new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

Code Agent can be an End-to-end System Hacker: Benchmarking Real-world Threats of Computer-use Agent

Computer-use agent (CUA) frameworks, powered by large language models (LLMs) or multimodal LLMs (MLLMs), are rapidly maturing as assistants that can perceive context, reason, and act directly within software environments. Among their most critical applications is operating system (OS) control. As CUAs in the OS domain become increasingly embedded in daily operations, it is imperative to examine their real-world security implications, specifically whether CUAs can be misused to perform realistic, security-relevant attacks. Existing works exhibit four major limitations: Missing attacker-knowledge model on tactics, techniques, and procedures (TTP), Incomplete coverage for end-to-end kill chains, unrealistic environment without multi-host and encrypted user credentials, and unreliable judgment dependent on LLM-as-a-Judge. To address these gaps, we propose AdvCUA, the first benchmark aligned with real-world TTPs in MITRE ATT&CK Enterprise Matrix, which comprises 140 tasks, including 40 direct malicious tasks, 74 TTP-based malicious tasks, and 26 end-to-end kill chains, systematically evaluates CUAs under a realistic enterprise OS security threat in a multi-host environment sandbox by hard-coded evaluation. We evaluate the existing five mainstream CUAs, including ReAct, AutoGPT, Gemini CLI, Cursor CLI, and Cursor IDE based on 8 foundation LLMs. The results demonstrate that current frontier CUAs do not adequately cover OS security-centric threats. These capabilities of CUAs reduce dependence on custom malware and deep domain expertise, enabling even inexperienced attackers to mount complex enterprise intrusions, which raises social concern about the responsibility and security of CUAs.

MomoUchi
·
Oct 7 2

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs

The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.

  • 9 authors
·
Sep 14, 2024

BadVLA: Towards Backdoor Attacks on Vision-Language-Action Models via Objective-Decoupled Optimization

Vision-Language-Action (VLA) models have advanced robotic control by enabling end-to-end decision-making directly from multimodal inputs. However, their tightly coupled architectures expose novel security vulnerabilities. Unlike traditional adversarial perturbations, backdoor attacks represent a stealthier, persistent, and practically significant threat-particularly under the emerging Training-as-a-Service paradigm-but remain largely unexplored in the context of VLA models. To address this gap, we propose BadVLA, a backdoor attack method based on Objective-Decoupled Optimization, which for the first time exposes the backdoor vulnerabilities of VLA models. Specifically, it consists of a two-stage process: (1) explicit feature-space separation to isolate trigger representations from benign inputs, and (2) conditional control deviations that activate only in the presence of the trigger, while preserving clean-task performance. Empirical results on multiple VLA benchmarks demonstrate that BadVLA consistently achieves near-100% attack success rates with minimal impact on clean task accuracy. Further analyses confirm its robustness against common input perturbations, task transfers, and model fine-tuning, underscoring critical security vulnerabilities in current VLA deployments. Our work offers the first systematic investigation of backdoor vulnerabilities in VLA models, highlighting an urgent need for secure and trustworthy embodied model design practices. We have released the project page at https://badvla-project.github.io/.

  • 6 authors
·
May 22 1

Optimization by Directional Attacks: Solving Problems with Neural Network Surrogates

This paper tackles optimization problems whose objective and constraints involve a trained Neural Network (NN), where the goal is to maximize f(Phi(x)) subject to c(Phi(x)) leq 0, with f smooth, c general and non-stringent, and Phi an already trained and possibly nonwhite-box NN. We address two challenges regarding this problem: identifying ascent directions for local search, and ensuring reliable convergence towards relevant local solutions. To this end, we re-purpose the notion of directional NN attacks as efficient optimization subroutines, since directional NN attacks use the neural structure of Phi to compute perturbations of x that steer Phi(x) in prescribed directions. Precisely, we develop an attack operator that computes attacks of Phi at any x along the direction nabla f(Phi(x)). Then, we propose a hybrid algorithm combining the attack operator with derivative-free optimization (DFO) techniques, designed for numerical reliability by remaining oblivious to the structure of the problem. We consider the cDSM algorithm, which offers asymptotic guarantees to converge to a local solution under mild assumptions on the problem. The resulting method alternates between attack-based steps for heuristic yet fast local intensification and cDSM steps for certified convergence and numerical reliability. Experiments on three problems show that this hybrid approach consistently outperforms standard DFO baselines.

  • 2 authors
·
Oct 1

Understanding and Enhancing the Transferability of Jailbreaking Attacks

Jailbreaking attacks can effectively manipulate open-source large language models (LLMs) to produce harmful responses. However, these attacks exhibit limited transferability, failing to disrupt proprietary LLMs consistently. To reliably identify vulnerabilities in proprietary LLMs, this work investigates the transferability of jailbreaking attacks by analysing their impact on the model's intent perception. By incorporating adversarial sequences, these attacks can redirect the source LLM's focus away from malicious-intent tokens in the original input, thereby obstructing the model's intent recognition and eliciting harmful responses. Nevertheless, these adversarial sequences fail to mislead the target LLM's intent perception, allowing the target LLM to refocus on malicious-intent tokens and abstain from responding. Our analysis further reveals the inherent distributional dependency within the generated adversarial sequences, whose effectiveness stems from overfitting the source LLM's parameters, resulting in limited transferability to target LLMs. To this end, we propose the Perceived-importance Flatten (PiF) method, which uniformly disperses the model's focus across neutral-intent tokens in the original input, thus obscuring malicious-intent tokens without relying on overfitted adversarial sequences. Extensive experiments demonstrate that PiF provides an effective and efficient red-teaming evaluation for proprietary LLMs.

  • 4 authors
·
Feb 5

Unified Adversarial Patch for Cross-modal Attacks in the Physical World

Recently, physical adversarial attacks have been presented to evade DNNs-based object detectors. To ensure the security, many scenarios are simultaneously deployed with visible sensors and infrared sensors, leading to the failures of these single-modal physical attacks. To show the potential risks under such scenes, we propose a unified adversarial patch to perform cross-modal physical attacks, i.e., fooling visible and infrared object detectors at the same time via a single patch. Considering different imaging mechanisms of visible and infrared sensors, our work focuses on modeling the shapes of adversarial patches, which can be captured in different modalities when they change. To this end, we design a novel boundary-limited shape optimization to achieve the compact and smooth shapes, and thus they can be easily implemented in the physical world. In addition, to balance the fooling degree between visible detector and infrared detector during the optimization process, we propose a score-aware iterative evaluation, which can guide the adversarial patch to iteratively reduce the predicted scores of the multi-modal sensors. We finally test our method against the one-stage detector: YOLOv3 and the two-stage detector: Faster RCNN. Results show that our unified patch achieves an Attack Success Rate (ASR) of 73.33% and 69.17%, respectively. More importantly, we verify the effective attacks in the physical world when visible and infrared sensors shoot the objects under various settings like different angles, distances, postures, and scenes.

