Hybrid models also train 5--12times faster (e.g., 21.23s vs. 108.44s per epoch on MNIST) and use 6--32\% fewer parameters} while maintaining superior generalization to unseen test data.Adversarial robustness tests reveal that hybrid models are significantly more resilient on simpler datasets (e.g., 45.27\% robust accuracy on MNIST vs. 10.80\% for classical) but show comparable fragility on complex datasets like CIFAR100 (sim1\% robustness for both). Resource efficiency analyses indicate that hybrid models consume less memory (4--5GB vs. 5--6GB for classical) and lower CPU utilization (9.5\% vs. 23.2\% on average).These results suggest that hybrid quantum-classical architectures offer compelling advantages in accuracy, training efficiency, and parameter scalability, particularly for complex vision tasks.
A Foundational Potential Energy Surface Dataset for Materials
Accurate potential energy surface (PES) descriptions are essential for atomistic simulations of materials. Universal machine learning interatomic potentials (UMLIPs)^{1-3} offer a computationally efficient alternative to density functional theory (DFT)^4 for PES modeling across the periodic table. However, their accuracy today is fundamentally constrained due to a reliance on DFT relaxation data.^{5,6} Here, we introduce MatPES, a foundational PES dataset comprising sim 400,000 structures carefully sampled from 281 million molecular dynamics snapshots that span 16 billion atomic environments. We demonstrate that UMLIPs trained on the modestly sized MatPES dataset can rival, or even outperform, prior models trained on much larger datasets across a broad range of equilibrium, near-equilibrium, and molecular dynamics property benchmarks. We also introduce the first high-fidelity PES dataset based on the revised regularized strongly constrained and appropriately normed (r^2SCAN) functional^7 with greatly improved descriptions of interatomic bonding. The open source MatPES initiative emphasizes the importance of data quality over quantity in materials science and enables broad community-driven advancements toward more reliable, generalizable, and efficient UMLIPs for large-scale materials discovery and design.
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
We propose fine-tuning large language models for generation of stable materials. While unorthodox, fine-tuning large language models on text-encoded atomistic data is simple to implement yet reliable, with around 90% of sampled structures obeying physical constraints on atom positions and charges. Using energy above hull calculations from both learned ML potentials and gold-standard DFT calculations, we show that our strongest model (fine-tuned LLaMA-2 70B) can generate materials predicted to be metastable at about twice the rate (49% vs 28%) of CDVAE, a competing diffusion model. Because of text prompting's inherent flexibility, our models can simultaneously be used for unconditional generation of stable material, infilling of partial structures and text-conditional generation. Finally, we show that language models' ability to capture key symmetries of crystal structures improves with model scale, suggesting that the biases of pretrained LLMs are surprisingly well-suited for atomistic data.
AutoMat: Enabling Automated Crystal Structure Reconstruction from Microscopy via Agentic Tool Use
Machine learning-based interatomic potentials and force fields depend critically on accurate atomic structures, yet such data are scarce due to the limited availability of experimentally resolved crystals. Although atomic-resolution electron microscopy offers a potential source of structural data, converting these images into simulation-ready formats remains labor-intensive and error-prone, creating a bottleneck for model training and validation. We introduce AutoMat, an end-to-end, agent-assisted pipeline that automatically transforms scanning transmission electron microscopy (STEM) images into atomic crystal structures and predicts their physical properties. AutoMat combines pattern-adaptive denoising, physics-guided template retrieval, symmetry-aware atomic reconstruction, fast relaxation and property prediction via MatterSim, and coordinated orchestration across all stages. We propose the first dedicated STEM2Mat-Bench for this task and evaluate performance using lattice RMSD, formation energy MAE, and structure-matching success rate. By orchestrating external tool calls, AutoMat enables a text-only LLM to outperform vision-language models in this domain, achieving closed-loop reasoning throughout the pipeline. In large-scale experiments over 450 structure samples, AutoMat substantially outperforms existing multimodal large language models and tools. These results validate both AutoMat and STEM2Mat-Bench, marking a key step toward bridging microscopy and atomistic simulation in materials science.The code and dataset are publicly available at https://github.com/yyt-2378/AutoMat and https://huggingface.co/datasets/yaotianvector/STEM2Mat.
