Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDiffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision
Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.
Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale
LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.
MS-DETR: Efficient DETR Training with Mixed Supervision
DETR accomplishes end-to-end object detection through iteratively generating multiple object candidates based on image features and promoting one candidate for each ground-truth object. The traditional training procedure using one-to-one supervision in the original DETR lacks direct supervision for the object detection candidates. We aim at improving the DETR training efficiency by explicitly supervising the candidate generation procedure through mixing one-to-one supervision and one-to-many supervision. Our approach, namely MS-DETR, is simple, and places one-to-many supervision to the object queries of the primary decoder that is used for inference. In comparison to existing DETR variants with one-to-many supervision, such as Group DETR and Hybrid DETR, our approach does not need additional decoder branches or object queries. The object queries of the primary decoder in our approach directly benefit from one-to-many supervision and thus are superior in object candidate prediction. Experimental results show that our approach outperforms related DETR variants, such as DN-DETR, Hybrid DETR, and Group DETR, and the combination with related DETR variants further improves the performance.
UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition
Large language models (LLMs) have demonstrated remarkable generalizability, such as understanding arbitrary entities and relations. Instruction tuning has proven effective for distilling LLMs into more cost-efficient models such as Alpaca and Vicuna. Yet such student models still trail the original LLMs by large margins in downstream applications. In this paper, we explore targeted distillation with mission-focused instruction tuning to train student models that can excel in a broad application class such as open information extraction. Using named entity recognition (NER) for case study, we show how ChatGPT can be distilled into much smaller UniversalNER models for open NER. For evaluation, we assemble the largest NER benchmark to date, comprising 43 datasets across 9 diverse domains such as biomedicine, programming, social media, law, finance. Without using any direct supervision, UniversalNER attains remarkable NER accuracy across tens of thousands of entity types, outperforming general instruction-tuned models such as Alpaca and Vicuna by over 30 absolute F1 points in average. With a tiny fraction of parameters, UniversalNER not only acquires ChatGPT's capability in recognizing arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1 points in average. Remarkably, UniversalNER even outperforms by a large margin state-of-the-art multi-task instruction-tuned systems such as InstructUIE, which uses supervised NER examples. We also conduct thorough ablation studies to assess the impact of various components in our distillation approach. We will release the distillation recipe, data, and UniversalNER models to facilitate future research on targeted distillation.
Control4D: Dynamic Portrait Editing by Learning 4D GAN from 2D Diffusion-based Editor
Recent years have witnessed considerable achievements in editing images with text instructions. When applying these editors to dynamic scene editing, the new-style scene tends to be temporally inconsistent due to the frame-by-frame nature of these 2D editors. To tackle this issue, we propose Control4D, a novel approach for high-fidelity and temporally consistent 4D portrait editing. Control4D is built upon an efficient 4D representation with a 2D diffusion-based editor. Instead of using direct supervisions from the editor, our method learns a 4D GAN from it and avoids the inconsistent supervision signals. Specifically, we employ a discriminator to learn the generation distribution based on the edited images and then update the generator with the discrimination signals. For more stable training, multi-level information is extracted from the edited images and used to facilitate the learning of the generator. Experimental results show that Control4D surpasses previous approaches and achieves more photo-realistic and consistent 4D editing performances. The link to our project website is https://control4darxiv.github.io.
Improving Online Lane Graph Extraction by Object-Lane Clustering
Autonomous driving requires accurate local scene understanding information. To this end, autonomous agents deploy object detection and online BEV lane graph extraction methods as a part of their perception stack. In this work, we propose an architecture and loss formulation to improve the accuracy of local lane graph estimates by using 3D object detection outputs. The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers and the objects as data points to be assigned a probability distribution over the cluster centers. This training scheme ensures direct supervision on the relationship between lanes and objects, thus leading to better performance. The proposed method improves lane graph estimation substantially over state-of-the-art methods. The extensive ablations show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods. Since our method uses the detection outputs rather than detection method intermediate representations, a single model of our method can use any detection method at test time.
Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement
Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks. Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs. Training an LLM to write better visual programs is an attractive prospect, but it is unclear how to accomplish this. No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced due to the need for expert annotators. To get around the lack of direct supervision, we explore improving the program synthesis abilities of an LLM using feedback from interactive experience. We propose a method where we exploit existing annotations for a vision-language task to improvise a coarse reward signal for that task, treat the LLM as a policy, and apply reinforced self-training to improve the visual program synthesis ability of the LLM for that task. We describe a series of experiments on object detection, compositional visual question answering, and image-text retrieval, and show that in each case, the self-trained LLM outperforms or performs on par with few-shot frozen LLMs that are an order of magnitude larger. Website: https://zaidkhan.me/ViReP
A Landmark-Aware Visual Navigation Dataset
Map representation learned by expert demonstrations has shown promising research value. However, recent advancements in the visual navigation field face challenges due to the lack of human datasets in the real world for efficient supervised representation learning of the environments. We present a Landmark-Aware Visual Navigation (LAVN) dataset to allow for supervised learning of human-centric exploration policies and map building. We collect RGB observation and human point-click pairs as a human annotator explores virtual and real-world environments with the goal of full coverage exploration of the space. The human annotators also provide distinct landmark examples along each trajectory, which we intuit will simplify the task of map or graph building and localization. These human point-clicks serve as direct supervision for waypoint prediction when learning to explore in environments. Our dataset covers a wide spectrum of scenes, including rooms in indoor environments, as well as walkways outdoors. Dataset is available at DOI: 10.5281/zenodo.10608067.
Multi-Grained Knowledge Retrieval for End-to-End Task-Oriented Dialog
Retrieving proper domain knowledge from an external database lies at the heart of end-to-end task-oriented dialog systems to generate informative responses. Most existing systems blend knowledge retrieval with response generation and optimize them with direct supervision from reference responses, leading to suboptimal retrieval performance when the knowledge base becomes large-scale. To address this, we propose to decouple knowledge retrieval from response generation and introduce a multi-grained knowledge retriever (MAKER) that includes an entity selector to search for relevant entities and an attribute selector to filter out irrelevant attributes. To train the retriever, we propose a novel distillation objective that derives supervision signals from the response generator. Experiments conducted on three standard benchmarks with both small and large-scale knowledge bases demonstrate that our retriever performs knowledge retrieval more effectively than existing methods. Our code has been made publicly available.https://github.com/18907305772/MAKER
PartGlot: Learning Shape Part Segmentation from Language Reference Games
We introduce PartGlot, a neural framework and associated architectures for learning semantic part segmentation of 3D shape geometry, based solely on part referential language. We exploit the fact that linguistic descriptions of a shape can provide priors on the shape's parts -- as natural language has evolved to reflect human perception of the compositional structure of objects, essential to their recognition and use. For training, we use the paired geometry / language data collected in the ShapeGlot work for their reference game, where a speaker creates an utterance to differentiate a target shape from two distractors and the listener has to find the target based on this utterance. Our network is designed to solve this target discrimination problem, carefully incorporating a Transformer-based attention module so that the output attention can precisely highlight the semantic part or parts described in the language. Furthermore, the network operates without any direct supervision on the 3D geometry itself. Surprisingly, we further demonstrate that the learned part information is generalizable to shape classes unseen during training. Our approach opens the possibility of learning 3D shape parts from language alone, without the need for large-scale part geometry annotations, thus facilitating annotation acquisition.