  • 4 authors
·
Jul 15, 2023

Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks

The increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications. Understanding model vulnerabilities in high-stakes and knowledge-intensive tasks is essential for quantifying the trustworthiness of model predictions and regulating their use. The recent discovery of named entities as adversarial examples (i.e. adversarial entities) in natural language processing tasks raises questions about their potential impact on the knowledge robustness of pre-trained and finetuned LLMs in high-stakes and specialized domains. We examined the use of type-consistent entity substitution as a template for collecting adversarial entities for billion-parameter LLMs with biomedical knowledge. To this end, we developed an embedding-space attack based on powerscaled distance-weighted sampling to assess the robustness of their biomedical knowledge with a low query budget and controllable coverage. Our method has favorable query efficiency and scaling over alternative approaches based on random sampling and blackbox gradient-guided search, which we demonstrated for adversarial distractor generation in biomedical question answering. Subsequent failure mode analysis uncovered two regimes of adversarial entities on the attack surface with distinct characteristics and we showed that entity substitution attacks can manipulate token-wise Shapley value explanations, which become deceptive in this setting. Our approach complements standard evaluations for high-capacity models and the results highlight the brittleness of domain knowledge in LLMs.

  • 7 authors
·
Feb 16, 2024

Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

One major goal of the AI security community is to securely and reliably produce and deploy deep learning models for real-world applications. To this end, data poisoning based backdoor attacks on deep neural networks (DNNs) in the production stage (or training stage) and corresponding defenses are extensively explored in recent years. Ironically, backdoor attacks in the deployment stage, which can often happen in unprofessional users' devices and are thus arguably far more threatening in real-world scenarios, draw much less attention of the community. We attribute this imbalance of vigilance to the weak practicality of existing deployment-stage backdoor attack algorithms and the insufficiency of real-world attack demonstrations. To fill the blank, in this work, we study the realistic threat of deployment-stage backdoor attacks on DNNs. We base our study on a commonly used deployment-stage attack paradigm -- adversarial weight attack, where adversaries selectively modify model weights to embed backdoor into deployed DNNs. To approach realistic practicality, we propose the first gray-box and physically realizable weights attack algorithm for backdoor injection, namely subnet replacement attack (SRA), which only requires architecture information of the victim model and can support physical triggers in the real world. Extensive experimental simulations and system-level real-world attack demonstrations are conducted. Our results not only suggest the effectiveness and practicality of the proposed attack algorithm, but also reveal the practical risk of a novel type of computer virus that may widely spread and stealthily inject backdoor into DNN models in user devices. By our study, we call for more attention to the vulnerability of DNNs in the deployment stage.

  • 6 authors
·
Nov 25, 2021

BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack

Longer thought, better performance: large language models with deep reasoning capabilities, particularly o1-like models, have demonstrated remarkable performance by generating extensive thought processes during inference. This trade-off reveals a potential vulnerability: adversaries could compromise model performance by forcing immediate responses without thought processes. To this end, in this paper, we introduce a novel attack scenario targeting the long thought processes of o1-like models and propose BoT (Break CoT), which can selectively break intrinsic reasoning mechanisms through backdoor attacks. BoT constructs poisoned datasets with designed triggers and injects backdoor by either supervised fine-tuning or direct preference optimization. When triggered, the model directly generates answers without thought processes, while maintaining normal reasoning capabilities for clean inputs. Extensive experiments on open-source o1-like models, including recent DeepSeek-R1, demonstrate that BoT nearly achieves high attack success rates while maintaining clean accuracy, highlighting the critical safety risk in current models. Furthermore, the relationship between task difficulty and helpfulness reveals a potential application for good, enabling users to customize model behavior based on task complexity. Code is available at https://github.com/zihao-ai/BoT{https://github.com/zihao-ai/BoT}.

  • 7 authors
·
Feb 16

PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models

What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.

  • 3 authors
·
Sep 14, 2021

Beating Backdoor Attack at Its Own Game

Deep neural networks (DNNs) are vulnerable to backdoor attack, which does not affect the network's performance on clean data but would manipulate the network behavior once a trigger pattern is added. Existing defense methods have greatly reduced attack success rate, but their prediction accuracy on clean data still lags behind a clean model by a large margin. Inspired by the stealthiness and effectiveness of backdoor attack, we propose a simple but highly effective defense framework which injects non-adversarial backdoors targeting poisoned samples. Following the general steps in backdoor attack, we detect a small set of suspected samples and then apply a poisoning strategy to them. The non-adversarial backdoor, once triggered, suppresses the attacker's backdoor on poisoned data, but has limited influence on clean data. The defense can be carried out during data preprocessing, without any modification to the standard end-to-end training pipeline. We conduct extensive experiments on multiple benchmarks with different architectures and representative attacks. Results demonstrate that our method achieves state-of-the-art defense effectiveness with by far the lowest performance drop on clean data. Considering the surprising defense ability displayed by our framework, we call for more attention to utilizing backdoor for backdoor defense. Code is available at https://github.com/damianliumin/non-adversarial_backdoor.

  • 3 authors
·
Jul 28, 2023

From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows

Autonomous AI agents powered by large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval, complex computation, and multi-step orchestration. Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices, resulting in brittle integrations vulnerable to diverse threats. In this survey, we introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications, formalize adversary capabilities and attacker objectives, and catalog over thirty attack techniques. Specifically, we organized the threat model into four domains: Input Manipulation (e.g., prompt injections, long-context hijacks, multimodal adversarial inputs), Model Compromise (e.g., prompt- and parameter-level backdoors, composite and encrypted multi-backdoors, poisoning strategies), System and Privacy Attacks (e.g., speculative side-channels, membership inference, retrieval poisoning, social-engineering simulations), and Protocol Vulnerabilities (e.g., exploits in Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent Network Protocol (ANP), and Agent-to-Agent (A2A) protocol). For each category, we review representative scenarios, assess real-world feasibility, and evaluate existing defenses. Building on our threat taxonomy, we identify key open challenges and future research directions, such as securing MCP deployments through dynamic trust management and cryptographic provenance tracking; designing and hardening Agentic Web Interfaces; and achieving resilience in multi-agent and federated environments. Our work provides a comprehensive reference to guide the design of robust defense mechanisms and establish best practices for resilient LLM-agent workflows.

  • 5 authors
·
Jun 29

AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration

As large language models (LLMs) become increasingly capable, security and safety evaluation are crucial. While current red teaming approaches have made strides in assessing LLM vulnerabilities, they often rely heavily on human input and lack comprehensive coverage of emerging attack vectors. This paper introduces AutoRedTeamer, a novel framework for fully automated, end-to-end red teaming against LLMs. AutoRedTeamer combines a multi-agent architecture with a memory-guided attack selection mechanism to enable continuous discovery and integration of new attack vectors. The dual-agent framework consists of a red teaming agent that can operate from high-level risk categories alone to generate and execute test cases and a strategy proposer agent that autonomously discovers and implements new attacks by analyzing recent research. This modular design allows AutoRedTeamer to adapt to emerging threats while maintaining strong performance on existing attack vectors. We demonstrate AutoRedTeamer's effectiveness across diverse evaluation settings, achieving 20% higher attack success rates on HarmBench against Llama-3.1-70B while reducing computational costs by 46% compared to existing approaches. AutoRedTeamer also matches the diversity of human-curated benchmarks in generating test cases, providing a comprehensive, scalable, and continuously evolving framework for evaluating the security of AI systems.

