new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

EasyPortrait -- Face Parsing and Portrait Segmentation Dataset

Recently, due to COVID-19 and the growing demand for remote work, video conferencing apps have become especially widespread. The most valuable features of video chats are real-time background removal and face beautification. While solving these tasks, computer vision researchers face the problem of having relevant data for the training stage. There is no large dataset with high-quality labeled and diverse images of people in front of a laptop or smartphone camera to train a lightweight model without additional approaches. To boost the progress in this area, we provide a new image dataset, EasyPortrait, for portrait segmentation and face parsing tasks. It contains 20,000 primarily indoor photos of 8,377 unique users, and fine-grained segmentation masks separated into 9 classes. Images are collected and labeled from crowdsourcing platforms. Unlike most face parsing datasets, in EasyPortrait, the beard is not considered part of the skin mask, and the inside area of the mouth is separated from the teeth. These features allow using EasyPortrait for skin enhancement and teeth whitening tasks. This paper describes the pipeline for creating a large-scale and clean image segmentation dataset using crowdsourcing platforms without additional synthetic data. Moreover, we trained several models on EasyPortrait and showed experimental results. Proposed dataset and trained models are publicly available.

  • 3 authors
·
Apr 26, 2023

XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation

Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings. Finally, we fuse complementary 2D and 3D mask features, resulting in competitive performance across multiple benchmarks for 3D open vocabulary semantic segmentation. Code is available at https://github.com/wangzy22/XMask3D.

  • 5 authors
·
Nov 20, 2024

High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity

In the realm of high-resolution (HR), fine-grained image segmentation, the primary challenge is balancing broad contextual awareness with the precision required for detailed object delineation, capturing intricate details and the finest edges of objects. Diffusion models, trained on vast datasets comprising billions of image-text pairs, such as SD V2.1, have revolutionized text-to-image synthesis by delivering exceptional quality, fine detail resolution, and strong contextual awareness, making them an attractive solution for high-resolution image segmentation. To this end, we propose DiffDIS, a diffusion-driven segmentation model that taps into the potential of the pre-trained U-Net within diffusion models, specifically designed for high-resolution, fine-grained object segmentation. By leveraging the robust generalization capabilities and rich, versatile image representation prior of the SD models, coupled with a task-specific stable one-step denoising approach, we significantly reduce the inference time while preserving high-fidelity, detailed generation. Additionally, we introduce an auxiliary edge generation task to not only enhance the preservation of fine details of the object boundaries, but reconcile the probabilistic nature of diffusion with the deterministic demands of segmentation. With these refined strategies in place, DiffDIS serves as a rapid object mask generation model, specifically optimized for generating detailed binary maps at high resolutions, while demonstrating impressive accuracy and swift processing. Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achieving state-of-the-art results through a streamlined inference process. The source code will be publicly available at https://github.com/qianyu-dlut/DiffDIS.

  • 7 authors
·
Oct 13, 2024

Parsing is All You Need for Accurate Gait Recognition in the Wild

Binary silhouettes and keypoint-based skeletons have dominated human gait recognition studies for decades since they are easy to extract from video frames. Despite their success in gait recognition for in-the-lab environments, they usually fail in real-world scenarios due to their low information entropy for gait representations. To achieve accurate gait recognition in the wild, this paper presents a novel gait representation, named Gait Parsing Sequence (GPS). GPSs are sequences of fine-grained human segmentation, i.e., human parsing, extracted from video frames, so they have much higher information entropy to encode the shapes and dynamics of fine-grained human parts during walking. Moreover, to effectively explore the capability of the GPS representation, we propose a novel human parsing-based gait recognition framework, named ParsingGait. ParsingGait contains a Convolutional Neural Network (CNN)-based backbone and two light-weighted heads. The first head extracts global semantic features from GPSs, while the other one learns mutual information of part-level features through Graph Convolutional Networks to model the detailed dynamics of human walking. Furthermore, due to the lack of suitable datasets, we build the first parsing-based dataset for gait recognition in the wild, named Gait3D-Parsing, by extending the large-scale and challenging Gait3D dataset. Based on Gait3D-Parsing, we comprehensively evaluate our method and existing gait recognition methods. The experimental results show a significant improvement in accuracy brought by the GPS representation and the superiority of ParsingGait. The code and dataset are available at https://gait3d.github.io/gait3d-parsing-hp .

  • 6 authors
·
Aug 31, 2023

Learning to Segment from Scribbles using Multi-scale Adversarial Attention Gates

Large, fine-grained image segmentation datasets, annotated at pixel-level, are difficult to obtain, particularly in medical imaging, where annotations also require expert knowledge. Weakly-supervised learning can train models by relying on weaker forms of annotation, such as scribbles. Here, we learn to segment using scribble annotations in an adversarial game. With unpaired segmentation masks, we train a multi-scale GAN to generate realistic segmentation masks at multiple resolutions, while we use scribbles to learn their correct position in the image. Central to the model's success is a novel attention gating mechanism, which we condition with adversarial signals to act as a shape prior, resulting in better object localization at multiple scales. Subject to adversarial conditioning, the segmentor learns attention maps that are semantic, suppress the noisy activations outside the objects, and reduce the vanishing gradient problem in the deeper layers of the segmentor. We evaluated our model on several medical (ACDC, LVSC, CHAOS) and non-medical (PPSS) datasets, and we report performance levels matching those achieved by models trained with fully annotated segmentation masks. We also demonstrate extensions in a variety of settings: semi-supervised learning; combining multiple scribble sources (a crowdsourcing scenario) and multi-task learning (combining scribble and mask supervision). We release expert-made scribble annotations for the ACDC dataset, and the code used for the experiments, at https://vios-s.github.io/multiscale-adversarial-attention-gates

  • 3 authors
·
Jul 2, 2020

Active-O3: Empowering Multimodal Large Language Models with Active Perception via GRPO

Active vision, also known as active perception, refers to the process of actively selecting where and how to look in order to gather task-relevant information. It is a critical component of efficient perception and decision-making in humans and advanced embodied agents. Recently, the use of Multimodal Large Language Models (MLLMs) as central planning and decision-making modules in robotic systems has gained extensive attention. However, despite the importance of active perception in embodied intelligence, there is little to no exploration of how MLLMs can be equipped with or learn active perception capabilities. In this paper, we first provide a systematic definition of MLLM-based active perception tasks. We point out that the recently proposed GPT-o3 model's zoom-in search strategy can be regarded as a special case of active perception; however, it still suffers from low search efficiency and inaccurate region selection. To address these issues, we propose ACTIVE-O3, a purely reinforcement learning based training framework built on top of GRPO, designed to equip MLLMs with active perception capabilities. We further establish a comprehensive benchmark suite to evaluate ACTIVE-O3 across both general open-world tasks, such as small-object and dense object grounding, and domain-specific scenarios, including small object detection in remote sensing and autonomous driving, as well as fine-grained interactive segmentation. In addition, ACTIVE-O3 also demonstrates strong zero-shot reasoning abilities on the V* Benchmark, without relying on any explicit reasoning data. We hope that our work can provide a simple codebase and evaluation protocol to facilitate future research on active perception in MLLMs.

  • 11 authors
·
May 27 2

Instruction-guided Multi-Granularity Segmentation and Captioning with Large Multimodal Model

Large Multimodal Models (LMMs) have achieved significant progress by extending large language models. Building on this progress, the latest developments in LMMs demonstrate the ability to generate dense pixel-wise segmentation through the integration of segmentation models.Despite the innovations, the textual responses and segmentation masks of existing works remain at the instance level, showing limited ability to perform fine-grained understanding and segmentation even provided with detailed textual cues.To overcome this limitation, we introduce a Multi-Granularity Large Multimodal Model (MGLMM), which is capable of seamlessly adjusting the granularity of Segmentation and Captioning (SegCap) following user instructions, from panoptic SegCap to fine-grained SegCap. We name such a new task Multi-Granularity Segmentation and Captioning (MGSC). Observing the lack of a benchmark for model training and evaluation over the MGSC task, we establish a benchmark with aligned masks and captions in multi-granularity using our customized automated annotation pipeline. This benchmark comprises 10K images and more than 30K image-question pairs. We will release our dataset along with the implementation of our automated dataset annotation pipeline for further research.Besides, we propose a novel unified SegCap data format to unify heterogeneous segmentation datasets; it effectively facilitates learning to associate object concepts with visual features during multi-task training. Extensive experiments demonstrate that our MGLMM excels at tackling more than eight downstream tasks and achieves state-of-the-art performance in MGSC, GCG, image captioning, referring segmentation, multiple and empty segmentation, and reasoning segmentation tasks. The great performance and versatility of MGLMM underscore its potential impact on advancing multimodal research.

