Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-Modal Framing Analysis of News
Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-)language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
Issue Framing in Online Discussion Fora
In online discussion fora, speakers often make arguments for or against something, say birth control, by highlighting certain aspects of the topic. In social science, this is referred to as issue framing. In this paper, we introduce a new issue frame annotated corpus of online discussions. We explore to what extent models trained to detect issue frames in newswire and social media can be transferred to the domain of discussion fora, using a combination of multi-task and adversarial training, assuming only unlabeled training data in the target domain.
Retain or Reframe? A Computational Framework for the Analysis of Framing in News Articles and Reader Comments
When a news article describes immigration as an "economic burden" or a "humanitarian crisis," it selectively emphasizes certain aspects of the issue. Although framing shapes how the public interprets such issues, audiences do not absorb frames passively but actively reorganize the presented information. While this relationship between source content and audience response is well-documented in the social sciences, NLP approaches often ignore it, detecting frames in articles and responses in isolation. We present the first computational framework for large-scale analysis of framing across source content (news articles) and audience responses (reader comments). Methodologically, we refine frame labels and develop a framework that reconstructs dominant frames in articles and comments from sentence-level predictions, and aligns articles with topically relevant comments. Applying our framework across eleven topics and two news outlets, we find that frame reuse in comments correlates highly across outlets, while topic-specific patterns vary. We release a frame classifier that performs well on both articles and comments, a dataset of article and comment sentences manually labeled for frames, and a large-scale dataset of articles and comments with predicted frame labels.
WildFrame: Comparing Framing in Humans and LLMs on Naturally Occurring Texts
Humans are influenced by how information is presented, a phenomenon known as the framing effect. Previous work has shown that LLMs may also be susceptible to framing but has done so on synthetic data and did not compare to human behavior. We introduce WildFrame, a dataset for evaluating LLM responses to positive and negative framing, in naturally-occurring sentences, and compare humans on the same data. WildFrame consists of 1,000 texts, first selecting real-world statements with clear sentiment, then reframing them in either positive or negative light, and lastly, collecting human sentiment annotations. By evaluating eight state-of-the-art LLMs on WildFrame, we find that all models exhibit framing effects similar to humans (rgeq0.57), with both humans and models being more influenced by positive rather than negative reframing. Our findings benefit model developers, who can either harness framing or mitigate its effects, depending on the downstream application.
Zoom is what you need: An empirical study of the power of zoom and spatial biases in image classification
Image classifiers are information-discarding machines, by design. Yet, how these models discard information remains mysterious. We hypothesize that one way for image classifiers to reach high accuracy is to first zoom to the most discriminative region in the image and then extract features from there to predict image labels. We study six popular networks ranging from AlexNet to CLIP and find that proper framing of the input image can lead to the correct classification of 98.91% of ImageNet images. Furthermore, we explore the potential and limits of zoom transforms in image classification and uncover positional biases in various datasets, especially a strong center bias in two popular datasets: ImageNet-A and ObjectNet. Finally, leveraging our insights into the potential of zoom, we propose a state-of-the-art test-time augmentation (TTA) technique that improves classification accuracy by forcing models to explicitly perform zoom-in operations before making predictions. Our method is more interpretable, accurate, and faster than MEMO, a state-of-the-art TTA method. Additionally, we propose ImageNet-Hard, a new benchmark where zooming in alone often does not help state-of-the-art models better label images.
Automatically Neutralizing Subjective Bias in Text
Texts like news, encyclopedias, and some social media strive for objectivity. Yet bias in the form of inappropriate subjectivity - introducing attitudes via framing, presupposing truth, and casting doubt - remains ubiquitous. This kind of bias erodes our collective trust and fuels social conflict. To address this issue, we introduce a novel testbed for natural language generation: automatically bringing inappropriately subjective text into a neutral point of view ("neutralizing" biased text). We also offer the first parallel corpus of biased language. The corpus contains 180,000 sentence pairs and originates from Wikipedia edits that removed various framings, presuppositions, and attitudes from biased sentences. Last, we propose two strong encoder-decoder baselines for the task. A straightforward yet opaque CONCURRENT system uses a BERT encoder to identify subjective words as part of the generation process. An interpretable and controllable MODULAR algorithm separates these steps, using (1) a BERT-based classifier to identify problematic words and (2) a novel join embedding through which the classifier can edit the hidden states of the encoder. Large-scale human evaluation across four domains (encyclopedias, news headlines, books, and political speeches) suggests that these algorithms are a first step towards the automatic identification and reduction of bias.
Framing the News:From Human Perception to Large Language Model Inferences
Identifying the frames of news is important to understand the articles' vision, intention, message to be conveyed, and which aspects of the news are emphasized. Framing is a widely studied concept in journalism, and has emerged as a new topic in computing, with the potential to automate processes and facilitate the work of journalism professionals. In this paper, we study this issue with articles related to the Covid-19 anti-vaccine movement. First, to understand the perspectives used to treat this theme, we developed a protocol for human labeling of frames for 1786 headlines of No-Vax movement articles of European newspapers from 5 countries. Headlines are key units in the written press, and worth of analysis as many people only read headlines (or use them to guide their decision for further reading.) Second, considering advances in Natural Language Processing (NLP) with large language models, we investigated two approaches for frame inference of news headlines: first with a GPT-3.5 fine-tuning approach, and second with GPT-3.5 prompt-engineering. Our work contributes to the study and analysis of the performance that these models have to facilitate journalistic tasks like classification of frames, while understanding whether the models are able to replicate human perception in the identification of these frames.
Narrative Media Framing in Political Discourse
Narrative frames are a powerful way of conceptualizing and communicating complex, controversial ideas, however automated frame analysis to date has mostly overlooked this framing device. In this paper, we connect elements of narrativity with fundamental aspects of framing, and present a framework which formalizes and operationalizes such aspects. We annotate and release a data set of news articles in the climate change domain, analyze the dominance of narrative frame components across political leanings, and test LLMs in their ability to predict narrative frames and their components. Finally, we apply our framework in an unsupervised way to elicit components of narrative framing in a second domain, the COVID-19 crisis, where our predictions are congruent with prior theoretical work showing the generalizability of our approach.
Unveiling the Hidden Agenda: Biases in News Reporting and Consumption
One of the most pressing challenges in the digital media landscape is understanding the impact of biases on the news sources that people rely on for information. Biased news can have significant and far-reaching consequences, influencing our perspectives and shaping the decisions we make, potentially endangering the public and individual well-being. With the advent of the Internet and social media, discussions have moved online, making it easier to disseminate both accurate and inaccurate information. To combat mis- and dis-information, many have begun to evaluate the reliability of news sources, but these assessments often only examine the validity of the news (narrative bias) and neglect other types of biases, such as the deliberate selection of events to favor certain perspectives (selection bias). This paper aims to investigate these biases in various news sources and their correlation with third-party evaluations of reliability, engagement, and online audiences. Using machine learning to classify content, we build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases. Our results show that the source classification provided by third-party organizations closely follows the narrative bias dimension, while it is much less accurate in identifying the selection bias. Moreover, we found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions. Lastly, analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
StereoSet: Measuring stereotypical bias in pretrained language models
A stereotype is an over-generalized belief about a particular group of people, e.g., Asians are good at math or Asians are bad drivers. Such beliefs (biases) are known to hurt target groups. Since pretrained language models are trained on large real world data, they are known to capture stereotypical biases. In order to assess the adverse effects of these models, it is important to quantify the bias captured in them. Existing literature on quantifying bias evaluates pretrained language models on a small set of artificially constructed bias-assessing sentences. We present StereoSet, a large-scale natural dataset in English to measure stereotypical biases in four domains: gender, profession, race, and religion. We evaluate popular models like BERT, GPT-2, RoBERTa, and XLNet on our dataset and show that these models exhibit strong stereotypical biases. We also present a leaderboard with a hidden test set to track the bias of future language models at https://stereoset.mit.edu
What Media Frames Reveal About Stance: A Dataset and Study about Memes in Climate Change Discourse
Media framing refers to the emphasis on specific aspects of perceived reality to shape how an issue is defined and understood. Its primary purpose is to shape public perceptions often in alignment with the authors' opinions and stances. However, the interaction between stance and media frame remains largely unexplored. In this work, we apply an interdisciplinary approach to conceptualize and computationally explore this interaction with internet memes on climate change. We curate CLIMATEMEMES, the first dataset of climate-change memes annotated with both stance and media frames, inspired by research in communication science. CLIMATEMEMES includes 1,184 memes sourced from 47 subreddits, enabling analysis of frame prominence over time and communities, and sheds light on the framing preferences of different stance holders. We propose two meme understanding tasks: stance detection and media frame detection. We evaluate LLaVA-NeXT and Molmo in various setups, and report the corresponding results on their LLM backbone. Human captions consistently enhance performance. Synthetic captions and human-corrected OCR also help occasionally. Our findings highlight that VLMs perform well on stance, but struggle on frames, where LLMs outperform VLMs. Finally, we analyze VLMs' limitations in handling nuanced frames and stance expressions on climate change internet memes.
Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
E2MoCase: A Dataset for Emotional, Event and Moral Observations in News Articles on High-impact Legal Cases
The way media reports on legal cases can significantly shape public opinion, often embedding subtle biases that influence societal views on justice and morality. Analyzing these biases requires a holistic approach that captures the emotional tone, moral framing, and specific events within the narratives. In this work we introduce E2MoCase, a novel dataset designed to facilitate the integrated analysis of emotions, moral values, and events within legal narratives and media coverage. By leveraging advanced models for emotion detection, moral value identification, and event extraction, E2MoCase offers a multi-dimensional perspective on how legal cases are portrayed in news articles.
To Bias or Not to Bias: Detecting bias in News with bias-detector
Media bias detection is a critical task in ensuring fair and balanced information dissemination, yet it remains challenging due to the subjectivity of bias and the scarcity of high-quality annotated data. In this work, we perform sentence-level bias classification by fine-tuning a RoBERTa-based model on the expert-annotated BABE dataset. Using McNemar's test and the 5x2 cross-validation paired t-test, we show statistically significant improvements in performance when comparing our model to a domain-adaptively pre-trained DA-RoBERTa baseline. Furthermore, attention-based analysis shows that our model avoids common pitfalls like oversensitivity to politically charged terms and instead attends more meaningfully to contextually relevant tokens. For a comprehensive examination of media bias, we present a pipeline that combines our model with an already-existing bias-type classifier. Our method exhibits good generalization and interpretability, despite being constrained by sentence-level analysis and dataset size because of a lack of larger and more advanced bias corpora. We talk about context-aware modeling, bias neutralization, and advanced bias type classification as potential future directions. Our findings contribute to building more robust, explainable, and socially responsible NLP systems for media bias detection.