Semantic Image Manipulation Using Scene Graphs
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
MoGAN: Improving Motion Quality in Video Diffusion via Few-Step Motion Adversarial Post-Training
Video diffusion models achieve strong frame-level fidelity but still struggle with motion coherence, dynamics and realism, often producing jitter, ghosting, or implausible dynamics. A key limitation is that the standard denoising MSE objective provides no direct supervision on temporal consistency, allowing models to achieve low loss while still generating poor motion. We propose MoGAN, a motion-centric post-training framework that improves motion realism without reward models or human preference data. Built atop a 3-step distilled video diffusion model, we train a DiT-based optical-flow discriminator to differentiate real from generated motion, combined with a distribution-matching regularizer to preserve visual fidelity. With experiments on Wan2.1-T2V-1.3B, MoGAN substantially improves motion quality across benchmarks. On VBench, MoGAN boosts motion score by +7.3% over the 50-step teacher and +13.3% over the 3-step DMD model. On VideoJAM-Bench, MoGAN improves motion score by +7.4% over the teacher and +8.8% over DMD, while maintaining comparable or even better aesthetic and image-quality scores. A human study further confirms that MoGAN is preferred for motion quality (52% vs. 38% for the teacher; 56% vs. 29% for DMD). Overall, MoGAN delivers significantly more realistic motion without sacrificing visual fidelity or efficiency, offering a practical path toward fast, high-quality video generation. Project webpage is: https://xavihart.github.io/mogan.
Attributed Question Answering: Evaluation and Modeling for Attributed Large Language Models
Large language models (LLMs) have shown impressive results while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial in this setting. We formulate and study Attributed QA as a key first step in the development of attributed LLMs. We propose a reproducible evaluation framework for the task and benchmark a broad set of architectures. We take human annotations as a gold standard and show that a correlated automatic metric is suitable for development. Our experimental work gives concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third (How to build LLMs with attribution?).
Artemis: Structured Visual Reasoning for Perception Policy Learning
Recent reinforcement-learning frameworks for visual perception policy have begun to incorporate intermediate reasoning chains expressed in natural language. Empirical observations indicate that such purely linguistic intermediate reasoning often reduces performance on perception tasks. We argue that the core issue lies not in reasoning per se but in the form of reasoning: while these chains perform semantic reasoning in an unstructured linguistic space, visual perception requires reasoning in a spatial and object-centric space. In response, we introduce Artemis, a perception-policy learning framework that performs structured proposal-based reasoning, where each intermediate step is represented as a (label, bounding-box) pair capturing a verifiable visual state. This design enables explicit tracking of intermediate states, direct supervision for proposal quality, and avoids ambiguity introduced by language-based reasoning. Artemis is built on Qwen2.5-VL-3B, achieves strong performance on grounding and detection task and exhibits substantial generalization to counting and geometric-perception tasks. The consistent improvements across these diverse settings confirm that aligning reasoning with spatial representations enhances perception-policy learning. Owing to its strengthened visual reasoning, Artemis also achieves competitive performance on general MLLM benchmarks, illustrating that spatially grounded reasoning provides a principled route toward scalable and general perception policies.
Linear Adversarial Concept Erasure
Modern neural models trained on textual data rely on pre-trained representations that emerge without direct supervision. As these representations are increasingly being used in real-world applications, the inability to control their content becomes an increasingly important problem. We formulate the problem of identifying and erasing a linear subspace that corresponds to a given concept, in order to prevent linear predictors from recovering the concept. We model this problem as a constrained, linear maximin game, and show that existing solutions are generally not optimal for this task. We derive a closed-form solution for certain objectives, and propose a convex relaxation, \method, that works well for others. When evaluated in the context of binary gender removal, the method recovers a low-dimensional subspace whose removal mitigates bias by intrinsic and extrinsic evaluation. We show that the method is highly expressive, effectively mitigating bias in deep nonlinear classifiers while maintaining tractability and interpretability.