  • 5 authors
·
Sep 20, 2024 2

Partial CLIP is Enough: Chimera-Seg for Zero-shot Semantic Segmentation

Zero-shot Semantic Segmentation (ZSS) aims to segment both seen and unseen classes using supervision from only seen classes. Beyond adaptation-based methods, distillation-based approaches transfer vision-language alignment of vision-language model, e.g., CLIP, to segmentation models. However, such knowledge transfer remains challenging due to: (1) the difficulty of aligning vision-based features with the textual space, which requires combining spatial precision with vision-language alignment; and (2) the semantic gap between CLIP's global representations and the local, fine-grained features of segmentation models. To address challenge (1), we propose Chimera-Seg, which integrates a segmentation backbone as the body and a CLIP-based semantic head as the head, like the Chimera in Greek mythology, combining spatial precision with vision-language alignment. Specifically, Chimera-Seg comprises a trainable segmentation model and a CLIP Semantic Head (CSH), which maps dense features into the CLIP-aligned space. The CSH incorporates a frozen subnetwork and fixed projection layers from the CLIP visual encoder, along with lightweight trainable components. The partial module from CLIP visual encoder, paired with the segmentation model, retains segmentation capability while easing the mapping to CLIP's semantic space. To address challenge (2), we propose Selective Global Distillation (SGD), which distills knowledge from dense features exhibiting high similarity to the CLIP CLS token, while gradually reducing the number of features used for alignment as training progresses. Besides, we also use a Semantic Alignment Module (SAM) to further align dense visual features with semantic embeddings extracted from the frozen CLIP text encoder. Experiments on two benchmarks show improvements of 0.9% and 1.2% in hIoU.

  • 6 authors
·
Jun 27

Fine-Grained Detection of AI-Generated Text Using Sentence-Level Segmentation

Generation of Artificial Intelligence (AI) texts in important works has become a common practice that can be used to misuse and abuse AI at various levels. Traditional AI detectors often rely on document-level classification, which struggles to identify AI content in hybrid or slightly edited texts designed to avoid detection, leading to concerns about the model's efficiency, which makes it hard to distinguish between human-written and AI-generated texts. A sentence-level sequence labeling model proposed to detect transitions between human- and AI-generated text, leveraging nuanced linguistic signals overlooked by document-level classifiers. By this method, detecting and segmenting AI and human-written text within a single document at the token-level granularity is achieved. Our model combines the state-of-the-art pre-trained Transformer models, incorporating Neural Networks (NN) and Conditional Random Fields (CRFs). This approach extends the power of transformers to extract semantic and syntactic patterns, and the neural network component to capture enhanced sequence-level representations, thereby improving the boundary predictions by the CRF layer, which enhances sequence recognition and further identification of the partition between Human- and AI-generated texts. The evaluation is performed on two publicly available benchmark datasets containing collaborative human and AI-generated texts. Our experimental comparisons are with zero-shot detectors and the existing state-of-the-art models, along with rigorous ablation studies to justify that this approach, in particular, can accurately detect the spans of AI texts in a completely collaborative text. All our source code and the processed datasets are available in our GitHub repository.

  • 5 authors
·
Sep 22

FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding

Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions in urban areas. Although there have been advances in high-quality land cover datasets that reveal the physical features of urban landscapes, the lack of fine-grained land use datasets hinders a deeper understanding of how human activities are distributed across the landscape and the impact of these activities on the environment, thus constraining proper technique development. To address this, we introduce FUSU, the first fine-grained land use change segmentation dataset for Fine-grained Urban Semantic Understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km^2 across five urban areas in the southern and northern of China with different geographical features. The fine-grained land use pixel-wise annotations and high spatial-temporal resolution data provide a robust foundation for developing proper deep learning models to provide contextual insights on human activities and urbanization. To fully leverage FUSU, we propose a unified time-series architecture for both change detection and segmentation. We benchmark FUSU on various methods for several tasks. Dataset and code are available at: https://github.com/yuanshuai0914/FUSU.

  • 9 authors
·
May 29, 2024

Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior

Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet.

  • 3 authors
·
Mar 8

Fine-Grained Visual Prompting

Vision-Language Models (VLMs), such as CLIP, have demonstrated impressive zero-shot transfer capabilities in image-level visual perception. However, these models have shown limited performance in instance-level tasks that demand precise localization and recognition. Previous works have suggested that incorporating visual prompts, such as colorful boxes or circles, can improve the ability of models to recognize objects of interest. Nonetheless, compared to language prompting, visual prompting designs are rarely explored. Existing approaches, which employ coarse visual cues such as colorful boxes or circles, often result in sub-optimal performance due to the inclusion of irrelevant and noisy pixels. In this paper, we carefully study the visual prompting designs by exploring more fine-grained markings, such as segmentation masks and their variations. In addition, we introduce a new zero-shot framework that leverages pixel-level annotations acquired from a generalist segmentation model for fine-grained visual prompting. Consequently, our investigation reveals that a straightforward application of blur outside the target mask, referred to as the Blur Reverse Mask, exhibits exceptional effectiveness. This proposed prompting strategy leverages the precise mask annotations to reduce focus on weakly related regions while retaining spatial coherence between the target and the surrounding background. Our Fine-Grained Visual Prompting (FGVP) demonstrates superior performance in zero-shot comprehension of referring expressions on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks. It outperforms prior methods by an average margin of 3.0% to 4.6%, with a maximum improvement of 12.5% on the RefCOCO+ testA subset. Code is available at https://github.com/ylingfeng/FGVP.

  • 5 authors
·
Jun 7, 2023

UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface

Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that Unifies Fine-grained visual perception tasks through an Open-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models will be publicly available.

  • 8 authors
·
Mar 3 2

Anatomy-VLM: A Fine-grained Vision-Language Model for Medical Interpretation

Accurate disease interpretation from radiology remains challenging due to imaging heterogeneity. Achieving expert-level diagnostic decisions requires integration of subtle image features with clinical knowledge. Yet major vision-language models (VLMs) treat images as holistic entities and overlook fine-grained image details that are vital for disease diagnosis. Clinicians analyze images by utilizing their prior medical knowledge and identify anatomical structures as important region of interests (ROIs). Inspired from this human-centric workflow, we introduce Anatomy-VLM, a fine-grained, vision-language model that incorporates multi-scale information. First, we design a model encoder to localize key anatomical features from entire medical images. Second, these regions are enriched with structured knowledge for contextually-aware interpretation. Finally, the model encoder aligns multi-scale medical information to generate clinically-interpretable disease prediction. Anatomy-VLM achieves outstanding performance on both in- and out-of-distribution datasets. We also validate the performance of Anatomy-VLM on downstream image segmentation tasks, suggesting that its fine-grained alignment captures anatomical and pathology-related knowledge. Furthermore, the Anatomy-VLM's encoder facilitates zero-shot anatomy-wise interpretation, providing its strong expert-level clinical interpretation capabilities.