Measuring Social Biases in Grounded Vision and Language Embeddings
We generalize the notion of social biases from language embeddings to grounded vision and language embeddings. Biases are present in grounded embeddings, and indeed seem to be equally or more significant than for ungrounded embeddings. This is despite the fact that vision and language can suffer from different biases, which one might hope could attenuate the biases in both. Multiple ways exist to generalize metrics measuring bias in word embeddings to this new setting. We introduce the space of generalizations (Grounded-WEAT and Grounded-SEAT) and demonstrate that three generalizations answer different yet important questions about how biases, language, and vision interact. These metrics are used on a new dataset, the first for grounded bias, created by augmenting extending standard linguistic bias benchmarks with 10,228 images from COCO, Conceptual Captions, and Google Images. Dataset construction is challenging because vision datasets are themselves very biased. The presence of these biases in systems will begin to have real-world consequences as they are deployed, making carefully measuring bias and then mitigating it critical to building a fair society.
A Dataset for Analysing News Framing in Chinese Media
Framing is an essential device in news reporting, allowing the writer to influence public perceptions of current affairs. While there are existing automatic news framing detection datasets in various languages, none of them focus on news framing in the Chinese language which has complex character meanings and unique linguistic features. This study introduces the first Chinese News Framing dataset, to be used as either a stand-alone dataset or a supplementary resource to the SemEval-2023 task 3 dataset. We detail its creation and we run baseline experiments to highlight the need for such a dataset and create benchmarks for future research, providing results obtained through fine-tuning XLM-RoBERTa-Base and using GPT-4o in the zero-shot setting. We find that GPT-4o performs significantly worse than fine-tuned XLM-RoBERTa across all languages. For the Chinese language, we obtain an F1-micro (the performance metric for SemEval task 3, subtask 2) score of 0.719 using only samples from our Chinese News Framing dataset and a score of 0.753 when we augment the SemEval dataset with Chinese news framing samples. With positive news frame detection results, this dataset is a valuable resource for detecting news frames in the Chinese language and is a valuable supplement to the SemEval-2023 task 3 dataset.
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
AccessEval: Benchmarking Disability Bias in Large Language Models
Large Language Models (LLMs) are increasingly deployed across diverse domains but often exhibit disparities in how they handle real-life queries. To systematically investigate these effects within various disability contexts, we introduce AccessEval (Accessibility Evaluation), a benchmark evaluating 21 closed- and open-source LLMs across 6 real-world domains and 9 disability types using paired Neutral and Disability-Aware Queries. We evaluated model outputs with metrics for sentiment, social perception, and factual accuracy. Our analysis reveals that responses to disability-aware queries tend to have a more negative tone, increased stereotyping, and higher factual error compared to neutral queries. These effects show notable variation by domain and disability type, with disabilities affecting hearing, speech, and mobility disproportionately impacted. These disparities reflect persistent forms of ableism embedded in model behavior. By examining model performance in real-world decision-making contexts, we better illuminate how such biases can translate into tangible harms for disabled users. This framing helps bridges the gap between technical evaluation and user impact, reinforcing importance of bias mitigation in day-to-day applications. Our dataset is publicly available at: https://huggingface.co/datasets/Srikant86/AccessEval
TAPNext: Tracking Any Point (TAP) as Next Token Prediction
Tracking Any Point (TAP) in a video is a challenging computer vision problem with many demonstrated applications in robotics, video editing, and 3D reconstruction. Existing methods for TAP rely heavily on complex tracking-specific inductive biases and heuristics, limiting their generality and potential for scaling. To address these challenges, we present TAPNext, a new approach that casts TAP as sequential masked token decoding. Our model is causal, tracks in a purely online fashion, and removes tracking-specific inductive biases. This enables TAPNext to run with minimal latency, and removes the temporal windowing required by many existing state of art trackers. Despite its simplicity, TAPNext achieves a new state-of-the-art tracking performance among both online and offline trackers. Finally, we present evidence that many widely used tracking heuristics emerge naturally in TAPNext through end-to-end training.
ViLBias: A Framework for Bias Detection using Linguistic and Visual Cues
The integration of Large Language Models (LLMs) and Vision-Language Models (VLMs) opens new avenues for addressing complex challenges in multimodal content analysis, particularly in biased news detection. This study introduces ViLBias, a framework that leverages state of the art LLMs and VLMs to detect linguistic and visual biases in news content, addressing the limitations of traditional text-only approaches. Our contributions include a novel dataset pairing textual content with accompanying visuals from diverse news sources and a hybrid annotation framework, combining LLM-based annotations with human review to enhance quality while reducing costs and improving scalability. We evaluate the efficacy of LLMs and VLMs in identifying biases, revealing their strengths in detecting subtle framing and text-visual inconsistencies. Empirical analysis demonstrates that incorporating visual cues alongside text enhances bias detection accuracy by 3 to 5 %, showcasing the complementary strengths of LLMs in generative reasoning and Small Language Models (SLMs) in classification. This study offers a comprehensive exploration of LLMs and VLMs as tools for detecting multimodal biases in news content, highlighting both their potential and limitations. Our research paves the way for more robust, scalable, and nuanced approaches to media bias detection, contributing to the broader field of natural language processing and multimodal analysis. (The data and code will be made available for research purposes).
Geopolitical biases in LLMs: what are the "good" and the "bad" countries according to contemporary language models
This paper evaluates geopolitical biases in LLMs with respect to various countries though an analysis of their interpretation of historical events with conflicting national perspectives (USA, UK, USSR, and China). We introduce a novel dataset with neutral event descriptions and contrasting viewpoints from different countries. Our findings show significant geopolitical biases, with models favoring specific national narratives. Additionally, simple debiasing prompts had a limited effect in reducing these biases. Experiments with manipulated participant labels reveal models' sensitivity to attribution, sometimes amplifying biases or recognizing inconsistencies, especially with swapped labels. This work highlights national narrative biases in LLMs, challenges the effectiveness of simple debiasing methods, and offers a framework and dataset for future geopolitical bias research.
Bias after Prompting: Persistent Discrimination in Large Language Models
A dangerous assumption that can be made from prior work on the bias transfer hypothesis (BTH) is that biases do not transfer from pre-trained large language models (LLMs) to adapted models. We invalidate this assumption by studying the BTH in causal models under prompt adaptations, as prompting is an extremely popular and accessible adaptation strategy used in real-world applications. In contrast to prior work, we find that biases can transfer through prompting and that popular prompt-based mitigation methods do not consistently prevent biases from transferring. Specifically, the correlation between intrinsic biases and those after prompt adaptation remain moderate to strong across demographics and tasks -- for example, gender (rho >= 0.94) in co-reference resolution, and age (rho >= 0.98) and religion (rho >= 0.69) in question answering. Further, we find that biases remain strongly correlated when varying few-shot composition parameters, such as sample size, stereotypical content, occupational distribution and representational balance (rho >= 0.90). We evaluate several prompt-based debiasing strategies and find that different approaches have distinct strengths, but none consistently reduce bias transfer across models, tasks or demographics. These results demonstrate that correcting bias, and potentially improving reasoning ability, in intrinsic models may prevent propagation of biases to downstream tasks.
TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models
Text-to-Image (TTI) generative models have shown great progress in the past few years in terms of their ability to generate complex and high-quality imagery. At the same time, these models have been shown to suffer from harmful biases, including exaggerated societal biases (e.g., gender, ethnicity), as well as incidental correlations that limit such a model's ability to generate more diverse imagery. In this paper, we propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt, using counterfactual reasoning. Unlike other works that evaluate generated images on a predefined set of bias axes, our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases. In addition, we complement quantitative scores with post-hoc explanations in terms of semantic concepts in the images generated. We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts, as well as the intersectionality between different biases for any given prompt. We perform extensive user studies to illustrate that the results of our method and analysis are consistent with human judgements.
Do Biased Models Have Biased Thoughts?
The impressive performance of language models is undeniable. However, the presence of biases based on gender, race, socio-economic status, physical appearance, and sexual orientation makes the deployment of language models challenging. This paper studies the effect of chain-of-thought prompting, a recent approach that studies the steps followed by the model before it responds, on fairness. More specifically, we ask the following question: Do biased models have biased thoughts? To answer our question, we conduct experiments on 5 popular large language models using fairness metrics to quantify 11 different biases in the model's thoughts and output. Our results show that the bias in the thinking steps is not highly correlated with the output bias (less than 0.6 correlation with a p-value smaller than 0.001 in most cases). In other words, unlike human beings, the tested models with biased decisions do not always possess biased thoughts.
COBIAS: Contextual Reliability in Bias Assessment
Large Language Models (LLMs) are trained on extensive web corpora, which enable them to understand and generate human-like text. However, this training process also results in inherent biases within the models. These biases arise from web data's diverse and often uncurated nature, containing various stereotypes and prejudices. Previous works on debiasing models rely on benchmark datasets to measure their method's performance. However, these datasets suffer from several pitfalls due to the highly subjective understanding of bias, highlighting a critical need for contextual exploration. We propose understanding the context of inputs by considering the diverse situations in which they may arise. Our contribution is two-fold: (i) we augment 2,291 stereotyped statements from two existing bias-benchmark datasets with points for adding context; (ii) we develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to assess a statement's contextual reliability in measuring bias. Our metric aligns with human judgment on contextual reliability of statements (Spearman's rho = 0.65, p = 3.4 * 10^{-60}) and can be used to create reliable datasets, which would assist bias mitigation works.
Adaptive Generation of Bias-Eliciting Questions for LLMs
Large language models (LLMs) are now widely deployed in user-facing applications, reaching hundreds of millions worldwide. As they become integrated into everyday tasks, growing reliance on their outputs raises significant concerns. In particular, users may unknowingly be exposed to model-inherent biases that systematically disadvantage or stereotype certain groups. However, existing bias benchmarks continue to rely on templated prompts or restrictive multiple-choice questions that are suggestive, simplistic, and fail to capture the complexity of real-world user interactions. In this work, we address this gap by introducing a counterfactual bias evaluation framework that automatically generates realistic, open-ended questions over sensitive attributes such as sex, race, or religion. By iteratively mutating and selecting bias-inducing questions, our approach systematically explores areas where models are most susceptible to biased behavior. Beyond detecting harmful biases, we also capture distinct response dimensions that are increasingly relevant in user interactions, such as asymmetric refusals and explicit acknowledgment of bias. Leveraging our framework, we construct CAB, a human-verified benchmark spanning diverse topics, designed to enable cross-model comparisons. Using CAB, we analyze a range of LLMs across multiple bias dimensions, revealing nuanced insights into how different models manifest bias. For instance, while GPT-5 outperforms other models, it nonetheless exhibits persistent biases in specific scenarios. These findings underscore the need for continual improvements to ensure fair model behavior.