VA-$π$: Variational Policy Alignment for Pixel-Aware Autoregressive Generation
Autoregressive (AR) visual generation relies on tokenizers to map images to and from discrete sequences. However, tokenizers are trained to reconstruct clean images from ground-truth tokens, while AR generators are optimized only for token likelihood. This misalignment leads to generated token sequences that may decode into low-quality images, without direct supervision from the pixel space. We propose VA-π, a lightweight post-training framework that directly optimizes AR models with a principled pixel-space objective. VA-π formulates the generator-tokenizer alignment as a variational optimization, deriving an evidence lower bound (ELBO) that unifies pixel reconstruction and autoregressive modeling. To optimize under the discrete token space, VA-π introduces a reinforcement-based alignment strategy that treats the AR generator as a policy, uses pixel-space reconstruction quality as its intrinsic reward. The reward is measured by how well the predicted token sequences can reconstruct the original image under teacher forcing, giving the model direct pixel-level guidance without expensive free-running sampling. The regularization term of the ELBO serves as a natural regularizer, maintaining distributional consistency of tokens. VA-π enables rapid adaptation of existing AR generators, without neither tokenizer retraining nor external reward models. With only 1% ImageNet-1K data and 25 minutes of tuning, it reduces FID from 14.36 to 7.65 and improves IS from 86.55 to 116.70 on LlamaGen-XXL, while also yielding notable gains in the text-to-image task on GenEval for both visual generation model (LlamaGen: from 0.306 to 0.339) and unified multi-modal model (Janus-Pro: from 0.725 to 0.744). Code is available at https://github.com/Lil-Shake/VA-Pi.
WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space
Modern learning-based approaches to 3D-aware image synthesis achieve high photorealism and 3D-consistent viewpoint changes for the generated images. Existing approaches represent instances in a shared canonical space. However, for in-the-wild datasets a shared canonical system can be difficult to define or might not even exist. In this work, we instead model instances in view space, alleviating the need for posed images and learned camera distributions. We find that in this setting, existing GAN-based methods are prone to generating flat geometry and struggle with distribution coverage. We hence propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs). We first train an autoencoder that infers a compressed latent representation, which additionally captures the images' underlying 3D structure and enables not only reconstruction but also novel view synthesis. To learn a faithful 3D representation, we leverage cues from monocular depth prediction. Then, we train a diffusion model in the 3D-aware latent space, thereby enabling synthesis of high-quality 3D-consistent image samples, outperforming recent state-of-the-art GAN-based methods. Importantly, our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry and does not require posed images or learned pose or camera distributions. It directly learns a 3D representation without relying on canonical camera coordinates. This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data. See https://katjaschwarz.github.io/wildfusion for videos of our 3D results.
Revisiting Multivariate Time Series Forecasting with Missing Values
Missing values are common in real-world time series, and multivariate time series forecasting with missing values (MTSF-M) has become a crucial area of research for ensuring reliable predictions. To address the challenge of missing data, current approaches have developed an imputation-then-prediction framework that uses imputation modules to fill in missing values, followed by forecasting on the imputed data. However, this framework overlooks a critical issue: there is no ground truth for the missing values, making the imputation process susceptible to errors that can degrade prediction accuracy. In this paper, we conduct a systematic empirical study and reveal that imputation without direct supervision can corrupt the underlying data distribution and actively degrade prediction accuracy. To address this, we propose a paradigm shift that moves away from imputation and directly predicts from the partially observed time series. We introduce Consistency-Regularized Information Bottleneck (CRIB), a novel framework built on the Information Bottleneck principle. CRIB combines a unified-variate attention mechanism with a consistency regularization scheme to learn robust representations that filter out noise introduced by missing values while preserving essential predictive signals. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of CRIB, which predicts accurately even under high missing rates. Our code is available in https://github.com/Muyiiiii/CRIB.
INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained Feedback
Automatically evaluating the quality of language generation is critical. Although recent learned metrics show high correlation with human judgement, these metrics can not explain their verdict or associate the scores with defects in generated text. To address this limitation, we present InstructScore, an explainable evaluation metric for text generation. By harnessing both explicit human instruction and the implicit knowledge of GPT-4, we fine-tune a text evaluation metric based on LLaMA, producing both a score for generated text and a human readable diagnostic report. We evaluate InstructScore on a variety of generation tasks, including translation, captioning, data-to-text and commonsense generation. Experiments show that our 7B model surpasses all other unsupervised metrics, including those based on 175B GPT-3 and GPT-4. Surprisingly, our InstructScore, even without direct supervision from human-rated data, achieves performance levels on par with state-of-the-art metrics like COMET22, which were fine-tuned on human ratings.