  • 4 authors
·
Nov 11

GTPBD: A Fine-Grained Global Terraced Parcel and Boundary Dataset

Agricultural parcels serve as basic units for conducting agricultural practices and applications, which is vital for land ownership registration, food security assessment, soil erosion monitoring, etc. However, existing agriculture parcel extraction studies only focus on mid-resolution mapping or regular plain farmlands while lacking representation of complex terraced terrains due to the demands of precision agriculture.In this paper, we introduce a more fine-grained terraced parcel dataset named GTPBD (Global Terraced Parcel and Boundary Dataset), which is the first fine-grained dataset covering major worldwide terraced regions with more than 200,000 complex terraced parcels with manual annotation. GTPBD comprises 47,537 high-resolution images with three-level labels, including pixel-level boundary labels, mask labels, and parcel labels. It covers seven major geographic zones in China and transcontinental climatic regions around the world.Compared to the existing datasets, the GTPBD dataset brings considerable challenges due to the: (1) terrain diversity; (2) complex and irregular parcel objects; and (3) multiple domain styles. Our proposed GTPBD dataset is suitable for four different tasks, including semantic segmentation, edge detection, terraced parcel extraction, and unsupervised domain adaptation (UDA) tasks.Accordingly, we benchmark the GTPBD dataset on eight semantic segmentation methods, four edge extraction methods, three parcel extraction methods, and five UDA methods, along with a multi-dimensional evaluation framework integrating pixel-level and object-level metrics. GTPBD fills a critical gap in terraced remote sensing research, providing a basic infrastructure for fine-grained agricultural terrain analysis and cross-scenario knowledge transfer.

  • 7 authors
·
Jul 19

Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects

Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios. However, the absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors. In this paper, we propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration. Building on the foundation of BLIP-2, Lyrics infuses local visual features extracted from a visual refiner that includes image tagging, object detection and semantic segmentation modules into the Querying Transformer, while on the text side, the language inputs equip the boundary boxes and tags derived from the visual refiner. We further introduce a two-stage training scheme, in which the pre-training stage bridges the modality gap through explicit and comprehensive vision-language alignment targets. During the instruction fine-tuning stage, we introduce semantic-aware visual feature extraction, a crucial method that enables the model to extract informative features from concrete visual objects. Our approach achieves strong performance on 13 held-out datasets across various vision-language tasks, and demonstrates promising multi-modal understanding and detailed depiction capabilities in real dialogue scenarios.

  • 9 authors
·
Dec 8, 2023

FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding

As CLIP's global alignment limits its ability to capture fine-grained details, recent efforts have focused on enhancing its region-text alignment. However, current remote sensing (RS)-specific CLIP variants still inherit this limited spatial awareness. We identify two key limitations behind this: (1) current RS image-text datasets generate global captions from object-level labels, leaving the original object-level supervision underutilized; (2) despite the success of region-text alignment methods in general domain, their direct application to RS data often leads to performance degradation. To address these, we construct the first multi-granularity RS image-text dataset, MGRS-200k, featuring rich object-level textual supervision for RS region-category alignment. We further investigate existing fine-grained CLIP tuning strategies and find that current explicit region-text alignment methods, whether in a direct or indirect way, underperform due to severe degradation of CLIP's semantic coherence. Building on these, we propose FarSLIP, a Fine-grained Aligned RS Language-Image Pretraining framework. Rather than the commonly used patch-to-CLS self-distillation, FarSLIP employs patch-to-patch distillation to align local and global visual cues, which improves feature discriminability while preserving semantic coherence. Additionally, to effectively utilize region-text supervision, it employs simple CLS token-based region-category alignment rather than explicit patch-level alignment, further enhancing spatial awareness. FarSLIP features improved fine-grained vision-language alignment in RS domain and sets a new state of the art not only on RS open-vocabulary semantic segmentation, but also on image-level tasks such as zero-shot classification and image-text retrieval. Our dataset, code, and models are available at https://github.com/NJU-LHRS/FarSLIP.

  • 7 authors
·
Nov 18

FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs

Dynamic Facial Expression Recognition (DFER) is crucial for understanding human behavior. However, current methods exhibit limited performance mainly due to the scarcity of high-quality data, the insufficient utilization of facial dynamics, and the ambiguity of expression semantics, etc. To this end, we propose a novel framework, named Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs (FineCLIPER), incorporating the following novel designs: 1) To better distinguish between similar facial expressions, we extend the class labels to textual descriptions from both positive and negative aspects, and obtain supervision by calculating the cross-modal similarity based on the CLIP model; 2) Our FineCLIPER adopts a hierarchical manner to effectively mine useful cues from DFE videos. Specifically, besides directly embedding video frames as input (low semantic level), we propose to extract the face segmentation masks and landmarks based on each frame (middle semantic level) and utilize the Multi-modal Large Language Model (MLLM) to further generate detailed descriptions of facial changes across frames with designed prompts (high semantic level). Additionally, we also adopt Parameter-Efficient Fine-Tuning (PEFT) to enable efficient adaptation of large pre-trained models (i.e., CLIP) for this task. Our FineCLIPER achieves SOTA performance on the DFEW, FERV39k, and MAFW datasets in both supervised and zero-shot settings with few tunable parameters. Project Page: https://haroldchen19.github.io/FineCLIPER-Page/

  • 5 authors
·
Jul 2, 2024

FineBio: A Fine-Grained Video Dataset of Biological Experiments with Hierarchical Annotation

In the development of science, accurate and reproducible documentation of the experimental process is crucial. Automatic recognition of the actions in experiments from videos would help experimenters by complementing the recording of experiments. Towards this goal, we propose FineBio, a new fine-grained video dataset of people performing biological experiments. The dataset consists of multi-view videos of 32 participants performing mock biological experiments with a total duration of 14.5 hours. One experiment forms a hierarchical structure, where a protocol consists of several steps, each further decomposed into a set of atomic operations. The uniqueness of biological experiments is that while they require strict adherence to steps described in each protocol, there is freedom in the order of atomic operations. We provide hierarchical annotation on protocols, steps, atomic operations, object locations, and their manipulation states, providing new challenges for structured activity understanding and hand-object interaction recognition. To find out challenges on activity understanding in biological experiments, we introduce baseline models and results on four different tasks, including (i) step segmentation, (ii) atomic operation detection (iii) object detection, and (iv) manipulated/affected object detection. Dataset and code are available from https://github.com/aistairc/FineBio.

  • 7 authors
·
Jan 31, 2024

MeDSLIP: Medical Dual-Stream Language-Image Pre-training for Fine-grained Alignment

Vision-language pre-training (VLP) models have shown significant advancements in the medical domain. Yet, most VLP models align raw reports to images at a very coarse level, without modeling fine-grained relationships between anatomical and pathological concepts outlined in reports and the corresponding semantic counterparts in images. To address this problem, we propose a Medical Dual-Stream Language-Image Pre-training (MeDSLIP) framework. Specifically, MeDSLIP establishes vision-language fine-grained alignments via disentangling visual and textual representations into anatomy-relevant and pathology-relevant streams. Moreover, a novel vision-language Prototypical Contr-astive Learning (ProtoCL) method is adopted in MeDSLIP to enhance the alignment within the anatomical and pathological streams. MeDSLIP further employs cross-stream Intra-image Contrastive Learning (ICL) to ensure the consistent coexistence of paired anatomical and pathological concepts within the same image. Such a cross-stream regularization encourages the model to exploit the synchrony between two streams for a more comprehensive representation learning. MeDSLIP is evaluated under zero-shot and supervised fine-tuning settings on three public datasets: NIH CXR14, RSNA Pneumonia, and SIIM-ACR Pneumothorax. Under these settings, MeDSLIP outperforms six leading CNN-based models on classification, grounding, and segmentation tasks.