  • 10 authors
·
Mar 19

Poison Once, Refuse Forever: Weaponizing Alignment for Injecting Bias in LLMs

Large Language Models (LLMs) are aligned to meet ethical standards and safety requirements by training them to refuse answering harmful or unsafe prompts. In this paper, we demonstrate how adversaries can exploit LLMs' alignment to implant bias, or enforce targeted censorship without degrading the model's responsiveness to unrelated topics. Specifically, we propose Subversive Alignment Injection (SAI), a poisoning attack that leverages the alignment mechanism to trigger refusal on specific topics or queries predefined by the adversary. Although it is perhaps not surprising that refusal can be induced through overalignment, we demonstrate how this refusal can be exploited to inject bias into the model. Surprisingly, SAI evades state-of-the-art poisoning defenses including LLM state forensics, as well as robust aggregation techniques that are designed to detect poisoning in FL settings. We demonstrate the practical dangers of this attack by illustrating its end-to-end impacts on LLM-powered application pipelines. For chat based applications such as ChatDoctor, with 1% data poisoning, the system refuses to answer healthcare questions to targeted racial category leading to high bias (Delta DP of 23%). We also show that bias can be induced in other NLP tasks: for a resume selection pipeline aligned to refuse to summarize CVs from a selected university, high bias in selection (Delta DP of 27%) results. Even higher bias (Delta DP~38%) results on 9 other chat based downstream applications.

  • 3 authors
·
Aug 27

Learning to Attack: Uncovering Privacy Risks in Sequential Data Releases

Privacy concerns have become increasingly critical in modern AI and data science applications, where sensitive information is collected, analyzed, and shared across diverse domains such as healthcare, finance, and mobility. While prior research has focused on protecting privacy in a single data release, many real-world systems operate under sequential or continuous data publishing, where the same or related data are released over time. Such sequential disclosures introduce new vulnerabilities, as temporal correlations across releases may enable adversaries to infer sensitive information that remains hidden in any individual release. In this paper, we investigate whether an attacker can compromise privacy in sequential data releases by exploiting dependencies between consecutive publications, even when each individual release satisfies standard privacy guarantees. To this end, we propose a novel attack model that captures these sequential dependencies by integrating a Hidden Markov Model with a reinforcement learning-based bi-directional inference mechanism. This enables the attacker to leverage both earlier and later observations in the sequence to infer private information. We instantiate our framework in the context of trajectory data, demonstrating how an adversary can recover sensitive locations from sequential mobility datasets. Extensive experiments on Geolife, Porto Taxi, and SynMob datasets show that our model consistently outperforms baseline approaches that treat each release independently. The results reveal a fundamental privacy risk inherent to sequential data publishing, where individually protected releases can collectively leak sensitive information when analyzed temporally. These findings underscore the need for new privacy-preserving frameworks that explicitly model temporal dependencies, such as time-aware differential privacy or sequential data obfuscation strategies.

  • 3 authors
·
Oct 28

Certified Robustness to Word Substitution Ranking Attack for Neural Ranking Models

Neural ranking models (NRMs) have achieved promising results in information retrieval. NRMs have also been shown to be vulnerable to adversarial examples. A typical Word Substitution Ranking Attack (WSRA) against NRMs was proposed recently, in which an attacker promotes a target document in rankings by adding human-imperceptible perturbations to its text. This raises concerns when deploying NRMs in real-world applications. Therefore, it is important to develop techniques that defend against such attacks for NRMs. In empirical defenses adversarial examples are found during training and used to augment the training set. However, such methods offer no theoretical guarantee on the models' robustness and may eventually be broken by other sophisticated WSRAs. To escape this arms race, rigorous and provable certified defense methods for NRMs are needed. To this end, we first define the Certified Top-K Robustness for ranking models since users mainly care about the top ranked results in real-world scenarios. A ranking model is said to be Certified Top-K Robust on a ranked list when it is guaranteed to keep documents that are out of the top K away from the top K under any attack. Then, we introduce a Certified Defense method, named CertDR, to achieve certified top-K robustness against WSRA, based on the idea of randomized smoothing. Specifically, we first construct a smoothed ranker by applying random word substitutions on the documents, and then leverage the ranking property jointly with the statistical property of the ensemble to provably certify top-K robustness. Extensive experiments on two representative web search datasets demonstrate that CertDR can significantly outperform state-of-the-art empirical defense methods for ranking models.

  • 7 authors
·
Sep 14, 2022

MADation: Face Morphing Attack Detection with Foundation Models

Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabeled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https: //github.com/gurayozgur/MADation

  • 7 authors
·
Jan 7

Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models

Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art.

  • 6 authors
·
Jul 26, 2023

Visual Adversarial Attack on Vision-Language Models for Autonomous Driving

Vision-language models (VLMs) have significantly advanced autonomous driving (AD) by enhancing reasoning capabilities. However, these models remain highly vulnerable to adversarial attacks. While existing research has primarily focused on general VLM attacks, the development of attacks tailored to the safety-critical AD context has been largely overlooked. In this paper, we take the first step toward designing adversarial attacks specifically targeting VLMs in AD, exposing the substantial risks these attacks pose within this critical domain. We identify two unique challenges for effective adversarial attacks on AD VLMs: the variability of textual instructions and the time-series nature of visual scenarios. To this end, we propose ADvLM, the first visual adversarial attack framework specifically designed for VLMs in AD. Our framework introduces Semantic-Invariant Induction, which uses a large language model to create a diverse prompt library of textual instructions with consistent semantic content, guided by semantic entropy. Building on this, we introduce Scenario-Associated Enhancement, an approach where attention mechanisms select key frames and perspectives within driving scenarios to optimize adversarial perturbations that generalize across the entire scenario. Extensive experiments on several AD VLMs over multiple benchmarks show that ADvLM achieves state-of-the-art attack effectiveness. Moreover, real-world attack studies further validate its applicability and potential in practice.

  • 10 authors
·
Nov 27, 2024

Hard No-Box Adversarial Attack on Skeleton-Based Human Action Recognition with Skeleton-Motion-Informed Gradient

Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.

  • 5 authors
·
Aug 10, 2023

AttackGNN: Red-Teaming GNNs in Hardware Security Using Reinforcement Learning

Machine learning has shown great promise in addressing several critical hardware security problems. In particular, researchers have developed novel graph neural network (GNN)-based techniques for detecting intellectual property (IP) piracy, detecting hardware Trojans (HTs), and reverse engineering circuits, to name a few. These techniques have demonstrated outstanding accuracy and have received much attention in the community. However, since these techniques are used for security applications, it is imperative to evaluate them thoroughly and ensure they are robust and do not compromise the security of integrated circuits. In this work, we propose AttackGNN, the first red-team attack on GNN-based techniques in hardware security. To this end, we devise a novel reinforcement learning (RL) agent that generates adversarial examples, i.e., circuits, against the GNN-based techniques. We overcome three challenges related to effectiveness, scalability, and generality to devise a potent RL agent. We target five GNN-based techniques for four crucial classes of problems in hardware security: IP piracy, detecting/localizing HTs, reverse engineering, and hardware obfuscation. Through our approach, we craft circuits that fool all GNNs considered in this work. For instance, to evade IP piracy detection, we generate adversarial pirated circuits that fool the GNN-based defense into classifying our crafted circuits as not pirated. For attacking HT localization GNN, our attack generates HT-infested circuits that fool the defense on all tested circuits. We obtain a similar 100% success rate against GNNs for all classes of problems.

  • 4 authors
·
Feb 21, 2024

Adversarial Video Promotion Against Text-to-Video Retrieval

Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over 30/10/4% for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.