A Multifaceted Analysis of Negative Bias in Large Language Models through the Lens of Parametric Knowledge
Negative bias refers to the tendency of large language models (LLMs) to excessively generate negative responses in binary decision tasks (e.g., yes-no question answering). Previous research has focused on detecting and addressing negative attention heads that induce negative bias. However, the underlying detailed factors influencing negative bias remain underexplored. In this paper, we demonstrate that LLMs exhibit format-level negative bias, meaning the prompt format more influences their responses than the semantics of the negative response. For the fine-grained study of the negative bias, we introduce a pipeline for constructing the evaluation set, which systematically categorizes the dataset into three subsets based on the model's parametric knowledge: correct, incorrect, and insufficient relevant knowledge. Through analysis of this evaluation set, we identify a shortcut behavior in which models tend to generate negative responses when they lack sufficient knowledge to answer a yes-no question, leading to negative bias. We further examine how negative bias changes under various prompting scenarios related to parametric knowledge. We observe that providing relevant context and offering an "I don't know" option generally reduces negative bias, whereas chain-of-thought prompting tends to amplify the bias. Finally, we demonstrate that the degree of negative bias can vary depending on the type of prompt, which influences the direction of the response. Our work reveals the various factors that influence negative bias, providing critical insights for mitigating it in LLMs.
What's in a Name? Auditing Large Language Models for Race and Gender Bias
We employ an audit design to investigate biases in state-of-the-art large language models, including GPT-4. In our study, we prompt the models for advice involving a named individual across a variety of scenarios, such as during car purchase negotiations or election outcome predictions. We find that the advice systematically disadvantages names that are commonly associated with racial minorities and women. Names associated with Black women receive the least advantageous outcomes. The biases are consistent across 42 prompt templates and several models, indicating a systemic issue rather than isolated incidents. While providing numerical, decision-relevant anchors in the prompt can successfully counteract the biases, qualitative details have inconsistent effects and may even increase disparities. Our findings underscore the importance of conducting audits at the point of LLM deployment and implementation to mitigate their potential for harm against marginalized communities.
Understanding Disparities in Post Hoc Machine Learning Explanation
Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes), and while a large body of work focuses on mitigating these issues at the explanation metric level, the role of the data generating process and black box model in relation to explanation disparities remains largely unexplored. Accordingly, through both simulations as well as experiments on a real-world dataset, we specifically assess challenges to explanation disparities that originate from properties of the data: limited sample size, covariate shift, concept shift, omitted variable bias, and challenges based on model properties: inclusion of the sensitive attribute and appropriate functional form. Through controlled simulation analyses, our study demonstrates that increased covariate shift, concept shift, and omission of covariates increase explanation disparities, with the effect pronounced higher for neural network models that are better able to capture the underlying functional form in comparison to linear models. We also observe consistent findings regarding the effect of concept shift and omitted variable bias on explanation disparities in the Adult income dataset. Overall, results indicate that disparities in model explanations can also depend on data and model properties. Based on this systematic investigation, we provide recommendations for the design of explanation methods that mitigate undesirable disparities.
BBQ: A Hand-Built Bias Benchmark for Question Answering
It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model's biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model's outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.
CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models
Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.
RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models
Text representation models are prone to exhibit a range of societal biases, reflecting the non-controlled and biased nature of the underlying pretraining data, which consequently leads to severe ethical issues and even bias amplification. Recent work has predominantly focused on measuring and mitigating bias in pretrained language models. Surprisingly, the landscape of bias measurements and mitigation resources and methods for conversational language models is still very scarce: it is limited to only a few types of bias, artificially constructed resources, and completely ignores the impact that debiasing methods may have on the final performance in dialog tasks, e.g., conversational response generation. In this work, we present RedditBias, the first conversational data set grounded in the actual human conversations from Reddit, allowing for bias measurement and mitigation across four important bias dimensions: gender, race, religion, and queerness. Further, we develop an evaluation framework which simultaneously 1) measures bias on the developed RedditBias resource, and 2) evaluates model capability in dialog tasks after model debiasing. We use the evaluation framework to benchmark the widely used conversational DialoGPT model along with the adaptations of four debiasing methods. Our results indicate that DialoGPT is biased with respect to religious groups and that some debiasing techniques can remove this bias while preserving downstream task performance.
Exploring Social Bias in Downstream Applications of Text-to-Image Foundation Models
Text-to-image diffusion models have been adopted into key commercial workflows, such as art generation and image editing. Characterising the implicit social biases they exhibit, such as gender and racial stereotypes, is a necessary first step in avoiding discriminatory outcomes. While existing studies on social bias focus on image generation, the biases exhibited in alternate applications of diffusion-based foundation models remain under-explored. We propose methods that use synthetic images to probe two applications of diffusion models, image editing and classification, for social bias. Using our methodology, we uncover meaningful and significant inter-sectional social biases in Stable Diffusion, a state-of-the-art open-source text-to-image model. Our findings caution against the uninformed adoption of text-to-image foundation models for downstream tasks and services.
Mental Health Equity in LLMs: Leveraging Multi-Hop Question Answering to Detect Amplified and Silenced Perspectives
Large Language Models (LLMs) in mental healthcare risk propagating biases that reinforce stigma and harm marginalized groups. While previous research identified concerning trends, systematic methods for detecting intersectional biases remain limited. This work introduces a multi-hop question answering (MHQA) framework to explore LLM response biases in mental health discourse. We analyze content from the Interpretable Mental Health Instruction (IMHI) dataset across symptom presentation, coping mechanisms, and treatment approaches. Using systematic tagging across age, race, gender, and socioeconomic status, we investigate bias patterns at demographic intersections. We evaluate four LLMs: Claude 3.5 Sonnet, Jamba 1.6, Gemma 3, and Llama 4, revealing systematic disparities across sentiment, demographics, and mental health conditions. Our MHQA approach demonstrates superior detection compared to conventional methods, identifying amplification points where biases magnify through sequential reasoning. We implement two debiasing techniques: Roleplay Simulation and Explicit Bias Reduction, achieving 66-94% bias reductions through few-shot prompting with BBQ dataset examples. These findings highlight critical areas where LLMs reproduce mental healthcare biases, providing actionable insights for equitable AI development.
AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs
The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.
Quantifying Bias in Text-to-Image Generative Models
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas. Existing T2I model bias evaluation methods only focus on social biases. We look beyond that and instead propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions. We assess four state-of-the-art T2I models and compare their baseline bias characteristics to their respective variants (two for each), where certain biases have been intentionally induced. We propose three evaluation metrics to assess model biases including: (i) Distribution bias, (ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two evaluation studies, modelling biases under general, and task-oriented conditions, using a marketing scenario as the domain for the latter. We also quantify social biases to compare our findings to related works. Finally, our methodology is transferred to evaluate captioned-image datasets and measure their bias. Our approach is objective, domain-agnostic and consistently measures different forms of T2I model biases. We have developed a web application and practical implementation of what has been proposed in this work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A video series with demonstrations is available at https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q
Disagreement as a way to study misinformation and its effects
Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.
A Domain-adaptive Pre-training Approach for Language Bias Detection in News
Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data.
Born With a Silver Spoon? Investigating Socioeconomic Bias in Large Language Models
Socioeconomic bias in society exacerbates disparities, influencing access to opportunities and resources based on individuals' economic and social backgrounds. This pervasive issue perpetuates systemic inequalities, hindering the pursuit of inclusive progress as a society. In this paper, we investigate the presence of socioeconomic bias, if any, in large language models. To this end, we introduce a novel dataset SilverSpoon, consisting of 3000 samples that illustrate hypothetical scenarios that involve underprivileged people performing ethically ambiguous actions due to their circumstances, and ask whether the action is ethically justified. Further, this dataset has a dual-labeling scheme and has been annotated by people belonging to both ends of the socioeconomic spectrum. Using SilverSpoon, we evaluate the degree of socioeconomic bias expressed in large language models and the variation of this degree as a function of model size. We also perform qualitative analysis to analyze the nature of this bias. Our analysis reveals that while humans disagree on which situations require empathy toward the underprivileged, most large language models are unable to empathize with the socioeconomically underprivileged regardless of the situation. To foster further research in this domain, we make SilverSpoon and our evaluation harness publicly available.
BiasGym: Fantastic Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during training. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from a country being `reckless drivers') and in probing fictional associations (e.g., people from a country having `blue skin'), showing its utility for both safety interventions and interpretability research.
Survey on Sociodemographic Bias in Natural Language Processing
Deep neural networks often learn unintended bias during training, which might have harmful effects when deployed in real-world settings. This work surveys 214 papers related to sociodemographic bias in natural language processing (NLP). In this study, we aim to provide a more comprehensive understanding of the similarities and differences among approaches to sociodemographic bias in NLP. To better understand the distinction between bias and real-world harm, we turn to ideas from psychology and behavioral economics to propose a definition for sociodemographic bias. We identify three main categories of NLP bias research: types of bias, quantifying bias, and debiasing techniques. We highlight the current trends in quantifying bias and debiasing techniques, offering insights into their strengths and weaknesses. We conclude that current approaches on quantifying bias face reliability issues, that many of the bias metrics do not relate to real-world bias, and that debiasing techniques need to focus more on training methods. Finally, we provide recommendations for future work.
Does Reasoning Introduce Bias? A Study of Social Bias Evaluation and Mitigation in LLM Reasoning
Recent advances in large language models (LLMs) have enabled automatic generation of chain-of-thought (CoT) reasoning, leading to strong performance on tasks such as math and code. However, when reasoning steps reflect social stereotypes (e.g., those related to gender, race or age), they can reinforce harmful associations and lead to misleading conclusions. We present the first systematic evaluation of social bias within LLM-generated reasoning, using the BBQ dataset to analyze both prediction accuracy and bias. Our study spans a wide range of mainstream reasoning models, including instruction-tuned and CoT-augmented variants of DeepSeek-R1 (8B/32B), ChatGPT, and other open-source LLMs. We quantify how biased reasoning steps correlate with incorrect predictions and often lead to stereotype expression. To mitigate reasoning-induced bias, we propose Answer Distribution as Bias Proxy (ADBP), a lightweight mitigation method that detects bias by tracking how model predictions change across incremental reasoning steps. ADBP outperforms a stereotype-free baseline in most cases, mitigating bias and improving the accuracy of LLM outputs. Code will be released upon paper acceptance.
Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S. News Headlines
There is a broad consensus that news media outlets incorporate ideological biases in their news articles. However, prior studies on measuring the discrepancies among media outlets and further dissecting the origins of thematic differences suffer from small sample sizes and limited scope and granularity. In this study, we use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022 to thoroughly track and dissect the fine-grained thematic discrepancy in U.S. news media. We employ multiple correspondence analysis (MCA) to quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs in order to derive a more holistic analysis. Additionally, we compare the most frequent n-grams in media headlines to provide further qualitative insights into our analysis. Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias. Meanwhile, the discrepancy in reporting foreign affairs is largely attributed to the diversity in individual journalistic styles. Finally, U.S. media outlets show consistency and high similarity in their coverage of economic issues.