  • 9 authors
·
Mar 15, 2024

Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT

Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models are available at http://www.pami.sjtu.edu.cn/News/56

  • 9 authors
·
Dec 10, 2020

Unsupervised domain adaptation for clinician pose estimation and instance segmentation in the operating room

The fine-grained localization of clinicians in the operating room (OR) is a key component to design the new generation of OR support systems. Computer vision models for person pixel-based segmentation and body-keypoints detection are needed to better understand the clinical activities and the spatial layout of the OR. This is challenging, not only because OR images are very different from traditional vision datasets, but also because data and annotations are hard to collect and generate in the OR due to privacy concerns. To address these concerns, we first study how joint person pose estimation and instance segmentation can be performed on low resolutions images with downsampling factors from 1x to 12x. Second, to address the domain shift and the lack of annotations, we propose a novel unsupervised domain adaptation method, called AdaptOR, to adapt a model from an in-the-wild labeled source domain to a statistically different unlabeled target domain. We propose to exploit explicit geometric constraints on the different augmentations of the unlabeled target domain image to generate accurate pseudo labels and use these pseudo labels to train the model on high- and low-resolution OR images in a self-training framework. Furthermore, we propose disentangled feature normalization to handle the statistically different source and target domain data. Extensive experimental results with detailed ablation studies on the two OR datasets MVOR+ and TUM-OR-test show the effectiveness of our approach against strongly constructed baselines, especially on the low-resolution privacy-preserving OR images. Finally, we show the generality of our method as a semi-supervised learning (SSL) method on the large-scale COCO dataset, where we achieve comparable results with as few as 1% of labeled supervision against a model trained with 100% labeled supervision.

  • 3 authors
·
Aug 26, 2021

Scalable and Domain-General Abstractive Proposition Segmentation

Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.

  • 5 authors
·
Jun 28, 2024

Exploring CLIP's Dense Knowledge for Weakly Supervised Semantic Segmentation

Weakly Supervised Semantic Segmentation (WSSS) with image-level labels aims to achieve pixel-level predictions using Class Activation Maps (CAMs). Recently, Contrastive Language-Image Pre-training (CLIP) has been introduced in WSSS. However, recent methods primarily focus on image-text alignment for CAM generation, while CLIP's potential in patch-text alignment remains unexplored. In this work, we propose ExCEL to explore CLIP's dense knowledge via a novel patch-text alignment paradigm for WSSS. Specifically, we propose Text Semantic Enrichment (TSE) and Visual Calibration (VC) modules to improve the dense alignment across both text and vision modalities. To make text embeddings semantically informative, our TSE module applies Large Language Models (LLMs) to build a dataset-wide knowledge base and enriches the text representations with an implicit attribute-hunting process. To mine fine-grained knowledge from visual features, our VC module first proposes Static Visual Calibration (SVC) to propagate fine-grained knowledge in a non-parametric manner. Then Learnable Visual Calibration (LVC) is further proposed to dynamically shift the frozen features towards distributions with diverse semantics. With these enhancements, ExCEL not only retains CLIP's training-free advantages but also significantly outperforms other state-of-the-art methods with much less training cost on PASCAL VOC and MS COCO.

  • 6 authors
·
Mar 25

Highly Accurate Dichotomous Image Segmentation

We present a systematic study on a new task called dichotomous image segmentation (DIS) , which aims to segment highly accurate objects from natural images. To this end, we collected the first large-scale DIS dataset, called DIS5K, which contains 5,470 high-resolution (e.g., 2K, 4K or larger) images covering camouflaged, salient, or meticulous objects in various backgrounds. DIS is annotated with extremely fine-grained labels. Besides, we introduce a simple intermediate supervision baseline (IS-Net) using both feature-level and mask-level guidance for DIS model training. IS-Net outperforms various cutting-edge baselines on the proposed DIS5K, making it a general self-learned supervision network that can facilitate future research in DIS. Further, we design a new metric called human correction efforts (HCE) which approximates the number of mouse clicking operations required to correct the false positives and false negatives. HCE is utilized to measure the gap between models and real-world applications and thus can complement existing metrics. Finally, we conduct the largest-scale benchmark, evaluating 16 representative segmentation models, providing a more insightful discussion regarding object complexities, and showing several potential applications (e.g., background removal, art design, 3D reconstruction). Hoping these efforts can open up promising directions for both academic and industries. Project page: https://xuebinqin.github.io/dis/index.html.

  • 6 authors
·
Mar 6, 2022

HER-Seg: Holistically Efficient Segmentation for High-Resolution Medical Images

High-resolution segmentation is critical for precise disease diagnosis by extracting fine-grained morphological details. Existing hierarchical encoder-decoder frameworks have demonstrated remarkable adaptability across diverse medical segmentation tasks. While beneficial, they usually require the huge computation and memory cost when handling large-size segmentation, which limits their applications in foundation model building and real-world clinical scenarios. To address this limitation, we propose a holistically efficient framework for high-resolution medical image segmentation, called HER-Seg. Specifically, we first devise a computation-efficient image encoder (CE-Encoder) to model long-range dependencies with linear complexity while maintaining sufficient representations. In particular, we introduce the dual-gated linear attention (DLA) mechanism to perform cascaded token filtering, selectively retaining important tokens while ignoring irrelevant ones to enhance attention computation efficiency. Then, we introduce a memory-efficient mask decoder (ME-Decoder) to eliminate the demand for the hierarchical structure by leveraging cross-scale segmentation decoding. Extensive experiments reveal that HER-Seg outperforms state-of-the-arts in high-resolution medical 2D, 3D and video segmentation tasks. In particular, our HER-Seg requires only 0.59GB training GPU memory and 9.39G inference FLOPs per 1024times1024 image, demonstrating superior memory and computation efficiency. The code is available at https://github.com/xq141839/HER-Seg.

  • 9 authors
·
Apr 8

MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner for Open-World Semantic Segmentation

Recently, semantic segmentation models trained with image-level text supervision have shown promising results in challenging open-world scenarios. However, these models still face difficulties in learning fine-grained semantic alignment at the pixel level and predicting accurate object masks. To address this issue, we propose MixReorg, a novel and straightforward pre-training paradigm for semantic segmentation that enhances a model's ability to reorganize patches mixed across images, exploring both local visual relevance and global semantic coherence. Our approach involves generating fine-grained patch-text pairs data by mixing image patches while preserving the correspondence between patches and text. The model is then trained to minimize the segmentation loss of the mixed images and the two contrastive losses of the original and restored features. With MixReorg as a mask learner, conventional text-supervised semantic segmentation models can achieve highly generalizable pixel-semantic alignment ability, which is crucial for open-world segmentation. After training with large-scale image-text data, MixReorg models can be applied directly to segment visual objects of arbitrary categories, without the need for further fine-tuning. Our proposed framework demonstrates strong performance on popular zero-shot semantic segmentation benchmarks, outperforming GroupViT by significant margins of 5.0%, 6.2%, 2.5%, and 3.4% mIoU on PASCAL VOC2012, PASCAL Context, MS COCO, and ADE20K, respectively.

  • 8 authors
·
Aug 9, 2023

RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models

Referring Remote Sensing Image Segmentation provides a flexible and fine-grained framework for remote sensing scene analysis via vision-language collaborative interpretation. Current approaches predominantly utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding. These methods demonstrate significant limitations in managing complex semantic relationships and achieving precise cross-modal alignment, largely due to their coupled processing mechanism that conflates target localization with boundary delineation. This architectural coupling amplifies error propagation under semantic ambiguity while restricting model generalizability and interpretability. To address these issues, we propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework: coarse localization followed by fine segmentation. RSRefSeg 2 integrates CLIP's cross-modal alignment strength with SAM's segmentation generalizability through strategic foundation model collaboration. Specifically, CLIP is employed as the dual-modal encoder to activate target features within its pre-aligned semantic space and generate localization prompts. To mitigate CLIP's misactivation challenges in multi-entity scenarios described by referring texts, a cascaded second-order prompter is devised, which enhances precision through implicit reasoning via decomposition of text embeddings into complementary semantic subspaces. These optimized semantic prompts subsequently direct the SAM to generate pixel-level refined masks, thereby completing the semantic transmission pipeline. Extensive experiments (RefSegRS, RRSIS-D, and RISBench) demonstrate that RSRefSeg 2 surpasses contemporary methods in segmentation accuracy (+~3% gIoU) and complex semantic interpretation. Code is available at: https://github.com/KyanChen/RSRefSeg2.