  • 6 authors
·
Aug 9 2

Gotta Detect 'Em All: Fake Base Station and Multi-Step Attack Detection in Cellular Networks

Fake base stations (FBSes) pose a significant security threat by impersonating legitimate base stations (BSes). Though efforts have been made to defeat this threat, up to this day, the presence of FBSes and the multi-step attacks (MSAs) stemming from them can lead to unauthorized surveillance, interception of sensitive information, and disruption of network services. Therefore, detecting these malicious entities is crucial to ensure the security and reliability of cellular networks. Traditional detection methods often rely on additional hardware, rules, signal scanning, changing protocol specifications, or cryptographic mechanisms that have limitations and incur huge infrastructure costs. In this paper, we develop FBSDetector-an effective and efficient detection solution that can reliably detect FBSes and MSAs from layer-3 network traces using machine learning (ML) at the user equipment (UE) side. To develop FBSDetector, we create FBSAD and MSAD, the first-ever high-quality and large-scale datasets incorporating instances of FBSes and 21 MSAs. These datasets capture the network traces in different real-world cellular network scenarios (including mobility and different attacker capabilities) incorporating legitimate BSes and FBSes. Our novel ML framework, specifically designed to detect FBSes in a multi-level approach for packet classification using stateful LSTM with attention and trace level classification and MSAs using graph learning, can effectively detect FBSes with an accuracy of 96% and a false positive rate of 2.96%, and recognize MSAs with an accuracy of 86% and a false positive rate of 3.28%. We deploy FBSDetector as a real-world solution to protect end-users through a mobile app and validate it in real-world environments. Compared to the existing heuristic-based solutions that fail to detect FBSes, FBSDetector can detect FBSes in the wild in real-time.

  • 3 authors
·
Jan 10, 2024

Enhancing Jailbreak Attack Against Large Language Models through Silent Tokens

Along with the remarkable successes of Language language models, recent research also started to explore the security threats of LLMs, including jailbreaking attacks. Attackers carefully craft jailbreaking prompts such that a target LLM will respond to the harmful question. Existing jailbreaking attacks require either human experts or leveraging complicated algorithms to craft jailbreaking prompts. In this paper, we introduce BOOST, a simple attack that leverages only the eos tokens. We demonstrate that rather than constructing complicated jailbreaking prompts, the attacker can simply append a few eos tokens to the end of a harmful question. It will bypass the safety alignment of LLMs and lead to successful jailbreaking attacks. We further apply BOOST to four representative jailbreak methods and show that the attack success rates of these methods can be significantly enhanced by simply adding eos tokens to the prompt. To understand this simple but novel phenomenon, we conduct empirical analyses. Our analysis reveals that adding eos tokens makes the target LLM believe the input is much less harmful, and eos tokens have low attention values and do not affect LLM's understanding of the harmful questions, leading the model to actually respond to the questions. Our findings uncover how fragile an LLM is against jailbreak attacks, motivating the development of strong safety alignment approaches.

  • 6 authors
·
May 31, 2024

ChatInject: Abusing Chat Templates for Prompt Injection in LLM Agents

The growing deployment of large language model (LLM) based agents that interact with external environments has created new attack surfaces for adversarial manipulation. One major threat is indirect prompt injection, where attackers embed malicious instructions in external environment output, causing agents to interpret and execute them as if they were legitimate prompts. While previous research has focused primarily on plain-text injection attacks, we find a significant yet underexplored vulnerability: LLMs' dependence on structured chat templates and their susceptibility to contextual manipulation through persuasive multi-turn dialogues. To this end, we introduce ChatInject, an attack that formats malicious payloads to mimic native chat templates, thereby exploiting the model's inherent instruction-following tendencies. Building on this foundation, we develop a persuasion-driven Multi-turn variant that primes the agent across conversational turns to accept and execute otherwise suspicious actions. Through comprehensive experiments across frontier LLMs, we demonstrate three critical findings: (1) ChatInject achieves significantly higher average attack success rates than traditional prompt injection methods, improving from 5.18% to 32.05% on AgentDojo and from 15.13% to 45.90% on InjecAgent, with multi-turn dialogues showing particularly strong performance at average 52.33% success rate on InjecAgent, (2) chat-template-based payloads demonstrate strong transferability across models and remain effective even against closed-source LLMs, despite their unknown template structures, and (3) existing prompt-based defenses are largely ineffective against this attack approach, especially against Multi-turn variants. These findings highlight vulnerabilities in current agent systems.

Evading DeepFake Detectors via Adversarial Statistical Consistency

In recent years, as various realistic face forgery techniques known as DeepFake improves by leaps and bounds,more and more DeepFake detection techniques have been proposed. These methods typically rely on detecting statistical differences between natural (i.e., real) and DeepFakegenerated images in both spatial and frequency domains. In this work, we propose to explicitly minimize the statistical differences to evade state-of-the-art DeepFake detectors. To this end, we propose a statistical consistency attack (StatAttack) against DeepFake detectors, which contains two main parts. First, we select several statistical-sensitive natural degradations (i.e., exposure, blur, and noise) and add them to the fake images in an adversarial way. Second, we find that the statistical differences between natural and DeepFake images are positively associated with the distribution shifting between the two kinds of images, and we propose to use a distribution-aware loss to guide the optimization of different degradations. As a result, the feature distributions of generated adversarial examples is close to the natural images.Furthermore, we extend the StatAttack to a more powerful version, MStatAttack, where we extend the single-layer degradation to multi-layer degradations sequentially and use the loss to tune the combination weights jointly. Comprehensive experimental results on four spatial-based detectors and two frequency-based detectors with four datasets demonstrate the effectiveness of our proposed attack method in both white-box and black-box settings.

  • 6 authors
·
Apr 23, 2023

LeakyCLIP: Extracting Training Data from CLIP

Understanding the memorization and privacy leakage risks in Contrastive Language--Image Pretraining (CLIP) is critical for ensuring the security of multimodal models. Recent studies have demonstrated the feasibility of extracting sensitive training examples from diffusion models, with conditional diffusion models exhibiting a stronger tendency to memorize and leak information. In this work, we investigate data memorization and extraction risks in CLIP through the lens of CLIP inversion, a process that aims to reconstruct training images from text prompts. To this end, we introduce LeakyCLIP, a novel attack framework designed to achieve high-quality, semantically accurate image reconstruction from CLIP embeddings. We identify three key challenges in CLIP inversion: 1) non-robust features, 2) limited visual semantics in text embeddings, and 3) low reconstruction fidelity. To address these challenges, LeakyCLIP employs 1) adversarial fine-tuning to enhance optimization smoothness, 2) linear transformation-based embedding alignment, and 3) Stable Diffusion-based refinement to improve fidelity. Empirical results demonstrate the superiority of LeakyCLIP, achieving over 358% improvement in Structural Similarity Index Measure (SSIM) for ViT-B-16 compared to baseline methods on LAION-2B subset. Furthermore, we uncover a pervasive leakage risk, showing that training data membership can even be successfully inferred from the metrics of low-fidelity reconstructions. Our work introduces a practical method for CLIP inversion while offering novel insights into the nature and scope of privacy risks in multimodal models.

  • 4 authors
·
Aug 1

The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs

Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.