Sub-second spin and lifetime-limited optical coherences in ^{171}Yb^{3+}:CaWO_4
Optically addressable solid-state spins have been extensively studied for quantum technologies, offering unique advantages for quantum computing, communication, and sensing. Advancing these applications is generally limited by finding materials that simultaneously provide lifetime-limited optical and long spin coherences. Here, we introduce ^{171}Yb^{3+} ions doped into a CaWO_4 crystal. We perform high-resolution spectroscopy of the excited state, and demonstrate all-optical coherent control of the electron-nuclear spin ensemble. We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms. Next to this, we measure a spin-transition ensemble line width of 5 kHz and electron-nuclear spin coherence time reaching 0.15 seconds at zero magnetic field between 50 mK and 1 K temperatures. These results demonstrate the potential of ^{171}Yb^{3+}:CaWO_4 as a low-noise platform for building quantum technologies with ensemble-based memories, microwave-to-optical transducers, and optically addressable single-ion spin qubits.
MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery
Metamaterials, engineered materials with architected structures across multiple length scales, offer unprecedented and tunable mechanical properties that surpass those of conventional materials. However, leveraging advanced machine learning (ML) for metamaterial discovery is hindered by three fundamental challenges: (C1) Data Heterogeneity Challenge arises from heterogeneous data sources, heterogeneous composition scales, and heterogeneous structure categories; (C2) Model Complexity Challenge stems from the intricate geometric constraints of ML models, which complicate their adaptation to metamaterial structures; and (C3) Human-AI Collaboration Challenge comes from the "dual black-box'' nature of sophisticated ML models and the need for intuitive user interfaces. To tackle these challenges, we introduce a unified framework, named MetamatBench, that operates on three levels. (1) At the data level, we integrate and standardize 5 heterogeneous, multi-modal metamaterial datasets. (2) The ML level provides a comprehensive toolkit that adapts 17 state-of-the-art ML methods for metamaterial discovery. It also includes a comprehensive evaluation suite with 12 novel performance metrics with finite element-based assessments to ensure accurate and reliable model validation. (3) The user level features a visual-interactive interface that bridges the gap between complex ML techniques and non-ML researchers, advancing property prediction and inverse design of metamaterials for research and applications. MetamatBench offers a unified platform deployed at http://zhoulab-1.cs.vt.edu:5550 that enables machine learning researchers and practitioners to develop and evaluate new methodologies in metamaterial discovery. For accessibility and reproducibility, we open-source our benchmark and the codebase at https://github.com/cjpcool/Metamaterial-Benchmark.
NeuMaDiff: Neural Material Synthesis via Hyperdiffusion
High-quality material synthesis is essential for replicating complex surface properties to create realistic digital scenes. However, existing methods often suffer from inefficiencies in time and memory, require domain expertise, or demand extensive training data, with high-dimensional material data further constraining performance. Additionally, most approaches lack multi-modal guidance capabilities and standardized evaluation metrics, limiting control and comparability in synthesis tasks. To address these limitations, we propose NeuMaDiff, a novel neural material synthesis framework utilizing hyperdiffusion. Our method employs neural fields as a low-dimensional representation and incorporates a multi-modal conditional hyperdiffusion model to learn the distribution over material weights. This enables flexible guidance through inputs such as material type, text descriptions, or reference images, providing greater control over synthesis. To support future research, we contribute two new material datasets and introduce two BRDF distributional metrics for more rigorous evaluation. We demonstrate the effectiveness of NeuMaDiff through extensive experiments, including a novel statistics-based constrained synthesis approach, which enables the generation of materials of desired categories.