  • 6 authors
·
Jul 8

SGS-3D: High-Fidelity 3D Instance Segmentation via Reliable Semantic Mask Splitting and Growing

Accurate 3D instance segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D instance segmentation based on 2D-to-3D lifting approaches struggle to produce precise instance-level segmentation, due to accumulated errors introduced during the lifting process from ambiguous semantic guidance and insufficient depth constraints. To tackle these challenges, we propose splitting and growing reliable semantic mask for high-fidelity 3D instance segmentation (SGS-3D), a novel "split-then-grow" framework that first purifies and splits ambiguous lifted masks using geometric primitives, and then grows them into complete instances within the scene. Unlike existing approaches that directly rely on raw lifted masks and sacrifice segmentation accuracy, SGS-3D serves as a training-free refinement method that jointly fuses semantic and geometric information, enabling effective cooperation between the two levels of representation. Specifically, for semantic guidance, we introduce a mask filtering strategy that leverages the co-occurrence of 3D geometry primitives to identify and remove ambiguous masks, thereby ensuring more reliable semantic consistency with the 3D object instances. For the geometric refinement, we construct fine-grained object instances by exploiting both spatial continuity and high-level features, particularly in the case of semantic ambiguity between distinct objects. Experimental results on ScanNet200, ScanNet++, and KITTI-360 demonstrate that SGS-3D substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained models, yielding high-fidelity object instances while maintaining strong generalization across diverse indoor and outdoor environments. Code is available in the supplementary materials.

  • 6 authors
·
Sep 5

RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation

Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.

  • 6 authors
·
Jul 28

UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning

Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.

  • 7 authors
·
Sep 22 3

DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy

Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.

  • 7 authors
·
Jul 2

LVLM_CSP: Accelerating Large Vision Language Models via Clustering, Scattering, and Pruning for Reasoning Segmentation

Large Vision Language Models (LVLMs) have been widely adopted to guide vision foundation models in performing reasoning segmentation tasks, achieving impressive performance. However, the substantial computational overhead associated with LVLMs presents a new challenge. The primary source of this computational cost arises from processing hundreds of image tokens. Therefore, an effective strategy to mitigate such overhead is to reduce the number of image tokens, a process known as image token pruning. Previous studies on image token pruning for LVLMs have primarily focused on high level visual understanding tasks, such as visual question answering and image captioning. In contrast, guiding vision foundation models to generate accurate visual masks based on textual queries demands precise semantic and spatial reasoning capabilities. Consequently, pruning methods must carefully control individual image tokens throughout the LVLM reasoning process. Our empirical analysis reveals that existing methods struggle to adequately balance reductions in computational overhead with the necessity to maintain high segmentation accuracy. In this work, we propose LVLM_CSP, a novel training free visual token pruning method specifically designed for LVLM based reasoning segmentation tasks. LVLM_CSP consists of three stages: clustering, scattering, and pruning. Initially, the LVLM performs coarse-grained visual reasoning using a subset of selected image tokens. Next, fine grained reasoning is conducted, and finally, most visual tokens are pruned in the last stage. Extensive experiments demonstrate that LVLM_CSP achieves a 65% reduction in image token inference FLOPs with virtually no accuracy degradation, and a 70% reduction with only a minor 1% drop in accuracy on the 7B LVLM.

  • 7 authors
·
Apr 15

A Large-Scale Benchmark for Food Image Segmentation

Food image segmentation is a critical and indispensible task for developing health-related applications such as estimating food calories and nutrients. Existing food image segmentation models are underperforming due to two reasons: (1) there is a lack of high quality food image datasets with fine-grained ingredient labels and pixel-wise location masks -- the existing datasets either carry coarse ingredient labels or are small in size; and (2) the complex appearance of food makes it difficult to localize and recognize ingredients in food images, e.g., the ingredients may overlap one another in the same image, and the identical ingredient may appear distinctly in different food images. In this work, we build a new food image dataset FoodSeg103 (and its extension FoodSeg154) containing 9,490 images. We annotate these images with 154 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks. In addition, we propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge. In experiments, we use three popular semantic segmentation methods (i.e., Dilated Convolution based, Feature Pyramid based, and Vision Transformer based) as baselines, and evaluate them as well as ReLeM on our new datasets. We believe that the FoodSeg103 (and its extension FoodSeg154) and the pre-trained models using ReLeM can serve as a benchmark to facilitate future works on fine-grained food image understanding. We make all these datasets and methods public at https://xiongweiwu.github.io/foodseg103.html.

  • 6 authors
·
May 11, 2021

Can General-Purpose Omnimodels Compete with Specialists? A Case Study in Medical Image Segmentation

The emergence of powerful, general-purpose omnimodels capable of processing diverse data modalities has raised a critical question: can these ``jack-of-all-trades'' systems perform on par with highly specialized models in knowledge-intensive domains? This work investigates this question within the high-stakes field of medical image segmentation. We conduct a comparative study analyzing the zero-shot performance of a state-of-the-art omnimodel (Gemini 2.5 Pro, the ``Nano Banana'' model) against domain-specific deep learning models on three distinct tasks: polyp (endoscopy), retinal vessel (fundus), and breast tumor segmentation (ultrasound). Our study focuses on performance at the extremes by curating subsets of the ``easiest'' and ``hardest'' cases based on the specialist models' accuracy. Our findings reveal a nuanced and task-dependent landscape. For polyp and breast tumor segmentation, specialist models excel on easy samples, but the omnimodel demonstrates greater robustness on hard samples where specialists fail catastrophically. Conversely, for the fine-grained task of retinal vessel segmentation, the specialist model maintains superior performance across both easy and hard cases. Intriguingly, qualitative analysis suggests omnimodels may possess higher sensitivity, identifying subtle anatomical features missed by human annotators. Our results indicate that while current omnimodels are not yet a universal replacement for specialists, their unique strengths suggest a potential complementary role with specialist models, particularly in enhancing robustness on challenging edge cases.

  • 3 authors
·
Aug 31

FOCUS: Unified Vision-Language Modeling for Interactive Editing Driven by Referential Segmentation

Recent Large Vision Language Models (LVLMs) demonstrate promising capabilities in unifying visual understanding and generative modeling, enabling both accurate content understanding and flexible editing. However, current approaches treat "what to see" and "how to edit" separately: they either perform isolated object segmentation or utilize segmentation masks merely as conditional prompts for local edit generation tasks, often relying on multiple disjointed models. To bridge these gaps, we introduce FOCUS, a unified LVLM that integrates segmentation-aware perception and controllable object-centric generation within an end-to-end framework. FOCUS employs a dual-branch visual encoder to simultaneously capture global semantic context and fine-grained spatial details. In addition, we leverage a MoVQGAN-based visual tokenizer to produce discrete visual tokens that enhance generation quality. To enable accurate and controllable image editing, we propose a progressive multi-stage training pipeline, where segmentation masks are jointly optimized and used as spatial condition prompts to guide the diffusion decoder. This strategy aligns visual encoding, segmentation, and generation modules, effectively bridging segmentation-aware perception with fine-grained visual synthesis. Extensive experiments across three core tasks, including multimodal understanding, referring segmentation accuracy, and controllable image generation, demonstrate that FOCUS achieves strong performance by jointly optimizing visual perception and generative capabilities.

  • 9 authors
·
Jun 20

InterRVOS: Interaction-aware Referring Video Object Segmentation

Referring video object segmentation aims to segment the object in a video corresponding to a given natural language expression. While prior works have explored various referring scenarios, including motion-centric or multi-instance expressions, most approaches still focus on localizing a single target object in isolation. However, in comprehensive video understanding, an object's role is often defined by its interactions with other entities, which are largely overlooked in existing datasets and models. In this work, we introduce Interaction-aware referring video object sgementation (InterRVOS), a new task that requires segmenting both actor and target entities involved in an interaction. Each interactoin is described through a pair of complementary expressions from different semantic perspectives, enabling fine-grained modeling of inter-object relationships. To tackle this task, we propose InterRVOS-8K, the large-scale and automatically constructed dataset containing diverse interaction-aware expressions with corresponding masks, including challenging cases such as motion-only multi-instance expressions. We also present a baseline architecture, ReVIOSa, designed to handle actor-target segmentation from a single expression, achieving strong performance in both standard and interaction-focused settings. Furthermore, we introduce an actor-target-aware evalaution setting that enables a more targeted assessment of interaction understanding. Experimental results demonstrate that our approach outperforms prior methods in modeling complex object interactions for referring video object segmentation task, establishing a strong foundation for future research in interaction-centric video understanding. Our project page is available at https://cvlab-kaist.github.io/InterRVOS.