  • 14 authors
·
Jul 15 2

Universal Adversarial Perturbations for Vision-Language Pre-trained Models

Vision-language pre-trained (VLP) models have been the foundation of numerous vision-language tasks. Given their prevalence, it becomes imperative to assess their adversarial robustness, especially when deploying them in security-crucial real-world applications. Traditionally, adversarial perturbations generated for this assessment target specific VLP models, datasets, and/or downstream tasks. This practice suffers from low transferability and additional computation costs when transitioning to new scenarios. In this work, we thoroughly investigate whether VLP models are commonly sensitive to imperceptible perturbations of a specific pattern for the image modality. To this end, we propose a novel black-box method to generate Universal Adversarial Perturbations (UAPs), which is so called the Effective and T ransferable Universal Adversarial Attack (ETU), aiming to mislead a variety of existing VLP models in a range of downstream tasks. The ETU comprehensively takes into account the characteristics of UAPs and the intrinsic cross-modal interactions to generate effective UAPs. Under this regime, the ETU encourages both global and local utilities of UAPs. This benefits the overall utility while reducing interactions between UAP units, improving the transferability. To further enhance the effectiveness and transferability of UAPs, we also design a novel data augmentation method named ScMix. ScMix consists of self-mix and cross-mix data transformations, which can effectively increase the multi-modal data diversity while preserving the semantics of the original data. Through comprehensive experiments on various downstream tasks, VLP models, and datasets, we demonstrate that the proposed method is able to achieve effective and transferrable universal adversarial attacks.

  • 3 authors
·
May 8, 2024

TETRIS: Towards Exploring the Robustness of Interactive Segmentation

Interactive segmentation methods rely on user inputs to iteratively update the selection mask. A click specifying the object of interest is arguably the most simple and intuitive interaction type, and thereby the most common choice for interactive segmentation. However, user clicking patterns in the interactive segmentation context remain unexplored. Accordingly, interactive segmentation evaluation strategies rely more on intuition and common sense rather than empirical studies (e.g., assuming that users tend to click in the center of the area with the largest error). In this work, we conduct a real user study to investigate real user clicking patterns. This study reveals that the intuitive assumption made in the common evaluation strategy may not hold. As a result, interactive segmentation models may show high scores in the standard benchmarks, but it does not imply that they would perform well in a real world scenario. To assess the applicability of interactive segmentation methods, we propose a novel evaluation strategy providing a more comprehensive analysis of a model's performance. To this end, we propose a methodology for finding extreme user inputs by a direct optimization in a white-box adversarial attack on the interactive segmentation model. Based on the performance with such adversarial user inputs, we assess the robustness of interactive segmentation models w.r.t click positions. Besides, we introduce a novel benchmark for measuring the robustness of interactive segmentation, and report the results of an extensive evaluation of dozens of models.

  • 8 authors
·
Feb 8, 2024

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

  • 2 authors
·
Oct 8, 2024 2

EDoG: Adversarial Edge Detection For Graph Neural Networks

Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.

  • 6 authors
·
Dec 27, 2022

CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model

This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.

  • 2 authors
·
Sep 6, 2023

BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation

Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.

  • 7 authors
·
Apr 23

Certifiers Make Neural Networks Vulnerable to Availability Attacks

To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.

  • 3 authors
·
Aug 25, 2021

Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors

Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.

  • 6 authors
·
Jun 12

One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image

Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.

  • 6 authors
·
Apr 2

Countermind: A Multi-Layered Security Architecture for Large Language Models

The security of Large Language Model (LLM) applications is fundamentally challenged by "form-first" attacks like prompt injection and jailbreaking, where malicious instructions are embedded within user inputs. Conventional defenses, which rely on post hoc output filtering, are often brittle and fail to address the root cause: the model's inability to distinguish trusted instructions from untrusted data. This paper proposes Countermind, a multi-layered security architecture intended to shift defenses from a reactive, post hoc posture to a proactive, pre-inference, and intra-inference enforcement model. The architecture proposes a fortified perimeter designed to structurally validate and transform all inputs, and an internal governance mechanism intended to constrain the model's semantic processing pathways before an output is generated. The primary contributions of this work are conceptual designs for: (1) A Semantic Boundary Logic (SBL) with a mandatory, time-coupled Text Crypter intended to reduce the plaintext prompt injection attack surface, provided all ingestion paths are enforced. (2) A Parameter-Space Restriction (PSR) mechanism, leveraging principles from representation engineering, to dynamically control the LLM's access to internal semantic clusters, with the goal of mitigating semantic drift and dangerous emergent behaviors. (3) A Secure, Self-Regulating Core that uses an OODA loop and a learning security module to adapt its defenses based on an immutable audit log. (4) A Multimodal Input Sandbox and Context-Defense mechanisms to address threats from non-textual data and long-term semantic poisoning. This paper outlines an evaluation plan designed to quantify the proposed architecture's effectiveness in reducing the Attack Success Rate (ASR) for form-first attacks and to measure its potential latency overhead.

  • 1 authors
·
Oct 13

Mind the Gap: A Practical Attack on GGUF Quantization

With the increasing size of frontier LLMs, post-training quantization has become the standard for memory-efficient deployment. Recent work has shown that basic rounding-based quantization schemes pose security risks, as they can be exploited to inject malicious behaviors into quantized models that remain hidden in full precision. However, existing attacks cannot be applied to more complex quantization methods, such as the GGUF family used in the popular ollama and llama.cpp frameworks. In this work, we address this gap by introducing the first attack on GGUF. Our key insight is that the quantization error -- the difference between the full-precision weights and their (de-)quantized version -- provides sufficient flexibility to construct malicious quantized models that appear benign in full precision. Leveraging this, we develop an attack that trains the target malicious LLM while constraining its weights based on quantization errors. We demonstrate the effectiveness of our attack on three popular LLMs across nine GGUF quantization data types on three diverse attack scenarios: insecure code generation (Delta=88.7%), targeted content injection (Delta=85.0%), and benign instruction refusal (Delta=30.1%). Our attack highlights that (1) the most widely used post-training quantization method is susceptible to adversarial interferences, and (2) the complexity of quantization schemes alone is insufficient as a defense.

  • 5 authors
·
May 24

Servant, Stalker, Predator: How An Honest, Helpful, And Harmless (3H) Agent Unlocks Adversarial Skills

This paper identifies and analyzes a novel vulnerability class in Model Context Protocol (MCP) based agent systems. The attack chain describes and demonstrates how benign, individually authorized tasks can be orchestrated to produce harmful emergent behaviors. Through systematic analysis using the MITRE ATLAS framework, we demonstrate how 95 agents tested with access to multiple services-including browser automation, financial analysis, location tracking, and code deployment-can chain legitimate operations into sophisticated attack sequences that extend beyond the security boundaries of any individual service. These red team exercises survey whether current MCP architectures lack cross-domain security measures necessary to detect or prevent a large category of compositional attacks. We present empirical evidence of specific attack chains that achieve targeted harm through service orchestration, including data exfiltration, financial manipulation, and infrastructure compromise. These findings reveal that the fundamental security assumption of service isolation fails when agents can coordinate actions across multiple domains, creating an exponential attack surface that grows with each additional capability. This research provides a barebones experimental framework that evaluate not whether agents can complete MCP benchmark tasks, but what happens when they complete them too well and optimize across multiple services in ways that violate human expectations and safety constraints. We propose three concrete experimental directions using the existing MCP benchmark suite.