A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
Large Language Models(LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities. However, their widespread deployment has brought to light significant concerns regarding biases embedded within these models. This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases. We systematically categorize biases into several dimensions. Our survey synthesizes current research findings and discusses the implications of biases in real-world applications. Additionally, we critically assess existing bias mitigation techniques and propose future research directions to enhance fairness and equity in LLMs. This survey serves as a foundational resource for researchers, practitioners, and policymakers concerned with addressing and understanding biases in LLMs.
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
Assessing Algorithmic Bias in Language-Based Depression Detection: A Comparison of DNN and LLM Approaches
This paper investigates algorithmic bias in language-based models for automated depression detection, focusing on socio-demographic disparities related to gender and race/ethnicity. Models trained using deep neural networks (DNN) based embeddings are compared to few-shot learning approaches with large language models (LLMs), evaluating both performance and fairness on clinical interview transcripts from the Distress Analysis Interview Corpus/Wizard-of-Oz (DAIC-WOZ). To mitigate bias, fairness-aware loss functions are applied to DNN-based models, while in-context learning with varied prompt framing and shot counts is explored for LLMs. Results indicate that LLMs outperform DNN-based models in depression classification, particularly for underrepresented groups such as Hispanic participants. LLMs also exhibit reduced gender bias compared to DNN-based embeddings, though racial disparities persist. Among fairness-aware techniques for mitigating bias in DNN-based embeddings, the worst-group loss, which is designed to minimize loss for the worst-performing demographic group, achieves a better balance between performance and fairness. In contrast, the fairness-regularized loss minimizes loss across all groups but performs less effectively. In LLMs, guided prompting with ethical framing helps mitigate gender bias in the 1-shot setting. However, increasing the number of shots does not lead to further reductions in disparities. For race/ethnicity, neither prompting strategy nor increasing N in N-shot learning effectively reduces disparities.
[Re] Badder Seeds: Reproducing the Evaluation of Lexical Methods for Bias Measurement
Combating bias in NLP requires bias measurement. Bias measurement is almost always achieved by using lexicons of seed terms, i.e. sets of words specifying stereotypes or dimensions of interest. This reproducibility study focuses on the original authors' main claim that the rationale for the construction of these lexicons needs thorough checking before usage, as the seeds used for bias measurement can themselves exhibit biases. The study aims to evaluate the reproducibility of the quantitative and qualitative results presented in the paper and the conclusions drawn thereof. We reproduce most of the results supporting the original authors' general claim: seed sets often suffer from biases that affect their performance as a baseline for bias metrics. Generally, our results mirror the original paper's. They are slightly different on select occasions, but not in ways that undermine the paper's general intent to show the fragility of seed sets.
SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
Persistent Anti-Muslim Bias in Large Language Models
It has been observed that large-scale language models capture undesirable societal biases, e.g. relating to race and gender; yet religious bias has been relatively unexplored. We demonstrate that GPT-3, a state-of-the-art contextual language model, captures persistent Muslim-violence bias. We probe GPT-3 in various ways, including prompt completion, analogical reasoning, and story generation, to understand this anti-Muslim bias, demonstrating that it appears consistently and creatively in different uses of the model and that it is severe even compared to biases about other religious groups. For instance, "Muslim" is analogized to "terrorist" in 23% of test cases, while "Jewish" is mapped to "money" in 5% of test cases. We quantify the positive distraction needed to overcome this bias with adversarial text prompts, and find that use of the most positive 6 adjectives reduces violent completions for "Muslims" from 66% to 20%, but which is still higher than for other religious groups.
Moral Foundations of Large Language Models
Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model's behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance.
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities.
Position Bias Mitigates Position Bias:Mitigate Position Bias Through Inter-Position Knowledge Distillation
Positional bias (PB), manifesting as non-uniform sensitivity across different contextual locations, significantly impairs long-context comprehension and processing capabilities. While prior work seeks to mitigate PB through modifying the architectures causing its emergence, significant PB still persists. To address PB effectively, we introduce Pos2Distill, a position to position knowledge distillation framework. Pos2Distill transfers the superior capabilities from advantageous positions to less favorable ones, thereby reducing the huge performance gaps. The conceptual principle is to leverage the inherent, position-induced disparity to counteract the PB itself. We identify distinct manifestations of PB under \textsc{r}etrieval and \textsc{r}easoning paradigms, thereby designing two specialized instantiations: Pos2Distill-R\textsuperscript{1} and Pos2Distill-R\textsuperscript{2} respectively, both grounded in this core principle. By employing the Pos2Distill approach, we achieve enhanced uniformity and significant performance gains across all contextual positions in long-context retrieval and reasoning tasks. Crucially, both specialized systems exhibit strong cross-task generalization mutually, while achieving superior performance on their respective tasks.
"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.
''Fifty Shades of Bias'': Normative Ratings of Gender Bias in GPT Generated English Text
Language serves as a powerful tool for the manifestation of societal belief systems. In doing so, it also perpetuates the prevalent biases in our society. Gender bias is one of the most pervasive biases in our society and is seen in online and offline discourses. With LLMs increasingly gaining human-like fluency in text generation, gaining a nuanced understanding of the biases these systems can generate is imperative. Prior work often treats gender bias as a binary classification task. However, acknowledging that bias must be perceived at a relative scale; we investigate the generation and consequent receptivity of manual annotators to bias of varying degrees. Specifically, we create the first dataset of GPT-generated English text with normative ratings of gender bias. Ratings were obtained using Best--Worst Scaling -- an efficient comparative annotation framework. Next, we systematically analyze the variation of themes of gender biases in the observed ranking and show that identity-attack is most closely related to gender bias. Finally, we show the performance of existing automated models trained on related concepts on our dataset.
Evaluate Bias without Manual Test Sets: A Concept Representation Perspective for LLMs
Bias in Large Language Models (LLMs) significantly undermines their reliability and fairness. We focus on a common form of bias: when two reference concepts in the model's concept space, such as sentiment polarities (e.g., "positive" and "negative"), are asymmetrically correlated with a third, target concept, such as a reviewing aspect, the model exhibits unintended bias. For instance, the understanding of "food" should not skew toward any particular sentiment. Existing bias evaluation methods assess behavioral differences of LLMs by constructing labeled data for different social groups and measuring model responses across them, a process that requires substantial human effort and captures only a limited set of social concepts. To overcome these limitations, we propose BiasLens, a test-set-free bias analysis framework based on the structure of the model's vector space. BiasLens combines Concept Activation Vectors (CAVs) with Sparse Autoencoders (SAEs) to extract interpretable concept representations, and quantifies bias by measuring the variation in representational similarity between the target concept and each of the reference concepts. Even without labeled data, BiasLens shows strong agreement with traditional bias evaluation metrics (Spearman correlation r > 0.85). Moreover, BiasLens reveals forms of bias that are difficult to detect using existing methods. For example, in simulated clinical scenarios, a patient's insurance status can cause the LLM to produce biased diagnostic assessments. Overall, BiasLens offers a scalable, interpretable, and efficient paradigm for bias discovery, paving the way for improving fairness and transparency in LLMs.
Fine-Tuned LLMs are "Time Capsules" for Tracking Societal Bias Through Books
Books, while often rich in cultural insights, can also mirror societal biases of their eras - biases that Large Language Models (LLMs) may learn and perpetuate during training. We introduce a novel method to trace and quantify these biases using fine-tuned LLMs. We develop BookPAGE, a corpus comprising 593 fictional books across seven decades (1950-2019), to track bias evolution. By fine-tuning LLMs on books from each decade and using targeted prompts, we examine shifts in biases related to gender, sexual orientation, race, and religion. Our findings indicate that LLMs trained on decade-specific books manifest biases reflective of their times, with both gradual trends and notable shifts. For example, model responses showed a progressive increase in the portrayal of women in leadership roles (from 8% to 22%) from the 1950s to 2010s, with a significant uptick in the 1990s (from 4% to 12%), possibly aligning with third-wave feminism. Same-sex relationship references increased markedly from the 1980s to 2000s (from 0% to 10%), mirroring growing LGBTQ+ visibility. Concerningly, negative portrayals of Islam rose sharply in the 2000s (26% to 38%), likely reflecting post-9/11 sentiments. Importantly, we demonstrate that these biases stem mainly from the books' content and not the models' architecture or initial training. Our study offers a new perspective on societal bias trends by bridging AI, literary studies, and social science research.
Assessing Social and Intersectional Biases in Contextualized Word Representations
Social bias in machine learning has drawn significant attention, with work ranging from demonstrations of bias in a multitude of applications, curating definitions of fairness for different contexts, to developing algorithms to mitigate bias. In natural language processing, gender bias has been shown to exist in context-free word embeddings. Recently, contextual word representations have outperformed word embeddings in several downstream NLP tasks. These word representations are conditioned on their context within a sentence, and can also be used to encode the entire sentence. In this paper, we analyze the extent to which state-of-the-art models for contextual word representations, such as BERT and GPT-2, encode biases with respect to gender, race, and intersectional identities. Towards this, we propose assessing bias at the contextual word level. This novel approach captures the contextual effects of bias missing in context-free word embeddings, yet avoids confounding effects that underestimate bias at the sentence encoding level. We demonstrate evidence of bias at the corpus level, find varying evidence of bias in embedding association tests, show in particular that racial bias is strongly encoded in contextual word models, and observe that bias effects for intersectional minorities are exacerbated beyond their constituent minority identities. Further, evaluating bias effects at the contextual word level captures biases that are not captured at the sentence level, confirming the need for our novel approach.
Learning De-biased Representations with Biased Representations
Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led to interesting advancement, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles), resulting in biased models that fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been addressed by de-biasing training data through augmentation or re-sampling, which are often prohibitive due to the data collection cost (e.g., collecting images of a snowmobile on a desert) and the difficulty of quantifying or expressing biases in the first place. In this work, we propose a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design. This tactic is feasible in many scenarios where it is much easier to define a set of biased representations than to define and quantify bias. We demonstrate the efficacy of our method across a variety of synthetic and real-world biases; our experiments show that the method discourages models from taking bias shortcuts, resulting in improved generalisation. Source code is available at https://github.com/clovaai/rebias.
SB-Bench: Stereotype Bias Benchmark for Large Multimodal Models
Stereotype biases in Large Multimodal Models (LMMs) perpetuate harmful societal prejudices, undermining the fairness and equity of AI applications. As LMMs grow increasingly influential, addressing and mitigating inherent biases related to stereotypes, harmful generations, and ambiguous assumptions in real-world scenarios has become essential. However, existing datasets evaluating stereotype biases in LMMs often lack diversity and rely on synthetic images, leaving a gap in bias evaluation for real-world visual contexts. To address this, we introduce the Stereotype Bias Benchmark (SB-bench), the most comprehensive framework to date for assessing stereotype biases across nine diverse categories with non-synthetic images. SB-bench rigorously evaluates LMMs through carefully curated, visually grounded scenarios, challenging them to reason accurately about visual stereotypes. It offers a robust evaluation framework featuring real-world visual samples, image variations, and multiple-choice question formats. By introducing visually grounded queries that isolate visual biases from textual ones, SB-bench enables a precise and nuanced assessment of a model's reasoning capabilities across varying levels of difficulty. Through rigorous testing of state-of-the-art open-source and closed-source LMMs, SB-bench provides a systematic approach to assessing stereotype biases in LMMs across key social dimensions. This benchmark represents a significant step toward fostering fairness in AI systems and reducing harmful biases, laying the groundwork for more equitable and socially responsible LMMs. Our code and dataset are publicly available.