  • 3 authors
·
Jun 2

Taming Modality Entanglement in Continual Audio-Visual Segmentation

Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.

  • 8 authors
·
Oct 20 1

Deforming Videos to Masks: Flow Matching for Referring Video Segmentation

Referring Video Object Segmentation (RVOS) requires segmenting specific objects in a video guided by a natural language description. The core challenge of RVOS is to anchor abstract linguistic concepts onto a specific set of pixels and continuously segment them through the complex dynamics of a video. Faced with this difficulty, prior work has often decomposed the task into a pragmatic `locate-then-segment' pipeline. However, this cascaded design creates an information bottleneck by simplifying semantics into coarse geometric prompts (e.g, point), and struggles to maintain temporal consistency as the segmenting process is often decoupled from the initial language grounding. To overcome these fundamental limitations, we propose FlowRVS, a novel framework that reconceptualizes RVOS as a conditional continuous flow problem. This allows us to harness the inherent strengths of pretrained T2V models, fine-grained pixel control, text-video semantic alignment, and temporal coherence. Instead of conventional generating from noise to mask or directly predicting mask, we reformulate the task by learning a direct, language-guided deformation from a video's holistic representation to its target mask. Our one-stage, generative approach achieves new state-of-the-art results across all major RVOS benchmarks. Specifically, achieving a J&F of 51.1 in MeViS (+1.6 over prior SOTA) and 73.3 in the zero shot Ref-DAVIS17 (+2.7), demonstrating the significant potential of modeling video understanding tasks as continuous deformation processes.

Seg2Any: Open-set Segmentation-Mask-to-Image Generation with Precise Shape and Semantic Control

Despite recent advances in diffusion models, top-tier text-to-image (T2I) models still struggle to achieve precise spatial layout control, i.e. accurately generating entities with specified attributes and locations. Segmentation-mask-to-image (S2I) generation has emerged as a promising solution by incorporating pixel-level spatial guidance and regional text prompts. However, existing S2I methods fail to simultaneously ensure semantic consistency and shape consistency. To address these challenges, we propose Seg2Any, a novel S2I framework built upon advanced multimodal diffusion transformers (e.g. FLUX). First, to achieve both semantic and shape consistency, we decouple segmentation mask conditions into regional semantic and high-frequency shape components. The regional semantic condition is introduced by a Semantic Alignment Attention Mask, ensuring that generated entities adhere to their assigned text prompts. The high-frequency shape condition, representing entity boundaries, is encoded as an Entity Contour Map and then introduced as an additional modality via multi-modal attention to guide image spatial structure. Second, to prevent attribute leakage across entities in multi-entity scenarios, we introduce an Attribute Isolation Attention Mask mechanism, which constrains each entity's image tokens to attend exclusively to themselves during image self-attention. To support open-set S2I generation, we construct SACap-1M, a large-scale dataset containing 1 million images with 5.9 million segmented entities and detailed regional captions, along with a SACap-Eval benchmark for comprehensive S2I evaluation. Extensive experiments demonstrate that Seg2Any achieves state-of-the-art performance on both open-set and closed-set S2I benchmarks, particularly in fine-grained spatial and attribute control of entities.

  • 5 authors
·
May 31

OpenUrban3D: Annotation-Free Open-Vocabulary Semantic Segmentation of Large-Scale Urban Point Clouds

Open-vocabulary semantic segmentation enables models to recognize and segment objects from arbitrary natural language descriptions, offering the flexibility to handle novel, fine-grained, or functionally defined categories beyond fixed label sets. While this capability is crucial for large-scale urban point clouds that support applications such as digital twins, smart city management, and urban analytics, it remains largely unexplored in this domain. The main obstacles are the frequent absence of high-quality, well-aligned multi-view imagery in large-scale urban point cloud datasets and the poor generalization of existing three-dimensional (3D) segmentation pipelines across diverse urban environments with substantial variation in geometry, scale, and appearance. To address these challenges, we present OpenUrban3D, the first 3D open-vocabulary semantic segmentation framework for large-scale urban scenes that operates without aligned multi-view images, pre-trained point cloud segmentation networks, or manual annotations. Our approach generates robust semantic features directly from raw point clouds through multi-view, multi-granularity rendering, mask-level vision-language feature extraction, and sample-balanced fusion, followed by distillation into a 3D backbone model. This design enables zero-shot segmentation for arbitrary text queries while capturing both semantic richness and geometric priors. Extensive experiments on large-scale urban benchmarks, including SensatUrban and SUM, show that OpenUrban3D achieves significant improvements in both segmentation accuracy and cross-scene generalization over existing methods, demonstrating its potential as a flexible and scalable solution for 3D urban scene understanding.

  • 4 authors
·
Sep 13

Reinforcing Video Reasoning Segmentation to Think Before It Segments

Video reasoning segmentation (VRS) endeavors to delineate referred objects in videos guided by implicit instructions that encapsulate human intent and temporal logic. Previous approaches leverage large vision language models (LVLMs) to encode object semantics into <SEG> tokens for mask prediction. However, this paradigm suffers from limited interpretability during inference and suboptimal performance due to inadequate spatiotemporal reasoning. Drawing inspiration from seminal breakthroughs in reinforcement learning, we introduce Veason-R1, a specialized LVLM for VRS that emphasizes structured reasoning in segmentation. Veason-R1 is trained through Group Relative Policy Optimization (GRPO) augmented with Chain-of-Thought (CoT) initialization. To begin with, we curate high-quality CoT training data to instill structured reasoning trajectories, bridging video-level semantics and frame-level spatial grounding, yielding the supervised fine-tuned model Veason-SFT. Subsequently, GRPO fine-tuning encourages efficient exploration of the reasoning space by optimizing reasoning chains. To this end, we incorporate a holistic reward mechanism that synergistically enhances spatial alignment and temporal consistency, bolstering keyframe localization and fine-grained grounding. Comprehensive empirical evaluations demonstrate that Veason-R1 achieves state-of-the-art performance on multiple benchmarks, surpassing prior art by significant margins (e.g., +1.3 J &F in ReVOS and +10.0 J &F in ReasonVOS), while exhibiting robustness to hallucinations (+8.8 R). Our code and model weights will be available at Veason-R1.

  • 6 authors
·
Aug 15

Functionality understanding and segmentation in 3D scenes

Understanding functionalities in 3D scenes involves interpreting natural language descriptions to locate functional interactive objects, such as handles and buttons, in a 3D environment. Functionality understanding is highly challenging, as it requires both world knowledge to interpret language and spatial perception to identify fine-grained objects. For example, given a task like 'turn on the ceiling light', an embodied AI agent must infer that it needs to locate the light switch, even though the switch is not explicitly mentioned in the task description. To date, no dedicated methods have been developed for this problem. In this paper, we introduce Fun3DU, the first approach designed for functionality understanding in 3D scenes. Fun3DU uses a language model to parse the task description through Chain-of-Thought reasoning in order to identify the object of interest. The identified object is segmented across multiple views of the captured scene by using a vision and language model. The segmentation results from each view are lifted in 3D and aggregated into the point cloud using geometric information. Fun3DU is training-free, relying entirely on pre-trained models. We evaluate Fun3DU on SceneFun3D, the most recent and only dataset to benchmark this task, which comprises over 3000 task descriptions on 230 scenes. Our method significantly outperforms state-of-the-art open-vocabulary 3D segmentation approaches. Project page: https://jcorsetti.github.io/fun3du

  • 5 authors
·
Nov 25, 2024

LESS: Label-Efficient and Single-Stage Referring 3D Segmentation

Referring 3D Segmentation is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query. Previous works perform a two-stage paradigm, first conducting language-agnostic instance segmentation then matching with given text query. However, the semantic concepts from text query and visual cues are separately interacted during the training, and both instance and semantic labels for each object are required, which is time consuming and human-labor intensive. To mitigate these issues, we propose a novel Referring 3D Segmentation pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask. Specifically, we design a Point-Word Cross-Modal Alignment module for aligning the fine-grained features of points and textual embedding. Query Mask Predictor module and Query-Sentence Alignment module are introduced for coarse-grained alignment between masks and query. Furthermore, we propose an area regularization loss, which coarsely reduces irrelevant background predictions on a large scale. Besides, a point-to-point contrastive loss is proposed concentrating on distinguishing points with subtly similar features. Through extensive experiments, we achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels. Code is available at https://github.com/mellody11/LESS.