Unconventional Electromechanical Response in Ferrocene Assisted Gold Atomic Chain
Atomically thin metallic chains serve as pivotal systems for studying quantum transport, with their conductance strongly linked to the orbital picture. Here, we report a non-monotonic electro-mechanical response in a gold-ferrocene junction, characterized by an unexpected conductance increase over a factor of ten upon stretching. This response is detected in the formation of ferrocene-assisted atomic gold chain in a mechanically controllable break junction at a cryogenic temperature. DFT based calculations show that tilting of molecules inside the chain modifies the orbital overlap and the transmission spectra, leading to such non-monotonic conductance evolution with stretching. This behavior, unlike typical flat conductance plateaus observed in metal atomic chains, pinpoints the unique role of conformational rearrangements during chain elongation. Our findings provide a deeper understanding of the role of orbital hybridization in transport properties and offer new opportunities for designing nanoscale devices with tailored electro-mechanical characteristics.
Complex chiral columns made of achiral quinoxaline derivatives with semi-flexible cores
Mesogenic materials, quinoxaline derivatives with semi-flexible cores, are reported to form new type of 3D columnar structure with large crystallographic unit cell and Fddd symmetry below columnar hexagonal phase. The 3D columnar structure is a result of frustration imposed by arrangement of helical columns of opposite chirality into triangular lattice. The studied materials exhibit fluorescent properties that could be easily tuned by modification of molecular structure, compounds with the extended {\pi} electron conjugated systems form aggregates and fluorescence is quenched. For molecules with flexible structure the fluorescence quantum yield reaches 25%. On the other hand, compounds with more rigid mesogenic core, for which fluorescence is suppressed show strong hole photocurrent. For some materials also bi-polar: hole and electron transfer was observed.
The Open Catalyst 2025 (OC25) Dataset and Models for Solid-Liquid Interfaces
Catalysis at solid-liquid interfaces plays a central role in the advancement of energy storage and sustainable chemical production technologies. By enabling accurate, long-time scale simulations, machine learning (ML) models have the potential to accelerate the discovery of (electro)catalysts. While prior Open Catalyst datasets (OC20 and OC22) have advanced the field by providing large-scale density functional theory (DFT) data of adsorbates on surfaces at solid-gas interfaces, they do not capture the critical role of solvent and electrolyte effects at solid-liquid interfaces. To bridge this gap, we introduce the Open Catalyst 2025 (OC25) dataset, consisting of 7,801,261 calculations across 1,511,270 unique explicit solvent environments. OC25 constitutes the largest and most diverse solid-liquid interface dataset that is currently available and provides configurational and elemental diversity: spanning 88 elements, commonly used solvents/ions, varying solvent layers, and off-equilibrium sampling. State-of-the-art models trained on the OC25 dataset exhibit energy, force, and solvation energy errors as low as 0.1 eV, 0.015 eV/A, and 0.04 eV, respectively; significantly lower than than the recently released Universal Models for Atoms (UMA-OC20). Additionally, we discuss the impact of the quality of DFT-calculated forces on model training and performance. The dataset and accompanying baseline models are made openly available for the community. We anticipate the dataset to facilitate large length-scale and long-timescale simulations of catalytic transformations at solid-liquid interfaces, advancing molecular-level insights into functional interfaces and enabling the discovery of next-generation energy storage and conversion technologies.
Large Language Models for Material Property Predictions: elastic constant tensor prediction and materials design
Efficient and accurate prediction of material properties is critical for advancing materials design and applications. The rapid-evolution of large language models (LLMs) presents a new opportunity for material property predictions, complementing experimental measurements and multi-scale computational methods. We focus on predicting the elastic constant tensor, as a case study, and develop domain-specific LLMs for predicting elastic constants and for materials discovery. The proposed ElaTBot LLM enables simultaneous prediction of elastic constant tensors, bulk modulus at finite temperatures, and the generation of new materials with targeted properties. Moreover, the capabilities of ElaTBot are further enhanced by integrating with general LLMs (GPT-4o) and Retrieval-Augmented Generation (RAG) for prediction. A specialized variant, ElaTBot-DFT, designed for 0 K elastic constant tensor prediction, reduces the prediction errors by 33.1% compared with domain-specific, material science LLMs (Darwin) trained on the same dataset. This natural language-based approach lowers the barriers to computational materials science and highlights the broader potential of LLMs for material property predictions and inverse design.