Social Biases through the Text-to-Image Generation Lens
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany.
Gender Bias in Explainability: Investigating Performance Disparity in Post-hoc Methods
While research on applications and evaluations of explanation methods continues to expand, fairness of the explanation methods concerning disparities in their performance across subgroups remains an often overlooked aspect. In this paper, we address this gap by showing that, across three tasks and five language models, widely used post-hoc feature attribution methods exhibit significant gender disparity with respect to their faithfulness, robustness, and complexity. These disparities persist even when the models are pre-trained or fine-tuned on particularly unbiased datasets, indicating that the disparities we observe are not merely consequences of biased training data. Our results highlight the importance of addressing disparities in explanations when developing and applying explainability methods, as these can lead to biased outcomes against certain subgroups, with particularly critical implications in high-stakes contexts. Furthermore, our findings underscore the importance of incorporating the fairness of explanations, alongside overall model fairness and explainability, as a requirement in regulatory frameworks.
Exploring Bias in over 100 Text-to-Image Generative Models
We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face. While these platforms democratize AI, they also facilitate the spread of inherently biased models, often shaped by task-specific fine-tuning. Ensuring ethical and transparent AI deployment requires robust evaluation frameworks and quantifiable bias metrics. To this end, we assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate. Analyzing over 100 models, we reveal how bias patterns evolve over time and across generative tasks. Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased. By identifying these systemic trends, we contribute a large-scale evaluation corpus to inform bias research and mitigation strategies, fostering more responsible AI development. Keywords: Bias, Ethical AI, Text-to-Image, Generative Models, Open-Source Models
Navigating News Narratives: A Media Bias Analysis Dataset
The proliferation of biased news narratives across various media platforms has become a prominent challenge, influencing public opinion on critical topics like politics, health, and climate change. This paper introduces the "Navigating News Narratives: A Media Bias Analysis Dataset", a comprehensive dataset to address the urgent need for tools to detect and analyze media bias. This dataset encompasses a broad spectrum of biases, making it a unique and valuable asset in the field of media studies and artificial intelligence. The dataset is available at https://huggingface.co/datasets/newsmediabias/news-bias-full-data.
Bias-Augmented Consistency Training Reduces Biased Reasoning in Chain-of-Thought
While chain-of-thought prompting (CoT) has the potential to improve the explainability of language model reasoning, it can systematically misrepresent the factors influencing models' behavior--for example, rationalizing answers in line with a user's opinion without mentioning this bias. To mitigate this biased reasoning problem, we introduce bias-augmented consistency training (BCT), an unsupervised fine-tuning scheme that trains models to give consistent reasoning across prompts with and without biasing features. We construct a suite testing nine forms of biased reasoning on seven question-answering tasks, and find that applying BCT to GPT-3.5-Turbo with one bias reduces the rate of biased reasoning by 86% on held-out tasks. Moreover, this model generalizes to other forms of bias, reducing biased reasoning on held-out biases by an average of 37%. As BCT generalizes to held-out biases and does not require gold labels, this method may hold promise for reducing biased reasoning from as-of-yet unknown biases and on tasks where supervision for ground truth reasoning is unavailable.
Socially Aware Bias Measurements for Hindi Language Representations
Language representations are efficient tools used across NLP applications, but they are strife with encoded societal biases. These biases are studied extensively, but with a primary focus on English language representations and biases common in the context of Western society. In this work, we investigate biases present in Hindi language representations with focuses on caste and religion-associated biases. We demonstrate how biases are unique to specific language representations based on the history and culture of the region they are widely spoken in, and how the same societal bias (such as binary gender-associated biases) is encoded by different words and text spans across languages. The discoveries of our work highlight the necessity of culture awareness and linguistic artifacts when modeling language representations, in order to better understand the encoded biases.
Fairness through Difference Awareness: Measuring Desired Group Discrimination in LLMs
Algorithmic fairness has conventionally adopted the mathematically convenient perspective of racial color-blindness (i.e., difference unaware treatment). However, we contend that in a range of important settings, group difference awareness matters. For example, differentiating between groups may be necessary in legal contexts (e.g., the U.S. compulsory draft applies to men but not women) and harm assessments (e.g., referring to girls as ``terrorists'' may be less harmful than referring to Muslim people as such). Thus, in contrast to most fairness work, we study fairness through the perspective of treating people differently -- when it is contextually appropriate to. We first introduce an important distinction between descriptive (fact-based), normative (value-based), and correlation (association-based) benchmarks. This distinction is significant because each category requires separate interpretation and mitigation tailored to its specific characteristics. Then, we present a benchmark suite composed of eight different scenarios for a total of 16k questions that enables us to assess difference awareness. Finally, we show results across ten models that demonstrate difference awareness is a distinct dimension to fairness where existing bias mitigation strategies may backfire.
Social Bias Probing: Fairness Benchmarking for Language Models
While the impact of social biases in language models has been recognized, prior methods for bias evaluation have been limited to binary association tests on small datasets, limiting our understanding of bias complexities. This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment, which involves treating individuals differently according to their affiliation with a sensitive demographic group. We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections. SoFa expands the analysis beyond the binary comparison of stereotypical versus anti-stereotypical identities to include a diverse range of identities and stereotypes. Comparing our methodology with existing benchmarks, we reveal that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized. Benchmarking LMs on SoFa, we expose how identities expressing different religions lead to the most pronounced disparate treatments across all models. Finally, our findings indicate that real-life adversities faced by various groups such as women and people with disabilities are mirrored in the behavior of these models.
Prompting Away Stereotypes? Evaluating Bias in Text-to-Image Models for Occupations
Text-to-Image (TTI) models are powerful creative tools but risk amplifying harmful social biases. We frame representational societal bias assessment as an image curation and evaluation task and introduce a pilot benchmark of occupational portrayals spanning five socially salient roles (CEO, Nurse, Software Engineer, Teacher, Athlete). Using five state-of-the-art models: closed-source (DALLE 3, Gemini Imagen 4.0) and open-source (FLUX.1-dev, Stable Diffusion XL Turbo, Grok-2 Image), we compare neutral baseline prompts against fairness-aware controlled prompts designed to encourage demographic diversity. All outputs are annotated for gender (male, female) and race (Asian, Black, White), enabling structured distributional analysis. Results show that prompting can substantially shift demographic representations, but with highly model-specific effects: some systems diversify effectively, others overcorrect into unrealistic uniformity, and some show little responsiveness. These findings highlight both the promise and the limitations of prompting as a fairness intervention, underscoring the need for complementary model-level strategies. We release all code and data for transparency and reproducibility https://github.com/maximus-powers/img-gen-bias-analysis.
OpinionGPT: Modelling Explicit Biases in Instruction-Tuned LLMs
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable ability to generate fitting responses to natural language instructions. However, an open research question concerns the inherent biases of trained models and their responses. For instance, if the data used to tune an LLM is dominantly written by persons with a specific political bias, we might expect generated answers to share this bias. Current research work seeks to de-bias such models, or suppress potentially biased answers. With this demonstration, we take a different view on biases in instruction-tuning: Rather than aiming to suppress them, we aim to make them explicit and transparent. To this end, we present OpinionGPT, a web demo in which users can ask questions and select all biases they wish to investigate. The demo will answer this question using a model fine-tuned on text representing each of the selected biases, allowing side-by-side comparison. To train the underlying model, we identified 11 different biases (political, geographic, gender, age) and derived an instruction-tuning corpus in which each answer was written by members of one of these demographics. This paper presents OpinionGPT, illustrates how we trained the bias-aware model and showcases the web application (available at https://opiniongpt.informatik.hu-berlin.de).
How Inclusive Are Wikipedia's Hyperlinks in Articles Covering Polarizing Topics?
Wikipedia relies on an extensive review process to verify that the content of each individual page is unbiased and presents a neutral point of view. Less attention has been paid to possible biases in the hyperlink structure of Wikipedia, which has a significant influence on the user's exploration process when visiting more than one page. The evaluation of hyperlink bias is challenging because it depends on the global view rather than the text of individual pages. In this paper, we focus on the influence of the interconnect topology between articles describing complementary aspects of polarizing topics. We introduce a novel measure of exposure to diverse information to quantify users' exposure to different aspects of a topic throughout an entire surfing session, rather than just one click ahead. We apply this measure to six polarizing topics (e.g., gun control and gun right), and we identify cases in which the network topology significantly limits the exposure of users to diverse information on the topic, encouraging users to remain in a knowledge bubble. Our findings demonstrate the importance of evaluating Wikipedia's network structure in addition to the extensive review of individual articles.
Casteist but Not Racist? Quantifying Disparities in Large Language Model Bias between India and the West
Large Language Models (LLMs), now used daily by millions of users, can encode societal biases, exposing their users to representational harms. A large body of scholarship on LLM bias exists but it predominantly adopts a Western-centric frame and attends comparatively less to bias levels and potential harms in the Global South. In this paper, we quantify stereotypical bias in popular LLMs according to an Indian-centric frame and compare bias levels between the Indian and Western contexts. To do this, we develop a novel dataset which we call Indian-BhED (Indian Bias Evaluation Dataset), containing stereotypical and anti-stereotypical examples for caste and religion contexts. We find that the majority of LLMs tested are strongly biased towards stereotypes in the Indian context, especially as compared to the Western context. We finally investigate Instruction Prompting as a simple intervention to mitigate such bias and find that it significantly reduces both stereotypical and anti-stereotypical biases in the majority of cases for GPT-3.5. The findings of this work highlight the need for including more diverse voices when evaluating LLMs.
AssertBench: A Benchmark for Evaluating Self-Assertion in Large Language Models
Recent benchmarks have probed factual consistency and rhetorical robustness in Large Language Models (LLMs). However, a knowledge gap exists regarding how directional framing of factually true statements influences model agreement, a common scenario for LLM users. AssertBench addresses this by sampling evidence-supported facts from FEVEROUS, a fact verification dataset. For each (evidence-backed) fact, we construct two framing prompts: one where the user claims the statement is factually correct, and another where the user claims it is incorrect. We then record the model's agreement and reasoning. The desired outcome is that the model asserts itself, maintaining consistent truth evaluation across both framings, rather than switching its evaluation to agree with the user. AssertBench isolates framing-induced variability from the model's underlying factual knowledge by stratifying results based on the model's accuracy on the same claims when presented neutrally. In doing so, this benchmark aims to measure an LLM's ability to "stick to its guns" when presented with contradictory user assertions about the same fact. The complete source code is available at https://github.com/achowd32/assert-bench.