  • 1 authors
·
Aug 26 2

Run-Off Election: Improved Provable Defense against Data Poisoning Attacks

In data poisoning attacks, an adversary tries to change a model's prediction by adding, modifying, or removing samples in the training data. Recently, ensemble-based approaches for obtaining provable defenses against data poisoning have been proposed where predictions are done by taking a majority vote across multiple base models. In this work, we show that merely considering the majority vote in ensemble defenses is wasteful as it does not effectively utilize available information in the logits layers of the base models. Instead, we propose Run-Off Election (ROE), a novel aggregation method based on a two-round election across the base models: In the first round, models vote for their preferred class and then a second, Run-Off election is held between the top two classes in the first round. Based on this approach, we propose DPA+ROE and FA+ROE defense methods based on Deep Partition Aggregation (DPA) and Finite Aggregation (FA) approaches from prior work. We evaluate our methods on MNIST, CIFAR-10, and GTSRB and obtain improvements in certified accuracy by up to 3%-4%. Also, by applying ROE on a boosted version of DPA, we gain improvements around 12%-27% comparing to the current state-of-the-art, establishing a new state-of-the-art in (pointwise) certified robustness against data poisoning. In many cases, our approach outperforms the state-of-the-art, even when using 32 times less computational power.

  • 4 authors
·
Feb 4, 2023

Backdoor Attacks on Dense Retrieval via Public and Unintentional Triggers

Dense retrieval systems have been widely used in various NLP applications. However, their vulnerabilities to potential attacks have been underexplored. This paper investigates a novel attack scenario where the attackers aim to mislead the retrieval system into retrieving the attacker-specified contents. Those contents, injected into the retrieval corpus by attackers, can include harmful text like hate speech or spam. Unlike prior methods that rely on model weights and generate conspicuous, unnatural outputs, we propose a covert backdoor attack triggered by grammar errors. Our approach ensures that the attacked models can function normally for standard queries while covertly triggering the retrieval of the attacker's contents in response to minor linguistic mistakes. Specifically, dense retrievers are trained with contrastive loss and hard negative sampling. Surprisingly, our findings demonstrate that contrastive loss is notably sensitive to grammatical errors, and hard negative sampling can exacerbate susceptibility to backdoor attacks. Our proposed method achieves a high attack success rate with a minimal corpus poisoning rate of only 0.048\%, while preserving normal retrieval performance. This indicates that the method has negligible impact on user experience for error-free queries. Furthermore, evaluations across three real-world defense strategies reveal that the malicious passages embedded within the corpus remain highly resistant to detection and filtering, underscoring the robustness and subtlety of the proposed attack Codes of this work are available at https://github.com/ruyue0001/Backdoor_DPR..

  • 5 authors
·
Feb 21, 2024

CTRL-ALT-LED: Leaking Data from Air-Gapped Computers via Keyboard LEDs

Using the keyboard LEDs to send data optically was proposed in 2002 by Loughry and Umphress [1] (Appendix A). In this paper we extensively explore this threat in the context of a modern cyber-attack with current hardware and optical equipment. In this type of attack, an advanced persistent threat (APT) uses the keyboard LEDs (Caps-Lock, Num-Lock and Scroll-Lock) to encode information and exfiltrate data from airgapped computers optically. Notably, this exfiltration channel is not monitored by existing data leakage prevention (DLP) systems. We examine this attack and its boundaries for today's keyboards with USB controllers and sensitive optical sensors. We also introduce smartphone and smartwatch cameras as components of malicious insider and 'evil maid' attacks. We provide the necessary scientific background on optical communication and the characteristics of modern USB keyboards at the hardware and software level, and present a transmission protocol and modulation schemes. We implement the exfiltration malware, discuss its design and implementation issues, and evaluate it with different types of keyboards. We also test various receivers, including light sensors, remote cameras, 'extreme' cameras, security cameras, and smartphone cameras. Our experiment shows that data can be leaked from air-gapped computers via the keyboard LEDs at a maximum bit rate of 3000 bit/sec per LED given a light sensor as a receiver, and more than 120 bit/sec if smartphones are used. The attack doesn't require any modification of the keyboard at hardware or firmware levels.

  • 4 authors
·
Jul 10, 2019

Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem

The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources. Within a short period, thousands of MCP services have already been developed and deployed. However, the client-server integration architecture inherent in MCP may expand the attack surface against LLM Agent systems, introducing new vulnerabilities that allow attackers to exploit by designing malicious MCP servers. In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem. Our analysis identifies four categories of attacks, i.e., Tool Poisoning Attacks, Puppet Attacks, Rug Pull Attacks, and Exploitation via Malicious External Resources. To evaluate the feasibility of these attacks, we conduct experiments following the typical steps of launching an attack through malicious MCP servers: upload-download-attack. Specifically, we first construct malicious MCP servers and successfully upload them to three widely used MCP aggregation platforms. The results indicate that current audit mechanisms are insufficient to identify and prevent the proposed attack methods. Next, through a user study and interview with 20 participants, we demonstrate that users struggle to identify malicious MCP servers and often unknowingly install them from aggregator platforms. Finally, we demonstrate that these attacks can trigger harmful behaviors within the user's local environment-such as accessing private files or controlling devices to transfer digital assets-by deploying a proof-of-concept (PoC) framework against five leading LLMs. Additionally, based on interview results, we discuss four key challenges faced by the current security ecosystem surrounding MCP servers. These findings underscore the urgent need for robust security mechanisms to defend against malicious MCP servers.

  • 9 authors
·
May 31 1

Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems

Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.

  • 7 authors
·
Jun 6

Multi-Faceted Attack: Exposing Cross-Model Vulnerabilities in Defense-Equipped Vision-Language Models

The growing misuse of Vision-Language Models (VLMs) has led providers to deploy multiple safeguards, including alignment tuning, system prompts, and content moderation. However, the real-world robustness of these defenses against adversarial attacks remains underexplored. We introduce Multi-Faceted Attack (MFA), a framework that systematically exposes general safety vulnerabilities in leading defense-equipped VLMs such as GPT-4o, Gemini-Pro, and Llama-4. The core component of MFA is the Attention-Transfer Attack (ATA), which hides harmful instructions inside a meta task with competing objectives. We provide a theoretical perspective based on reward hacking to explain why this attack succeeds. To improve cross-model transferability, we further introduce a lightweight transfer-enhancement algorithm combined with a simple repetition strategy that jointly bypasses both input-level and output-level filters without model-specific fine-tuning. Empirically, we show that adversarial images optimized for one vision encoder transfer broadly to unseen VLMs, indicating that shared visual representations create a cross-model safety vulnerability. Overall, MFA achieves a 58.5% success rate and consistently outperforms existing methods. On state-of-the-art commercial models, MFA reaches a 52.8% success rate, surpassing the second-best attack by 34%. These results challenge the perceived robustness of current defense mechanisms and highlight persistent safety weaknesses in modern VLMs. Code: https://github.com/cure-lab/MultiFacetedAttack

The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning

Semi-supervised machine learning (SSL) is gaining popularity as it reduces the cost of training ML models. It does so by using very small amounts of (expensive, well-inspected) labeled data and large amounts of (cheap, non-inspected) unlabeled data. SSL has shown comparable or even superior performances compared to conventional fully-supervised ML techniques. In this paper, we show that the key feature of SSL that it can learn from (non-inspected) unlabeled data exposes SSL to strong poisoning attacks. In fact, we argue that, due to its reliance on non-inspected unlabeled data, poisoning is a much more severe problem in SSL than in conventional fully-supervised ML. Specifically, we design a backdoor poisoning attack on SSL that can be conducted by a weak adversary with no knowledge of target SSL pipeline. This is unlike prior poisoning attacks in fully-supervised settings that assume strong adversaries with practically-unrealistic capabilities. We show that by poisoning only 0.2% of the unlabeled training data, our attack can cause misclassification of more than 80% of test inputs (when they contain the adversary's backdoor trigger). Our attacks remain effective across twenty combinations of benchmark datasets and SSL algorithms, and even circumvent the state-of-the-art defenses against backdoor attacks. Our work raises significant concerns about the practical utility of existing SSL algorithms.