MatKB: Semantic Search for Polycrystalline Materials Synthesis Procedures
In this paper, we present a novel approach to knowledge extraction and retrieval using Natural Language Processing (NLP) techniques for material science. Our goal is to automatically mine structured knowledge from millions of research articles in the field of polycrystalline materials and make it easily accessible to the broader community. The proposed method leverages NLP techniques such as entity recognition and document classification to extract relevant information and build an extensive knowledge base, from a collection of 9.5 Million publications. The resulting knowledge base is integrated into a search engine, which enables users to search for information about specific materials, properties, and experiments with greater precision than traditional search engines like Google. We hope our results can enable material scientists quickly locate desired experimental procedures, compare their differences, and even inspire them to design new experiments. Our website will be available at Github https://github.com/Xianjun-Yang/PcMSP.git soon.
Material Anything: Generating Materials for Any 3D Object via Diffusion
We present Material Anything, a fully-automated, unified diffusion framework designed to generate physically-based materials for 3D objects. Unlike existing methods that rely on complex pipelines or case-specific optimizations, Material Anything offers a robust, end-to-end solution adaptable to objects under diverse lighting conditions. Our approach leverages a pre-trained image diffusion model, enhanced with a triple-head architecture and rendering loss to improve stability and material quality. Additionally, we introduce confidence masks as a dynamic switcher within the diffusion model, enabling it to effectively handle both textured and texture-less objects across varying lighting conditions. By employing a progressive material generation strategy guided by these confidence masks, along with a UV-space material refiner, our method ensures consistent, UV-ready material outputs. Extensive experiments demonstrate our approach outperforms existing methods across a wide range of object categories and lighting conditions.
Image Segmentation using U-Net Architecture for Powder X-ray Diffraction Images
Scientific researchers frequently use the in situ synchrotron high-energy powder X-ray diffraction (XRD) technique to examine the crystallographic structures of materials in functional devices such as rechargeable battery materials. We propose a method for identifying artifacts in experimental XRD images. The proposed method uses deep learning convolutional neural network architectures, such as tunable U-Nets to identify the artifacts. In particular, the predicted artifacts are evaluated against the corresponding ground truth (manually implemented) using the overall true positive rate or recall. The result demonstrates that the U-Nets can consistently produce great recall performance at 92.4% on the test dataset, which is not included in the training, with a 34% reduction in average false positives in comparison to the conventional method. The U-Nets also reduce the time required to identify and separate artifacts by more than 50%. Furthermore, the exclusion of the artifacts shows major changes in the integrated 1D XRD pattern, enhancing further analysis of the post-processing XRD data.
Toward Accurate Interpretable Predictions of Materials Properties within Transformer Language Models
Property prediction accuracy has long been a key parameter of machine learning in materials informatics. Accordingly, advanced models showing state-of-the-art performance turn into highly parameterized black boxes missing interpretability. Here, we present an elegant way to make their reasoning transparent. Human-readable text-based descriptions automatically generated within a suite of open-source tools are proposed as materials representation. Transformer language models pretrained on 2 million peer-reviewed articles take as input well-known terms, e.g., chemical composition, crystal symmetry, and site geometry. Our approach outperforms crystal graph networks by classifying four out of five analyzed properties if one considers all available reference data. Moreover, fine-tuned text-based models show high accuracy in the ultra-small data limit. Explanations of their internal machinery are produced using local interpretability techniques and are faithful and consistent with domain expert rationales. This language-centric framework makes accurate property predictions accessible to people without artificial-intelligence expertise.
BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials
The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.