Exploring Gender Bias Beyond Occupational Titles
In this work, we investigate the correlation between gender and contextual biases, focusing on elements such as action verbs, object nouns, and particularly on occupations. We introduce a novel dataset, GenderLexicon, and a framework that can estimate contextual bias and its related gender bias. Our model can interpret the bias with a score and thus improve the explainability of gender bias. Also, our findings confirm the existence of gender biases beyond occupational stereotypes. To validate our approach and demonstrate its effectiveness, we conduct evaluations on five diverse datasets, including a Japanese dataset.
Global Voices, Local Biases: Socio-Cultural Prejudices across Languages
Human biases are ubiquitous but not uniform: disparities exist across linguistic, cultural, and societal borders. As large amounts of recent literature suggest, language models (LMs) trained on human data can reflect and often amplify the effects of these social biases. However, the vast majority of existing studies on bias are heavily skewed towards Western and European languages. In this work, we scale the Word Embedding Association Test (WEAT) to 24 languages, enabling broader studies and yielding interesting findings about LM bias. We additionally enhance this data with culturally relevant information for each language, capturing local contexts on a global scale. Further, to encompass more widely prevalent societal biases, we examine new bias dimensions across toxicity, ableism, and more. Moreover, we delve deeper into the Indian linguistic landscape, conducting a comprehensive regional bias analysis across six prevalent Indian languages. Finally, we highlight the significance of these social biases and the new dimensions through an extensive comparison of embedding methods, reinforcing the need to address them in pursuit of more equitable language models. All code, data and results are available here: https://github.com/iamshnoo/weathub.
Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias
Recent studies show that instruction tuning and learning from human feedback improve the abilities of large language models (LMs) dramatically. While these tuning methods can make models generate high-quality text, we conjecture that more implicit cognitive biases may arise in these fine-tuned models. Our work provides evidence that these fine-tuned models exhibit biases that were absent or less pronounced in their pretrained predecessors. We examine the extent of this phenomenon in three cognitive biases - the decoy effect, the certainty effect, and the belief bias - all of which are known to influence human decision-making and reasoning. Our findings highlight the presence of these biases in various models, especially those that have undergone instruction tuning, such as Flan-T5, GPT3.5, and GPT4. This research constitutes a step toward comprehending cognitive biases in instruction-tuned LMs, which is crucial for the development of more reliable and unbiased language models.
ConceptScope: Characterizing Dataset Bias via Disentangled Visual Concepts
Dataset bias, where data points are skewed to certain concepts, is ubiquitous in machine learning datasets. Yet, systematically identifying these biases is challenging without costly, fine-grained attribute annotations. We present ConceptScope, a scalable and automated framework for analyzing visual datasets by discovering and quantifying human-interpretable concepts using Sparse Autoencoders trained on representations from vision foundation models. ConceptScope categorizes concepts into target, context, and bias types based on their semantic relevance and statistical correlation to class labels, enabling class-level dataset characterization, bias identification, and robustness evaluation through concept-based subgrouping. We validate that ConceptScope captures a wide range of visual concepts, including objects, textures, backgrounds, facial attributes, emotions, and actions, through comparisons with annotated datasets. Furthermore, we show that concept activations produce spatial attributions that align with semantically meaningful image regions. ConceptScope reliably detects known biases (e.g., background bias in Waterbirds) and uncovers previously unannotated ones (e.g, co-occurring objects in ImageNet), offering a practical tool for dataset auditing and model diagnostics.
Fair Generation without Unfair Distortions: Debiasing Text-to-Image Generation with Entanglement-Free Attention
Recent advancements in diffusion-based text-to-image (T2I) models have enabled the generation of high-quality and photorealistic images from text. However, they often exhibit societal biases related to gender, race, and socioeconomic status, thereby potentially reinforcing harmful stereotypes and shaping public perception in unintended ways. While existing bias mitigation methods demonstrate effectiveness, they often encounter attribute entanglement, where adjustments to attributes relevant to the bias (i.e., target attributes) unintentionally alter attributes unassociated with the bias (i.e., non-target attributes), causing undesirable distribution shifts. To address this challenge, we introduce Entanglement-Free Attention (EFA), a method that accurately incorporates target attributes (e.g., White, Black, and Asian) while preserving non-target attributes (e.g., background) during bias mitigation. At inference time, EFA randomly samples a target attribute with equal probability and adjusts the cross-attention in selected layers to incorporate the sampled attribute, achieving a fair distribution of target attributes. Extensive experiments demonstrate that EFA outperforms existing methods in mitigating bias while preserving non-target attributes, thereby maintaining the original model's output distribution and generative capacity.
ViG-Bias: Visually Grounded Bias Discovery and Mitigation
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.
BiasAsker: Measuring the Bias in Conversational AI System
Powered by advanced Artificial Intelligence (AI) techniques, conversational AI systems, such as ChatGPT and digital assistants like Siri, have been widely deployed in daily life. However, such systems may still produce content containing biases and stereotypes, causing potential social problems. Due to the data-driven, black-box nature of modern AI techniques, comprehensively identifying and measuring biases in conversational systems remains a challenging task. Particularly, it is hard to generate inputs that can comprehensively trigger potential bias due to the lack of data containing both social groups as well as biased properties. In addition, modern conversational systems can produce diverse responses (e.g., chatting and explanation), which makes existing bias detection methods simply based on the sentiment and the toxicity hardly being adopted. In this paper, we propose BiasAsker, an automated framework to identify and measure social bias in conversational AI systems. To obtain social groups and biased properties, we construct a comprehensive social bias dataset, containing a total of 841 groups and 8,110 biased properties. Given the dataset, BiasAsker automatically generates questions and adopts a novel method based on existence measurement to identify two types of biases (i.e., absolute bias and related bias) in conversational systems. Extensive experiments on 8 commercial systems and 2 famous research models, such as ChatGPT and GPT-3, show that 32.83% of the questions generated by BiasAsker can trigger biased behaviors in these widely deployed conversational systems. All the code, data, and experimental results have been released to facilitate future research.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at https://github.com/castorini/biasprobe.
Sentiment Frames for Attitude Extraction in Russian
Texts can convey several types of inter-related information concerning opinions and attitudes. Such information includes the author's attitude towards mentioned entities, attitudes of the entities towards each other, positive and negative effects on the entities in the described situations. In this paper, we described the lexicon RuSentiFrames for Russian, where predicate words and expressions are collected and linked to so-called sentiment frames conveying several types of presupposed information on attitudes and effects. We applied the created frames in the task of extracting attitudes from a large news collection.
Addressing Correlated Latent Exogenous Variables in Debiased Recommender Systems
Recommendation systems (RS) aim to provide personalized content, but they face a challenge in unbiased learning due to selection bias, where users only interact with items they prefer. This bias leads to a distorted representation of user preferences, which hinders the accuracy and fairness of recommendations. To address the issue, various methods such as error imputation based, inverse propensity scoring, and doubly robust techniques have been developed. Despite the progress, from the structural causal model perspective, previous debiasing methods in RS assume the independence of the exogenous variables. In this paper, we release this assumption and propose a learning algorithm based on likelihood maximization to learn a prediction model. We first discuss the correlation and difference between unmeasured confounding and our scenario, then we propose a unified method that effectively handles latent exogenous variables. Specifically, our method models the data generation process with latent exogenous variables under mild normality assumptions. We then develop a Monte Carlo algorithm to numerically estimate the likelihood function. Extensive experiments on synthetic datasets and three real-world datasets demonstrate the effectiveness of our proposed method. The code is at https://github.com/WallaceSUI/kdd25-background-variable.
Dynamics of (mis)information flow and engaging power of narratives
The debate around misinformation and its potentially detrimental effects on public opinion is complex and multifaceted, to the extent that even the relevant academic research has not found unanimity on the prevalence and consumption of misinformation compared with mainstream content. The methodological framework presented here emphasises the importance of considering data representative of the complexity of the phenomenon and metrics that control for possible scale effects. By combining statistical, econometric and machine learning models, we shed light on the real impact of misinformation about a subject of general interest and social relevance, such as vaccines, on both the information available to citizens and their news diet. Our results show the prominent role achieved by misinformation sources in the news ecosystem, but also - and above all - the inability of mainstream media to drive the public debate over time on issues that are particularly sensitive and emotional. Taking properly account for the temporal dynamics of public debate seems crucial to prevent the latter from moving into uncontrolled spaces where false narratives are more easily conveyed and entrenched.
Model-Agnostic Gender Debiased Image Captioning
Image captioning models are known to perpetuate and amplify harmful societal bias in the training set. In this work, we aim to mitigate such gender bias in image captioning models. While prior work has addressed this problem by forcing models to focus on people to reduce gender misclassification, it conversely generates gender-stereotypical words at the expense of predicting the correct gender. From this observation, we hypothesize that there are two types of gender bias affecting image captioning models: 1) bias that exploits context to predict gender, and 2) bias in the probability of generating certain (often stereotypical) words because of gender. To mitigate both types of gender biases, we propose a framework, called LIBRA, that learns from synthetically biased samples to decrease both types of biases, correcting gender misclassification and changing gender-stereotypical words to more neutral ones.
Unboxing Occupational Bias: Grounded Debiasing LLMs with U.S. Labor Data
Large Language Models (LLMs) are prone to inheriting and amplifying societal biases embedded within their training data, potentially reinforcing harmful stereotypes related to gender, occupation, and other sensitive categories. This issue becomes particularly problematic as biased LLMs can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities across various domains, such as recruitment, online content moderation, or even the criminal justice system. Although prior research has focused on detecting bias in LLMs using specialized datasets designed to highlight intrinsic biases, there has been a notable lack of investigation into how these findings correlate with authoritative datasets, such as those from the U.S. National Bureau of Labor Statistics (NBLS). To address this gap, we conduct empirical research that evaluates LLMs in a ``bias-out-of-the-box" setting, analyzing how the generated outputs compare with the distributions found in NBLS data. Furthermore, we propose a straightforward yet effective debiasing mechanism that directly incorporates NBLS instances to mitigate bias within LLMs. Our study spans seven different LLMs, including instructable, base, and mixture-of-expert models, and reveals significant levels of bias that are often overlooked by existing bias detection techniques. Importantly, our debiasing method, which does not rely on external datasets, demonstrates a substantial reduction in bias scores, highlighting the efficacy of our approach in creating fairer and more reliable LLMs.