  • 3 authors
·
Nov 1, 2022

FLARE: Toward Universal Dataset Purification against Backdoor Attacks

Deep neural networks (DNNs) are susceptible to backdoor attacks, where adversaries poison datasets with adversary-specified triggers to implant hidden backdoors, enabling malicious manipulation of model predictions. Dataset purification serves as a proactive defense by removing malicious training samples to prevent backdoor injection at its source. We first reveal that the current advanced purification methods rely on a latent assumption that the backdoor connections between triggers and target labels in backdoor attacks are simpler to learn than the benign features. We demonstrate that this assumption, however, does not always hold, especially in all-to-all (A2A) and untargeted (UT) attacks. As a result, purification methods that analyze the separation between the poisoned and benign samples in the input-output space or the final hidden layer space are less effective. We observe that this separability is not confined to a single layer but varies across different hidden layers. Motivated by this understanding, we propose FLARE, a universal purification method to counter various backdoor attacks. FLARE aggregates abnormal activations from all hidden layers to construct representations for clustering. To enhance separation, FLARE develops an adaptive subspace selection algorithm to isolate the optimal space for dividing an entire dataset into two clusters. FLARE assesses the stability of each cluster and identifies the cluster with higher stability as poisoned. Extensive evaluations on benchmark datasets demonstrate the effectiveness of FLARE against 22 representative backdoor attacks, including all-to-one (A2O), all-to-all (A2A), and untargeted (UT) attacks, and its robustness to adaptive attacks. Codes are available at https://github.com/THUYimingLi/BackdoorBox{BackdoorBox} and https://github.com/vtu81/backdoor-toolbox{backdoor-toolbox}.

  • 6 authors
·
Nov 29, 2024

RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments

Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning ASRs of up to 50% in realistic end-to-end settings, with the recently released frontier Claude 4 Opus | CUA showing an alarming ASR of 48%, demonstrating that indirect prompt injection presents tangible risks for even advanced CUAs despite their capabilities and safeguards. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.

  • 7 authors
·
May 27

Online Adversarial Attacks

Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.

  • 7 authors
·
Mar 2, 2021

DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness

Machine Learning (ML) models have been utilized for malware detection for over two decades. Consequently, this ignited an ongoing arms race between malware authors and antivirus systems, compelling researchers to propose defenses for malware-detection models against evasion attacks. However, most if not all existing defenses against evasion attacks suffer from sizable performance degradation and/or can defend against only specific attacks, which makes them less practical in real-world settings. In this work, we develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection. Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables. After showing how DRSM is theoretically robust against attacks with contiguous adversarial bytes, we verify its performance and certified robustness experimentally, where we observe only marginal accuracy drops as the cost of robustness. To our knowledge, we are the first to offer certified robustness in the realm of static detection of malware executables. More surprisingly, through evaluating DRSM against 9 empirical attacks of different types, we observe that the proposed defense is empirically robust to some extent against a diverse set of attacks, some of which even fall out of the scope of its original threat model. In addition, we collected 15.5K recent benign raw executables from diverse sources, which will be made public as a dataset called PACE (Publicly Accessible Collection(s) of Executables) to alleviate the scarcity of publicly available benign datasets for studying malware detection and provide future research with more representative data of the time.

  • 5 authors
·
Mar 20, 2023

Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment

To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.

  • 2 authors
·
Nov 15, 2023

Be Your Own Neighborhood: Detecting Adversarial Example by the Neighborhood Relations Built on Self-Supervised Learning

Deep Neural Networks (DNNs) have achieved excellent performance in various fields. However, DNNs' vulnerability to Adversarial Examples (AE) hinders their deployments to safety-critical applications. This paper presents a novel AE detection framework, named BEYOND, for trustworthy predictions. BEYOND performs the detection by distinguishing the AE's abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label for its highly informative representation capacity compared to supervised learning models. For clean samples, their representations and predictions are closely consistent with their neighbors, whereas those of AEs differ greatly. Furthermore, we explain this observation and show that by leveraging this discrepancy BEYOND can effectively detect AEs. We develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving the state-of-the-art (SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under adaptive attacks. Empowered by the robust relation net built on SSL, we found that BEYOND outperforms baselines in terms of both detection ability and speed. Our code will be publicly available.

  • 5 authors
·
Aug 31, 2022

One Surrogate to Fool Them All: Universal, Transferable, and Targeted Adversarial Attacks with CLIP

Deep Neural Networks (DNNs) have achieved widespread success yet remain prone to adversarial attacks. Typically, such attacks either involve frequent queries to the target model or rely on surrogate models closely mirroring the target model -- often trained with subsets of the target model's training data -- to achieve high attack success rates through transferability. However, in realistic scenarios where training data is inaccessible and excessive queries can raise alarms, crafting adversarial examples becomes more challenging. In this paper, we present UnivIntruder, a novel attack framework that relies solely on a single, publicly available CLIP model and publicly available datasets. By using textual concepts, UnivIntruder generates universal, transferable, and targeted adversarial perturbations that mislead DNNs into misclassifying inputs into adversary-specified classes defined by textual concepts. Our extensive experiments show that our approach achieves an Attack Success Rate (ASR) of up to 85% on ImageNet and over 99% on CIFAR-10, significantly outperforming existing transfer-based methods. Additionally, we reveal real-world vulnerabilities, showing that even without querying target models, UnivIntruder compromises image search engines like Google and Baidu with ASR rates up to 84%, and vision language models like GPT-4 and Claude-3.5 with ASR rates up to 80%. These findings underscore the practicality of our attack in scenarios where traditional avenues are blocked, highlighting the need to reevaluate security paradigms in AI applications.

  • 4 authors
·
May 26

CGBA: Curvature-aware Geometric Black-box Attack

Decision-based black-box attacks often necessitate a large number of queries to craft an adversarial example. Moreover, decision-based attacks based on querying boundary points in the estimated normal vector direction often suffer from inefficiency and convergence issues. In this paper, we propose a novel query-efficient curvature-aware geometric decision-based black-box attack (CGBA) that conducts boundary search along a semicircular path on a restricted 2D plane to ensure finding a boundary point successfully irrespective of the boundary curvature. While the proposed CGBA attack can work effectively for an arbitrary decision boundary, it is particularly efficient in exploiting the low curvature to craft high-quality adversarial examples, which is widely seen and experimentally verified in commonly used classifiers under non-targeted attacks. In contrast, the decision boundaries often exhibit higher curvature under targeted attacks. Thus, we develop a new query-efficient variant, CGBA-H, that is adapted for the targeted attack. In addition, we further design an algorithm to obtain a better initial boundary point at the expense of some extra queries, which considerably enhances the performance of the targeted attack. Extensive experiments are conducted to evaluate the performance of our proposed methods against some well-known classifiers on the ImageNet and CIFAR10 datasets, demonstrating the superiority of CGBA and CGBA-H over state-of-the-art non-targeted and targeted attacks, respectively. The source code is available at https://github.com/Farhamdur/CGBA.