  • 7 authors
·
Oct 17, 2024

Meta-Chunking: Learning Efficient Text Segmentation via Logical Perception

Retrieval-Augmented Generation (RAG), while serving as a viable complement to large language models (LLMs), often overlooks the crucial aspect of text chunking within its pipeline, which impacts the quality of knowledge-intensive tasks. This paper introduces the concept of Meta-Chunking, which refers to a granularity between sentences and paragraphs, consisting of a collection of sentences within a paragraph that have deep linguistic logical connections. To implement Meta-Chunking, we designed two strategies based on LLMs: Margin Sampling Chunking and Perplexity Chunking. The former employs LLMs to perform binary classification on whether consecutive sentences need to be segmented, making decisions based on the probability difference obtained from margin sampling. The latter precisely identifies text chunk boundaries by analyzing the characteristics of perplexity distribution. Additionally, considering the inherent complexity of different texts, we propose a strategy that combines Meta-Chunking with dynamic merging to achieve a balance between fine-grained and coarse-grained text chunking. Experiments conducted on eleven datasets demonstrate that Meta-Chunking can more efficiently improve the performance of single-hop and multi-hop question answering based on RAG. For instance, on the 2WikiMultihopQA dataset, it outperforms similarity chunking by 1.32 while only consuming 45.8% of the time. Our code is available at https://github.com/IAAR-Shanghai/Meta-Chunking.

  • 7 authors
·
Oct 16, 2024 4

Talking to DINO: Bridging Self-Supervised Vision Backbones with Language for Open-Vocabulary Segmentation

Open-Vocabulary Segmentation (OVS) aims at segmenting images from free-form textual concepts without predefined training classes. While existing vision-language models such as CLIP can generate segmentation masks by leveraging coarse spatial information from Vision Transformers, they face challenges in spatial localization due to their global alignment of image and text features. Conversely, self-supervised visual models like DINO excel in fine-grained visual encoding but lack integration with language. To bridge this gap, we present Talk2DINO, a novel hybrid approach that combines the spatial accuracy of DINOv2 with the language understanding of CLIP. Our approach aligns the textual embeddings of CLIP to the patch-level features of DINOv2 through a learned mapping function without the need to fine-tune the underlying backbones. At training time, we exploit the attention maps of DINOv2 to selectively align local visual patches with textual embeddings. We show that the powerful semantic and localization abilities of Talk2DINO can enhance the segmentation process, resulting in more natural and less noisy segmentations, and that our approach can also effectively distinguish foreground objects from the background. Experimental results demonstrate that Talk2DINO achieves state-of-the-art performance across several unsupervised OVS benchmarks. Source code and models are publicly available at: https://lorebianchi98.github.io/Talk2DINO/.

  • 8 authors
·
Nov 28, 2024

Mamba as a Bridge: Where Vision Foundation Models Meet Vision Language Models for Domain-Generalized Semantic Segmentation

Vision Foundation Models (VFMs) and Vision-Language Models (VLMs) have gained traction in Domain Generalized Semantic Segmentation (DGSS) due to their strong generalization capabilities. However, existing DGSS methods often rely exclusively on either VFMs or VLMs, overlooking their complementary strengths. VFMs (e.g., DINOv2) excel at capturing fine-grained features, while VLMs (e.g., CLIP) provide robust text alignment but struggle with coarse granularity. Despite their complementary strengths, effectively integrating VFMs and VLMs with attention mechanisms is challenging, as the increased patch tokens complicate long-sequence modeling. To address this, we propose MFuser, a novel Mamba-based fusion framework that efficiently combines the strengths of VFMs and VLMs while maintaining linear scalability in sequence length. MFuser consists of two key components: MVFuser, which acts as a co-adapter to jointly fine-tune the two models by capturing both sequential and spatial dynamics; and MTEnhancer, a hybrid attention-Mamba module that refines text embeddings by incorporating image priors. Our approach achieves precise feature locality and strong text alignment without incurring significant computational overhead. Extensive experiments demonstrate that MFuser significantly outperforms state-of-the-art DGSS methods, achieving 68.20 mIoU on synthetic-to-real and 71.87 mIoU on real-to-real benchmarks. The code is available at https://github.com/devinxzhang/MFuser.

  • 2 authors
·
Apr 4 2

PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data

Segmenting 3D objects into parts is a long-standing challenge in computer vision. To overcome taxonomy constraints and generalize to unseen 3D objects, recent works turn to open-world part segmentation. These approaches typically transfer supervision from 2D foundation models, such as SAM, by lifting multi-view masks into 3D. However, this indirect paradigm fails to capture intrinsic geometry, leading to surface-only understanding, uncontrolled decomposition, and limited generalization. We present PartSAM, the first promptable part segmentation model trained natively on large-scale 3D data. Following the design philosophy of SAM, PartSAM employs an encoder-decoder architecture in which a triplane-based dual-branch encoder produces spatially structured tokens for scalable part-aware representation learning. To enable large-scale supervision, we further introduce a model-in-the-loop annotation pipeline that curates over five million 3D shape-part pairs from online assets, providing diverse and fine-grained labels. This combination of scalable architecture and diverse 3D data yields emergent open-world capabilities: with a single prompt, PartSAM achieves highly accurate part identification, and in a Segment-Every-Part mode, it automatically decomposes shapes into both surface and internal structures. Extensive experiments show that PartSAM outperforms state-of-the-art methods by large margins across multiple benchmarks, marking a decisive step toward foundation models for 3D part understanding.

  • 9 authors
·
Sep 26

Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities

Image modality is not perfect as it often fails in certain conditions, e.g., night and fast motion. This significantly limits the robustness and versatility of existing multi-modal (i.e., Image+X) semantic segmentation methods when confronting modality absence or failure, as often occurred in real-world applications. Inspired by the open-world learning capability of multi-modal vision-language models (MVLMs), we explore a new direction in learning the modality-agnostic representation via knowledge distillation (KD) from MVLMs. Intuitively, we propose Any2Seg, a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions. Specifically, we first introduce a novel language-guided semantic correlation distillation (LSCD) module to transfer both inter-modal and intra-modal semantic knowledge in the embedding space from MVLMs, e.g., LanguageBind. This enables us to minimize the modality gap and alleviate semantic ambiguity to combine any modalities in any visual conditions. Then, we introduce a modality-agnostic feature fusion (MFF) module that reweights the multi-modal features based on the inter-modal correlation and selects the fine-grained feature. This way, our Any2Seg finally yields an optimal modality-agnostic representation. Extensive experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting (+3.54 mIoU) and excels in the challenging modality-incomplete setting(+19.79 mIoU).

  • 3 authors
·
Jul 15, 2024

Vocabulary-free Image Classification and Semantic Segmentation

Large vision-language models revolutionized image classification and semantic segmentation paradigms. However, they typically assume a pre-defined set of categories, or vocabulary, at test time for composing textual prompts. This assumption is impractical in scenarios with unknown or evolving semantic context. Here, we address this issue and introduce the Vocabulary-free Image Classification (VIC) task, which aims to assign a class from an unconstrained language-induced semantic space to an input image without needing a known vocabulary. VIC is challenging due to the vastness of the semantic space, which contains millions of concepts, including fine-grained categories. To address VIC, we propose Category Search from External Databases (CaSED), a training-free method that leverages a pre-trained vision-language model and an external database. CaSED first extracts the set of candidate categories from the most semantically similar captions in the database and then assigns the image to the best-matching candidate category according to the same vision-language model. Furthermore, we demonstrate that CaSED can be applied locally to generate a coarse segmentation mask that classifies image regions, introducing the task of Vocabulary-free Semantic Segmentation. CaSED and its variants outperform other more complex vision-language models, on classification and semantic segmentation benchmarks, while using much fewer parameters.