SpeechCLIP: Integrating Speech with Pre-Trained Vision and Language Model
Data-driven speech processing models usually perform well with a large amount of text supervision, but collecting transcribed speech data is costly. Therefore, we propose SpeechCLIP, a novel framework bridging speech and text through images to enhance speech models without transcriptions. We leverage state-of-the-art pre-trained HuBERT and CLIP, aligning them via paired images and spoken captions with minimal fine-tuning. SpeechCLIP outperforms prior state-of-the-art on image-speech retrieval and performs zero-shot speech-text retrieval without direct supervision from transcriptions. Moreover, SpeechCLIP can directly retrieve semantically related keywords from speech.
Multimodal Knowledge Alignment with Reinforcement Learning
Large language models readily adapt to novel settings, even without task-specific training data. Can their zero-shot capacity be extended to multimodal inputs? In this work, we propose ESPER which extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning. Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision: for example, in the image case our reward optimization relies only on cosine similarity derived from CLIP, and thus requires no additional explicitly paired (image, caption) data. Because the parameters of the language model are left unchanged, the model maintains its capacity for zero-shot generalization. Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks; these include a new benchmark we collect+release, ESP dataset, which tasks models with generating several diversely-styled captions for each image.
A Large Dataset of Object Scans
We have created a dataset of more than ten thousand 3D scans of real objects. To create the dataset, we recruited 70 operators, equipped them with consumer-grade mobile 3D scanning setups, and paid them to scan objects in their environments. The operators scanned objects of their choosing, outside the laboratory and without direct supervision by computer vision professionals. The result is a large and diverse collection of object scans: from shoes, mugs, and toys to grand pianos, construction vehicles, and large outdoor sculptures. We worked with an attorney to ensure that data acquisition did not violate privacy constraints. The acquired data was irrevocably placed in the public domain and is available freely at http://redwood-data.org/3dscan .
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
The success of long short-term memory (LSTM) neural networks in language processing is typically attributed to their ability to capture long-distance statistical regularities. Linguistic regularities are often sensitive to syntactic structure; can such dependencies be captured by LSTMs, which do not have explicit structural representations? We begin addressing this question using number agreement in English subject-verb dependencies. We probe the architecture's grammatical competence both using training objectives with an explicit grammatical target (number prediction, grammaticality judgments) and using language models. In the strongly supervised settings, the LSTM achieved very high overall accuracy (less than 1% errors), but errors increased when sequential and structural information conflicted. The frequency of such errors rose sharply in the language-modeling setting. We conclude that LSTMs can capture a non-trivial amount of grammatical structure given targeted supervision, but stronger architectures may be required to further reduce errors; furthermore, the language modeling signal is insufficient for capturing syntax-sensitive dependencies, and should be supplemented with more direct supervision if such dependencies need to be captured.
Learning to Decode Collaboratively with Multiple Language Models
We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level. We model the decision of which LLM generates the next token as a latent variable. By optimizing the marginal likelihood of a training set under our latent variable model, the base LLM automatically learns when to generate itself and when to call on one of the ``assistant'' language models to generate, all without direct supervision. Token-level collaboration during decoding allows for a fusion of each model's expertise in a manner tailored to the specific task at hand. Our collaborative decoding is especially useful in cross-domain settings where a generalist base LLM learns to invoke domain expert models. On instruction-following, domain-specific QA, and reasoning tasks, we show that the performance of the joint system exceeds that of the individual models. Through qualitative analysis of the learned latent decisions, we show models trained with our method exhibit several interesting collaboration patterns, e.g., template-filling. Our code is available at https://github.com/clinicalml/co-llm.
Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent. We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.