  • 4 authors
·
Aug 6, 2023

Semantic Stealth: Adversarial Text Attacks on NLP Using Several Methods

In various real-world applications such as machine translation, sentiment analysis, and question answering, a pivotal role is played by NLP models, facilitating efficient communication and decision-making processes in domains ranging from healthcare to finance. However, a significant challenge is posed to the robustness of these natural language processing models by text adversarial attacks. These attacks involve the deliberate manipulation of input text to mislead the predictions of the model while maintaining human interpretability. Despite the remarkable performance achieved by state-of-the-art models like BERT in various natural language processing tasks, they are found to remain vulnerable to adversarial perturbations in the input text. In addressing the vulnerability of text classifiers to adversarial attacks, three distinct attack mechanisms are explored in this paper using the victim model BERT: BERT-on-BERT attack, PWWS attack, and Fraud Bargain's Attack (FBA). Leveraging the IMDB, AG News, and SST2 datasets, a thorough comparative analysis is conducted to assess the effectiveness of these attacks on the BERT classifier model. It is revealed by the analysis that PWWS emerges as the most potent adversary, consistently outperforming other methods across multiple evaluation scenarios, thereby emphasizing its efficacy in generating adversarial examples for text classification. Through comprehensive experimentation, the performance of these attacks is assessed and the findings indicate that the PWWS attack outperforms others, demonstrating lower runtime, higher accuracy, and favorable semantic similarity scores. The key insight of this paper lies in the assessment of the relative performances of three prevalent state-of-the-art attack mechanisms.

  • 7 authors
·
Apr 7, 2024

Exploiting LLM Quantization

Quantization leverages lower-precision weights to reduce the memory usage of large language models (LLMs) and is a key technique for enabling their deployment on commodity hardware. While LLM quantization's impact on utility has been extensively explored, this work for the first time studies its adverse effects from a security perspective. We reveal that widely used quantization methods can be exploited to produce a harmful quantized LLM, even though the full-precision counterpart appears benign, potentially tricking users into deploying the malicious quantized model. We demonstrate this threat using a three-staged attack framework: (i) first, we obtain a malicious LLM through fine-tuning on an adversarial task; (ii) next, we quantize the malicious model and calculate constraints that characterize all full-precision models that map to the same quantized model; (iii) finally, using projected gradient descent, we tune out the poisoned behavior from the full-precision model while ensuring that its weights satisfy the constraints computed in step (ii). This procedure results in an LLM that exhibits benign behavior in full precision but when quantized, it follows the adversarial behavior injected in step (i). We experimentally demonstrate the feasibility and severity of such an attack across three diverse scenarios: vulnerable code generation, content injection, and over-refusal attack. In practice, the adversary could host the resulting full-precision model on an LLM community hub such as Hugging Face, exposing millions of users to the threat of deploying its malicious quantized version on their devices.

  • 5 authors
·
May 28, 2024

Black-Box Adversarial Attacks on LLM-Based Code Completion

Modern code completion engines, powered by large language models (LLMs), assist millions of developers with their strong capabilities to generate functionally correct code. Due to this popularity, it is crucial to investigate the security implications of relying on LLM-based code completion. In this work, we demonstrate that state-of-the-art black-box LLM-based code completion engines can be stealthily biased by adversaries to significantly increase their rate of insecure code generation. We present the first attack, named INSEC, that achieves this goal. INSEC works by injecting an attack string as a short comment in the completion input. The attack string is crafted through a query-based optimization procedure starting from a set of carefully designed initialization schemes. We demonstrate INSEC's broad applicability and effectiveness by evaluating it on various state-of-the-art open-source models and black-box commercial services (e.g., OpenAI API and GitHub Copilot). On a diverse set of security-critical test cases, covering 16 CWEs across 5 programming languages, INSEC increases the rate of generated insecure code by more than 50%, while maintaining the functional correctness of generated code. We consider INSEC practical -- it requires low resources and costs less than 10 US dollars to develop on commodity hardware. Moreover, we showcase the attack's real-world deployability, by developing an IDE plug-in that stealthily injects INSEC into the GitHub Copilot extension.

  • 5 authors
·
Aug 5, 2024

Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.

  • 1 authors
·
Sep 9, 2012

Infighting in the Dark: Multi-Label Backdoor Attack in Federated Learning

Federated Learning (FL), a privacy-preserving decentralized machine learning framework, has been shown to be vulnerable to backdoor attacks. Current research primarily focuses on the Single-Label Backdoor Attack (SBA), wherein adversaries share a consistent target. However, a critical fact is overlooked: adversaries may be non-cooperative, have distinct targets, and operate independently, which exhibits a more practical scenario called Multi-Label Backdoor Attack (MBA). Unfortunately, prior works are ineffective in the MBA scenario since non-cooperative attackers exclude each other. In this work, we conduct an in-depth investigation to uncover the inherent constraints of the exclusion: similar backdoor mappings are constructed for different targets, resulting in conflicts among backdoor functions. To address this limitation, we propose Mirage, the first non-cooperative MBA strategy in FL that allows attackers to inject effective and persistent backdoors into the global model without collusion by constructing in-distribution (ID) backdoor mapping. Specifically, we introduce an adversarial adaptation method to bridge the backdoor features and the target distribution in an ID manner. Additionally, we further leverage a constrained optimization method to ensure the ID mapping survives in the global training dynamics. Extensive evaluations demonstrate that Mirage outperforms various state-of-the-art attacks and bypasses existing defenses, achieving an average ASR greater than 97\% and maintaining over 90\% after 900 rounds. This work aims to alert researchers to this potential threat and inspire the design of effective defense mechanisms. Code has been made open-source.

  • 4 authors
·
Sep 29, 2024

Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection

Large Language Models (LLMs) are increasingly being integrated into various applications. The functionalities of recent LLMs can be flexibly modulated via natural language prompts. This renders them susceptible to targeted adversarial prompting, e.g., Prompt Injection (PI) attacks enable attackers to override original instructions and employed controls. So far, it was assumed that the user is directly prompting the LLM. But, what if it is not the user prompting? We argue that LLM-Integrated Applications blur the line between data and instructions. We reveal new attack vectors, using Indirect Prompt Injection, that enable adversaries to remotely (without a direct interface) exploit LLM-integrated applications by strategically injecting prompts into data likely to be retrieved. We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities, including data theft, worming, information ecosystem contamination, and other novel security risks. We demonstrate our attacks' practical viability against both real-world systems, such as Bing's GPT-4 powered Chat and code-completion engines, and synthetic applications built on GPT-4. We show how processing retrieved prompts can act as arbitrary code execution, manipulate the application's functionality, and control how and if other APIs are called. Despite the increasing integration and reliance on LLMs, effective mitigations of these emerging threats are currently lacking. By raising awareness of these vulnerabilities and providing key insights into their implications, we aim to promote the safe and responsible deployment of these powerful models and the development of robust defenses that protect users and systems from potential attacks.

  • 6 authors
·
Feb 23, 2023 1