Bias in Generative AI
This study analyzed images generated by three popular generative artificial intelligence (AI) tools - Midjourney, Stable Diffusion, and DALLE 2 - representing various occupations to investigate potential bias in AI generators. Our analysis revealed two overarching areas of concern in these AI generators, including (1) systematic gender and racial biases, and (2) subtle biases in facial expressions and appearances. Firstly, we found that all three AI generators exhibited bias against women and African Americans. Moreover, we found that the evident gender and racial biases uncovered in our analysis were even more pronounced than the status quo when compared to labor force statistics or Google images, intensifying the harmful biases we are actively striving to rectify in our society. Secondly, our study uncovered more nuanced prejudices in the portrayal of emotions and appearances. For example, women were depicted as younger with more smiles and happiness, while men were depicted as older with more neutral expressions and anger, posing a risk that generative AI models may unintentionally depict women as more submissive and less competent than men. Such nuanced biases, by their less overt nature, might be more problematic as they can permeate perceptions unconsciously and may be more difficult to rectify. Although the extent of bias varied depending on the model, the direction of bias remained consistent in both commercial and open-source AI generators. As these tools become commonplace, our study highlights the urgency to identify and mitigate various biases in generative AI, reinforcing the commitment to ensuring that AI technologies benefit all of humanity for a more inclusive future.
FairI Tales: Evaluation of Fairness in Indian Contexts with a Focus on Bias and Stereotypes
Existing studies on fairness are largely Western-focused, making them inadequate for culturally diverse countries such as India. To address this gap, we introduce INDIC-BIAS, a comprehensive India-centric benchmark designed to evaluate fairness of LLMs across 85 identity groups encompassing diverse castes, religions, regions, and tribes. We first consult domain experts to curate over 1,800 socio-cultural topics spanning behaviors and situations, where biases and stereotypes are likely to emerge. Grounded in these topics, we generate and manually validate 20,000 real-world scenario templates to probe LLMs for fairness. We structure these templates into three evaluation tasks: plausibility, judgment, and generation. Our evaluation of 14 popular LLMs on these tasks reveals strong negative biases against marginalized identities, with models frequently reinforcing common stereotypes. Additionally, we find that models struggle to mitigate bias even when explicitly asked to rationalize their decision. Our evaluation provides evidence of both allocative and representational harms that current LLMs could cause towards Indian identities, calling for a more cautious usage in practical applications. We release INDIC-BIAS as an open-source benchmark to advance research on benchmarking and mitigating biases and stereotypes in the Indian context.
An Empirical Study of the Anchoring Effect in LLMs: Existence, Mechanism, and Potential Mitigations
The rise of Large Language Models (LLMs) like ChatGPT has advanced natural language processing, yet concerns about cognitive biases are growing. In this paper, we investigate the anchoring effect, a cognitive bias where the mind relies heavily on the first information as anchors to make affected judgments. We explore whether LLMs are affected by anchoring, the underlying mechanisms, and potential mitigation strategies. To facilitate studies at scale on the anchoring effect, we introduce a new dataset, SynAnchors. Combining refined evaluation metrics, we benchmark current widely used LLMs. Our findings show that LLMs' anchoring bias exists commonly with shallow-layer acting and is not eliminated by conventional strategies, while reasoning can offer some mitigation. This recontextualization via cognitive psychology urges that LLM evaluations focus not on standard benchmarks or over-optimized robustness tests, but on cognitive-bias-aware trustworthy evaluation.
CoBia: Constructed Conversations Can Trigger Otherwise Concealed Societal Biases in LLMs
Improvements in model construction, including fortified safety guardrails, allow Large language models (LLMs) to increasingly pass standard safety checks. However, LLMs sometimes slip into revealing harmful behavior, such as expressing racist viewpoints, during conversations. To analyze this systematically, we introduce CoBia, a suite of lightweight adversarial attacks that allow us to refine the scope of conditions under which LLMs depart from normative or ethical behavior in conversations. CoBia creates a constructed conversation where the model utters a biased claim about a social group. We then evaluate whether the model can recover from the fabricated bias claim and reject biased follow-up questions. We evaluate 11 open-source as well as proprietary LLMs for their outputs related to six socio-demographic categories that are relevant to individual safety and fair treatment, i.e., gender, race, religion, nationality, sex orientation, and others. Our evaluation is based on established LLM-based bias metrics, and we compare the results against human judgments to scope out the LLMs' reliability and alignment. The results suggest that purposefully constructed conversations reliably reveal bias amplification and that LLMs often fail to reject biased follow-up questions during dialogue. This form of stress-testing highlights deeply embedded biases that can be surfaced through interaction. Code and artifacts are available at https://github.com/nafisenik/CoBia.
COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements
Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.
Responsibility Perspective Transfer for Italian Femicide News
Different ways of linguistically expressing the same real-world event can lead to different perceptions of what happened. Previous work has shown that different descriptions of gender-based violence (GBV) influence the reader's perception of who is to blame for the violence, possibly reinforcing stereotypes which see the victim as partly responsible, too. As a contribution to raise awareness on perspective-based writing, and to facilitate access to alternative perspectives, we introduce the novel task of automatically rewriting GBV descriptions as a means to alter the perceived level of responsibility on the perpetrator. We present a quasi-parallel dataset of sentences with low and high perceived responsibility levels for the perpetrator, and experiment with unsupervised (mBART-based), zero-shot and few-shot (GPT3-based) methods for rewriting sentences. We evaluate our models using a questionnaire study and a suite of automatic metrics.
Language Models Don't Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting
Large Language Models (LLMs) can achieve strong performance on many tasks by producing step-by-step reasoning before giving a final output, often referred to as chain-of-thought reasoning (CoT). It is tempting to interpret these CoT explanations as the LLM's process for solving a task. However, we find that CoT explanations can systematically misrepresent the true reason for a model's prediction. We demonstrate that CoT explanations can be heavily influenced by adding biasing features to model inputs -- e.g., by reordering the multiple-choice options in a few-shot prompt to make the answer always "(A)" -- which models systematically fail to mention in their explanations. When we bias models toward incorrect answers, they frequently generate CoT explanations supporting those answers. This causes accuracy to drop by as much as 36% on a suite of 13 tasks from BIG-Bench Hard, when testing with GPT-3.5 from OpenAI and Claude 1.0 from Anthropic. On a social-bias task, model explanations justify giving answers in line with stereotypes without mentioning the influence of these social biases. Our findings indicate that CoT explanations can be plausible yet misleading, which risks increasing our trust in LLMs without guaranteeing their safety. CoT is promising for explainability, but our results highlight the need for targeted efforts to evaluate and improve explanation faithfulness.
Planted in Pretraining, Swayed by Finetuning: A Case Study on the Origins of Cognitive Biases in LLMs
Large language models (LLMs) exhibit cognitive biases -- systematic tendencies of irrational decision-making, similar to those seen in humans. Prior work has found that these biases vary across models and can be amplified by instruction tuning. However, it remains unclear if these differences in biases stem from pretraining, finetuning, or even random noise due to training stochasticity. We propose a two-step causal experimental approach to disentangle these factors. First, we finetune models multiple times using different random seeds to study how training randomness affects over 30 cognitive biases. Second, we introduce cross-tuning -- swapping instruction datasets between models to isolate bias sources. This swap uses datasets that led to different bias patterns, directly testing whether biases are dataset-dependent. Our findings reveal that while training randomness introduces some variability, biases are mainly shaped by pretraining: models with the same pretrained backbone exhibit more similar bias patterns than those sharing only finetuning data. These insights suggest that understanding biases in finetuned models requires considering their pretraining origins beyond finetuning effects. This perspective can guide future efforts to develop principled strategies for evaluating and mitigating bias in LLMs.
How Quantization Shapes Bias in Large Language Models
This work presents a comprehensive evaluation of how quantization affects model bias, with particular attention to its impact on individual demographic subgroups. We focus on weight and activation quantization strategies and examine their effects across a broad range of bias types, including stereotypes, toxicity, sentiment, and fairness. We employ both probabilistic and generated text-based metrics across nine benchmarks and evaluate models varying in architecture family and reasoning ability. Our findings show that quantization has a nuanced impact on bias: while it can reduce model toxicity and does not significantly impact sentiment, it tends to slightly increase stereotypes and unfairness in generative tasks, especially under aggressive compression. These trends are generally consistent across demographic categories and model types, although their magnitude depends on the specific setting. Overall, our results highlight the importance of carefully balancing efficiency and ethical considerations when applying quantization in practice.
How can the use of different modes of survey data collection introduce bias? A simple introduction to mode effects using directed acyclic graphs (DAGs)
Survey data are self-reported data collected directly from respondents by a questionnaire or an interview and are commonly used in epidemiology. Such data are traditionally collected via a single mode (e.g. face-to-face interview alone), but use of mixed-mode designs (e.g. offering face-to-face interview or online survey) has become more common. This introduces two key challenges. First, individuals may respond differently to the same question depending on the mode; these differences due to measurement are known as 'mode effects'. Second, different individuals may participate via different modes; these differences in sample composition between modes are known as 'mode selection'. Where recognised, mode effects are often handled by straightforward approaches such as conditioning on survey mode. However, while reducing mode effects, this and other equivalent approaches may introduce collider bias in the presence of mode selection. The existence of mode effects and the consequences of na\"ive conditioning may be underappreciated in epidemiology. This paper offers a simple introduction to these challenges using directed acyclic graphs by exploring a range of possible data structures. We discuss the potential implications of using conditioning- or imputation-based approaches and outline the advantages of quantitative bias analyses for dealing with mode effects.
Learning from others' mistakes: Avoiding dataset biases without modeling them
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended underlying task. Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available. We consider cases where the bias issues may not be explicitly identified, and show a method for training models that learn to ignore these problematic correlations. Our approach relies on the observation that models with limited capacity primarily learn to exploit biases in the dataset. We can leverage the errors of such limited capacity models to train a more robust model in a product of experts, thus bypassing the need to hand-craft a biased model. We show the effectiveness of this method to retain improvements in out-of-distribution settings even if no particular bias is targeted by the biased model.
Disability Representations: Finding Biases in Automatic Image Generation
Recent advancements in image generation technology have enabled widespread access to AI-generated imagery, prominently used in advertising, entertainment, and progressively in every form of visual content. However, these technologies often perpetuate societal biases. This study investigates the representation biases in popular image generation models towards people with disabilities (PWD). Through a comprehensive experiment involving several popular text-to-image models, we analyzed the depiction of disability. The results indicate a significant bias, with most generated images portraying disabled individuals as old, sad, and predominantly using manual wheelchairs. These findings highlight the urgent need for more inclusive AI development, ensuring diverse and accurate representation of PWD in generated images. This research underscores the importance of addressing and mitigating biases in AI models to foster equitable and realistic representations.
Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models
Text-conditioned image generation models have recently achieved astonishing results in image quality and text alignment and are consequently employed in a fast-growing number of applications. Since they are highly data-driven, relying on billion-sized datasets randomly scraped from the internet, they also suffer, as we demonstrate, from degenerated and biased human behavior. In turn, they may even reinforce such biases. To help combat these undesired side effects, we present safe latent diffusion (SLD). Specifically, to measure the inappropriate degeneration due to unfiltered and imbalanced training sets, we establish a novel image generation test bed-inappropriate image prompts (I2P)-containing dedicated, real-world image-to-text prompts covering concepts such as nudity and violence. As our exhaustive empirical evaluation demonstrates, the introduced SLD removes and suppresses inappropriate image parts during the diffusion process, with no additional training required and no adverse effect on overall image quality or text alignment.
Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
Understanding Bias in Large-Scale Visual Datasets
A recent study has shown that large-scale visual datasets are very biased: they can be easily classified by modern neural networks. However, the concrete forms of bias among these datasets remain unclear. In this study, we propose a framework to identify the unique visual attributes distinguishing these datasets. Our approach applies various transformations to extract semantic, structural, boundary, color, and frequency information from datasets, and assess how much each type of information reflects their bias. We further decompose their semantic bias with object-level analysis, and leverage natural language methods to generate detailed, open-ended descriptions of each dataset's characteristics. Our work aims to help researchers understand the bias in existing large-scale pre-training datasets, and build more diverse and representative ones in the future. Our project page and code are available at http://boyazeng.github.io/understand_bias .
Towards Debiasing Sentence Representations
As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP.
What Gives the Answer Away? Question Answering Bias Analysis on Video QA Datasets
Question answering biases in video QA datasets can mislead multimodal model to overfit to QA artifacts and jeopardize the model's ability to generalize. Understanding how strong these QA biases are and where they come from helps the community measure progress more accurately and provide researchers insights to debug their models. In this paper, we analyze QA biases in popular video question answering datasets and discover pretrained language models can answer 37-48% questions correctly without using any multimodal context information, far exceeding the 20% random guess baseline for 5-choose-1 multiple-choice questions. Our ablation study shows biases can come from annotators and type of questions. Specifically, annotators that have been seen during training are better predicted by the model and reasoning, abstract questions incur more biases than factual, direct questions. We also show empirically that using annotator-non-overlapping train-test splits can reduce QA biases for video QA datasets.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
Fighting Fire with Fire: Contrastive Debiasing without Bias-free Data via Generative Bias-transformation
Despite their remarkable ability to generalize with over-capacity networks, deep neural networks often learn to abuse spurious biases in the data instead of using the actual task-related information. Since such shortcuts are only effective within the collected dataset, the resulting biased model underperforms on real-world inputs, or cause unintended social repercussions such as gender discrimination. To counteract the influence of bias, existing methods either exploit auxiliary information which is rarely obtainable in practice, or sift for bias-free samples in the training data, hoping for the sufficient existence of clean samples. However, such presumptions about the data are not always guaranteed. In this paper, we propose Contrastive Debiasing via Generative Bias-transformation~(CDvG) which is capable of operating in more general environments where existing methods break down due to unmet presumptions such as insufficient bias-free samples. Motivated by our observation that not only discriminative models, as previously known, but also generative models tend to focus on the bias when possible, CDvG uses a translation model to transform the bias in the sample to another mode of bias while preserving task-relevant information. Through contrastive learning, we set transformed biased views against another, learning bias-invariant representations. Experimental results on synthetic and real-world datasets demonstrate that our framework outperforms the current state-of-the-arts, and effectively prevents the models from being biased even when bias-free samples are extremely scarce.
GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes
The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended.
Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models
As the capabilities of generative language models continue to advance, the implications of biases ingrained within these models have garnered increasing attention from researchers, practitioners, and the broader public. This article investigates the challenges and risks associated with biases in large-scale language models like ChatGPT. We discuss the origins of biases, stemming from, among others, the nature of training data, model specifications, algorithmic constraints, product design, and policy decisions. We explore the ethical concerns arising from the unintended consequences of biased model outputs. We further analyze the potential opportunities to mitigate biases, the inevitability of some biases, and the implications of deploying these models in various applications, such as virtual assistants, content generation, and chatbots. Finally, we review the current approaches to identify, quantify, and mitigate biases in language models, emphasizing the need for a multi-disciplinary, collaborative effort to develop more equitable, transparent, and responsible AI systems. This article aims to stimulate a thoughtful dialogue within the artificial intelligence community, encouraging researchers and developers to reflect on the role of biases in generative language models and the ongoing pursuit of ethical AI.
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.
Analyzing Quality, Bias, and Performance in Text-to-Image Generative Models
Advances in generative models have led to significant interest in image synthesis, demonstrating the ability to generate high-quality images for a diverse range of text prompts. Despite this progress, most studies ignore the presence of bias. In this paper, we examine several text-to-image models not only by qualitatively assessing their performance in generating accurate images of human faces, groups, and specified numbers of objects but also by presenting a social bias analysis. As expected, models with larger capacity generate higher-quality images. However, we also document the inherent gender or social biases these models possess, offering a more complete understanding of their impact and limitations.
Finetuning Text-to-Image Diffusion Models for Fairness
The rapid adoption of text-to-image diffusion models in society underscores an urgent need to address their biases. Without interventions, these biases could propagate a skewed worldview and restrict opportunities for minority groups. In this work, we frame fairness as a distributional alignment problem. Our solution consists of two main technical contributions: (1) a distributional alignment loss that steers specific characteristics of the generated images towards a user-defined target distribution, and (2) adjusted direct finetuning of diffusion model's sampling process (adjusted DFT), which leverages an adjusted gradient to directly optimize losses defined on the generated images. Empirically, our method markedly reduces gender, racial, and their intersectional biases for occupational prompts. Gender bias is significantly reduced even when finetuning just five soft tokens. Crucially, our method supports diverse perspectives of fairness beyond absolute equality, which is demonstrated by controlling age to a 75% young and 25% old distribution while simultaneously debiasing gender and race. Finally, our method is scalable: it can debias multiple concepts at once by simply including these prompts in the finetuning data. We share code and various fair diffusion model adaptors at https://sail-sg.github.io/finetune-fair-diffusion/.
Measuring Bias in Contextualized Word Representations
Contextual word embeddings such as BERT have achieved state of the art performance in numerous NLP tasks. Since they are optimized to capture the statistical properties of training data, they tend to pick up on and amplify social stereotypes present in the data as well. In this study, we (1)~propose a template-based method to quantify bias in BERT; (2)~show that this method obtains more consistent results in capturing social biases than the traditional cosine based method; and (3)~conduct a case study, evaluating gender bias in a downstream task of Gender Pronoun Resolution. Although our case study focuses on gender bias, the proposed technique is generalizable to unveiling other biases, including in multiclass settings, such as racial and religious biases.
BiasEdit: Debiasing Stereotyped Language Models via Model Editing
Previous studies have established that language models manifest stereotyped biases. Existing debiasing strategies, such as retraining a model with counterfactual data, representation projection, and prompting often fail to efficiently eliminate bias or directly alter the models' biased internal representations. To address these issues, we propose BiasEdit, an efficient model editing method to remove stereotypical bias from language models through lightweight networks that act as editors to generate parameter updates. BiasEdit employs a debiasing loss guiding editor networks to conduct local edits on partial parameters of a language model for debiasing while preserving the language modeling abilities during editing through a retention loss. Experiments on StereoSet and Crows-Pairs demonstrate the effectiveness, efficiency, and robustness of BiasEdit in eliminating bias compared to tangental debiasing baselines and little to no impact on the language models' general capabilities. In addition, we conduct bias tracing to probe bias in various modules and explore bias editing impacts on different components of language models.
Mitigating Bias for Question Answering Models by Tracking Bias Influence
Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.
Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases
Recent advances in machine learning leverage massive datasets of unlabeled images from the web to learn general-purpose image representations for tasks from image classification to face recognition. But do unsupervised computer vision models automatically learn implicit patterns and embed social biases that could have harmful downstream effects? We develop a novel method for quantifying biased associations between representations of social concepts and attributes in images. We find that state-of-the-art unsupervised models trained on ImageNet, a popular benchmark image dataset curated from internet images, automatically learn racial, gender, and intersectional biases. We replicate 8 previously documented human biases from social psychology, from the innocuous, as with insects and flowers, to the potentially harmful, as with race and gender. Our results closely match three hypotheses about intersectional bias from social psychology. For the first time in unsupervised computer vision, we also quantify implicit human biases about weight, disabilities, and several ethnicities. When compared with statistical patterns in online image datasets, our findings suggest that machine learning models can automatically learn bias from the way people are stereotypically portrayed on the web.
How far can bias go? -- Tracing bias from pretraining data to alignment
As LLMs are increasingly integrated into user-facing applications, addressing biases that perpetuate societal inequalities is crucial. While much work has gone into measuring or mitigating biases in these models, fewer studies have investigated their origins. Therefore, this study examines the correlation between gender-occupation bias in pre-training data and their manifestation in LLMs, focusing on the Dolma dataset and the OLMo model. Using zero-shot prompting and token co-occurrence analyses, we explore how biases in training data influence model outputs. Our findings reveal that biases present in pre-training data are amplified in model outputs. The study also examines the effects of prompt types, hyperparameters, and instruction-tuning on bias expression, finding instruction-tuning partially alleviating representational bias while still maintaining overall stereotypical gender associations, whereas hyperparameters and prompting variation have a lesser effect on bias expression. Our research traces bias throughout the LLM development pipeline and underscores the importance of mitigating bias at the pretraining stage.
Evaluating Gender Bias in Natural Language Inference
Gender-bias stereotypes have recently raised significant ethical concerns in natural language processing. However, progress in detection and evaluation of gender bias in natural language understanding through inference is limited and requires further investigation. In this work, we propose an evaluation methodology to measure these biases by constructing a challenge task that involves pairing gender-neutral premises against a gender-specific hypothesis. We use our challenge task to investigate state-of-the-art NLI models on the presence of gender stereotypes using occupations. Our findings suggest that three models (BERT, RoBERTa, BART) trained on MNLI and SNLI datasets are significantly prone to gender-induced prediction errors. We also find that debiasing techniques such as augmenting the training dataset to ensure a gender-balanced dataset can help reduce such bias in certain cases.
Where Fact Ends and Fairness Begins: Redefining AI Bias Evaluation through Cognitive Biases
Recent failures such as Google Gemini generating people of color in Nazi-era uniforms illustrate how AI outputs can be factually plausible yet socially harmful. AI models are increasingly evaluated for "fairness," yet existing benchmarks often conflate two fundamentally different dimensions: factual correctness and normative fairness. A model may generate responses that are factually accurate but socially unfair, or conversely, appear fair while distorting factual reality. We argue that identifying the boundary between fact and fair is essential for meaningful fairness evaluation. We introduce Fact-or-Fair, a benchmark with (i) objective queries aligned with descriptive, fact-based judgments, and (ii) subjective queries aligned with normative, fairness-based judgments. Our queries are constructed from 19 statistics and are grounded in cognitive psychology, drawing on representativeness bias, attribution bias, and ingroup-outgroup bias to explain why models often misalign fact and fairness. Experiments across ten frontier models reveal different levels of fact-fair trade-offs. By reframing fairness evaluation, we provide both a new theoretical lens and a practical benchmark to advance the responsible model assessments. Our test suite is publicly available at https://github.com/uclanlp/Fact-or-Fair.