  • 6 authors
·
Apr 16, 2024

WiCo: Win-win Cooperation of Bottom-up and Top-down Referring Image Segmentation

The top-down and bottom-up methods are two mainstreams of referring segmentation, while both methods have their own intrinsic weaknesses. Top-down methods are chiefly disturbed by Polar Negative (PN) errors owing to the lack of fine-grained cross-modal alignment. Bottom-up methods are mainly perturbed by Inferior Positive (IP) errors due to the lack of prior object information. Nevertheless, we discover that two types of methods are highly complementary for restraining respective weaknesses but the direct average combination leads to harmful interference. In this context, we build Win-win Cooperation (WiCo) to exploit complementary nature of two types of methods on both interaction and integration aspects for achieving a win-win improvement. For the interaction aspect, Complementary Feature Interaction (CFI) provides fine-grained information to top-down branch and introduces prior object information to bottom-up branch for complementary feature enhancement. For the integration aspect, Gaussian Scoring Integration (GSI) models the gaussian performance distributions of two branches and weightedly integrates results by sampling confident scores from the distributions. With our WiCo, several prominent top-down and bottom-up combinations achieve remarkable improvements on three common datasets with reasonable extra costs, which justifies effectiveness and generality of our method.

  • 8 authors
·
Jun 19, 2023

Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation

Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.

  • 8 authors
·
Aug 3, 2023

Open-world Semantic Segmentation via Contrasting and Clustering Vision-Language Embedding

To bridge the gap between supervised semantic segmentation and real-world applications that acquires one model to recognize arbitrary new concepts, recent zero-shot segmentation attracts a lot of attention by exploring the relationships between unseen and seen object categories, yet requiring large amounts of densely-annotated data with diverse base classes. In this paper, we propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations, by purely exploiting the image-caption data that naturally exist on the Internet. Our method, Vision-language-driven Semantic Segmentation (ViL-Seg), employs an image and a text encoder to generate visual and text embeddings for the image-caption data, with two core components that endow its segmentation ability: First, the image encoder is jointly trained with a vision-based contrasting and a cross-modal contrasting, which encourage the visual embeddings to preserve both fine-grained semantics and high-level category information that are crucial for the segmentation task. Furthermore, an online clustering head is devised over the image encoder, which allows to dynamically segment the visual embeddings into distinct semantic groups such that they can be classified by comparing with various text embeddings to complete our segmentation pipeline. Experiments show that without using any data with dense annotations, our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.

  • 6 authors
·
Jul 18, 2022

Unleashing Hierarchical Reasoning: An LLM-Driven Framework for Training-Free Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment an object of interest throughout a video based on a language description. The prominent challenge lies in aligning static text with dynamic visual content, particularly when objects exhibiting similar appearances with inconsistent motion and poses. However, current methods often rely on a holistic visual-language fusion that struggles with complex, compositional descriptions. In this paper, we propose PARSE-VOS, a novel, training-free framework powered by Large Language Models (LLMs), for a hierarchical, coarse-to-fine reasoning across text and video domains. Our approach begins by parsing the natural language query into structured semantic commands. Next, we introduce a spatio-temporal grounding module that generates all candidate trajectories for all potential target objects, guided by the parsed semantics. Finally, a hierarchical identification module select the correct target through a two-stage reasoning process: it first performs coarse-grained motion reasoning with an LLM to narrow down candidates; if ambiguity remains, a fine-grained pose verification stage is conditionally triggered to disambiguate. The final output is an accurate segmentation mask for the target object. PARSE-VOS achieved state-of-the-art performance on three major benchmarks: Ref-YouTube-VOS, Ref-DAVIS17, and MeViS.

  • 8 authors
·
Sep 6

RISurConv: Rotation Invariant Surface Attention-Augmented Convolutions for 3D Point Cloud Classification and Segmentation

Despite the progress on 3D point cloud deep learning, most prior works focus on learning features that are invariant to translation and point permutation, and very limited efforts have been devoted for rotation invariant property. Several recent studies achieve rotation invariance at the cost of lower accuracies. In this work, we close this gap by proposing a novel yet effective rotation invariant architecture for 3D point cloud classification and segmentation. Instead of traditional pointwise operations, we construct local triangle surfaces to capture more detailed surface structure, based on which we can extract highly expressive rotation invariant surface properties which are then integrated into an attention-augmented convolution operator named RISurConv to generate refined attention features via self-attention layers. Based on RISurConv we build an effective neural network for 3D point cloud analysis that is invariant to arbitrary rotations while maintaining high accuracy. We verify the performance on various benchmarks with supreme results obtained surpassing the previous state-of-the-art by a large margin. We achieve an overall accuracy of 96.0% (+4.7%) on ModelNet40, 93.1% (+12.8%) on ScanObjectNN, and class accuracies of 91.5% (+3.6%), 82.7% (+5.1%), and 78.5% (+9.2%) on the three categories of the FG3D dataset for the fine-grained classification task. Additionally, we achieve 81.5% (+1.0%) mIoU on ShapeNet for the segmentation task. Code is available here: https://github.com/cszyzhang/RISurConv

  • 3 authors
·
Aug 12, 2024

SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation

In recent years, transformer-based models have exhibited considerable potential in point cloud instance segmentation. Despite the promising performance achieved by existing methods, they encounter challenges such as instance query initialization problems and excessive reliance on stacked layers, rendering them incompatible with large-scale 3D scenes. This paper introduces a novel method, named SGIFormer, for 3D instance segmentation, which is composed of the Semantic-guided Mix Query (SMQ) initialization and the Geometric-enhanced Interleaving Transformer (GIT) decoder. Specifically, the principle of our SMQ initialization scheme is to leverage the predicted voxel-wise semantic information to implicitly generate the scene-aware query, yielding adequate scene prior and compensating for the learnable query set. Subsequently, we feed the formed overall query into our GIT decoder to alternately refine instance query and global scene features for further capturing fine-grained information and reducing complex design intricacies simultaneously. To emphasize geometric property, we consider bias estimation as an auxiliary task and progressively integrate shifted point coordinates embedding to reinforce instance localization. SGIFormer attains state-of-the-art performance on ScanNet V2, ScanNet200 datasets, and the challenging high-fidelity ScanNet++ benchmark, striking a balance between accuracy and efficiency. The code, weights, and demo videos are publicly available at https://rayyoh.github.io/sgiformer.

  • 4 authors
·
Jul 16, 2024

CATR: Combinatorial-Dependence Audio-Queried Transformer for Audio-Visual Video Segmentation

Audio-visual video segmentation~(AVVS) aims to generate pixel-level maps of sound-producing objects within image frames and ensure the maps faithfully adhere to the given audio, such as identifying and segmenting a singing person in a video. However, existing methods exhibit two limitations: 1) they address video temporal features and audio-visual interactive features separately, disregarding the inherent spatial-temporal dependence of combined audio and video, and 2) they inadequately introduce audio constraints and object-level information during the decoding stage, resulting in segmentation outcomes that fail to comply with audio directives. To tackle these issues, we propose a decoupled audio-video transformer that combines audio and video features from their respective temporal and spatial dimensions, capturing their combined dependence. To optimize memory consumption, we design a block, which, when stacked, enables capturing audio-visual fine-grained combinatorial-dependence in a memory-efficient manner. Additionally, we introduce audio-constrained queries during the decoding phase. These queries contain rich object-level information, ensuring the decoded mask adheres to the sounds. Experimental results confirm our approach's effectiveness, with our framework achieving a new SOTA performance on all three datasets using two backbones. The code is available at https://github.com/aspirinone/CATR.github.io

  • 5 authors
·
Sep 18, 2023