AutoMix: Unveiling the Power of Mixup for Stronger Classifiers
Data mixing augmentation have proved to be effective in improving the generalization ability of deep neural networks. While early methods mix samples by hand-crafted policies (e.g., linear interpolation), recent methods utilize saliency information to match the mixed samples and labels via complex offline optimization. However, there arises a trade-off between precise mixing policies and optimization complexity. To address this challenge, we propose a novel automatic mixup (AutoMix) framework, where the mixup policy is parameterized and serves the ultimate classification goal directly. Specifically, AutoMix reformulates the mixup classification into two sub-tasks (i.e., mixed sample generation and mixup classification) with corresponding sub-networks and solves them in a bi-level optimization framework. For the generation, a learnable lightweight mixup generator, Mix Block, is designed to generate mixed samples by modeling patch-wise relationships under the direct supervision of the corresponding mixed labels. To prevent the degradation and instability of bi-level optimization, we further introduce a momentum pipeline to train AutoMix in an end-to-end manner. Extensive experiments on nine image benchmarks prove the superiority of AutoMix compared with state-of-the-art in various classification scenarios and downstream tasks.
ChartMaster: Advancing Chart-to-Code Generation with Real-World Charts and Chart Similarity Reinforcement Learning
The chart-to-code generation task requires MLLMs to convert chart images into executable code. This task faces two main challenges: limited data diversity and the difficulty of maintaining visual consistency between generated charts and the original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT models for code generation, resulting in homogeneous samples that limit model generalization to real-world chart styles. To address this, we propose ReChartPrompt, leveraging real-world, human-designed charts extracted from arXiv papers as prompts. By harnessing the rich content and diverse visual styles of arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse dataset that better reflects realistic chart variations. For the second challenge, although SFT improves code understanding by optimizing next-token prediction, it does not provide direct supervision on visual features. As a result, it often fails to guarantee that the generated charts visually match the original ones. To address this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm guided by a novel chart similarity reward. This reward consists of two components: attribute similarity, which measures the overlap of chart attributes like layout and color between the generated and original charts, and visual similarity, which evaluates overall visual features, including texture, using convolutional neural networks. Unlike traditional text-based rewards, our reward accounts for the multimodal nature of the chart-to-code generation task, significantly enhancing the model's ability to accurately reproduce charts. Integrating ReChartPrompt and ChartSimRL, we develop the ChartMaster model, achieving SOTA results among 7B-parameter models and rivaling GPT-4o on various chart-to-code benchmarks. All resources are available at https://github.com/WentaoTan/ChartMaster.
InterMimic: Towards Universal Whole-Body Control for Physics-Based Human-Object Interactions
Achieving realistic simulations of humans interacting with a wide range of objects has long been a fundamental goal. Extending physics-based motion imitation to complex human-object interactions (HOIs) is challenging due to intricate human-object coupling, variability in object geometries, and artifacts in motion capture data, such as inaccurate contacts and limited hand detail. We introduce InterMimic, a framework that enables a single policy to robustly learn from hours of imperfect MoCap data covering diverse full-body interactions with dynamic and varied objects. Our key insight is to employ a curriculum strategy -- perfect first, then scale up. We first train subject-specific teacher policies to mimic, retarget, and refine motion capture data. Next, we distill these teachers into a student policy, with the teachers acting as online experts providing direct supervision, as well as high-quality references. Notably, we incorporate RL fine-tuning on the student policy to surpass mere demonstration replication and achieve higher-quality solutions. Our experiments demonstrate that InterMimic produces realistic and diverse interactions across multiple HOI datasets. The learned policy generalizes in a zero-shot manner and seamlessly integrates with kinematic generators, elevating the framework from mere imitation to generative modeling of complex human-object interactions.
PersonalVideo: High ID-Fidelity Video Customization without Dynamic and Semantic Degradation
The current text-to-video (T2V) generation has made significant progress in synthesizing realistic general videos, but it is still under-explored in identity-specific human video generation with customized ID images. The key challenge lies in maintaining high ID fidelity consistently while preserving the original motion dynamic and semantic following after the identity injection. Current video identity customization methods mainly rely on reconstructing given identity images on text-to-image models, which have a divergent distribution with the T2V model. This process introduces a tuning-inference gap, leading to dynamic and semantic degradation. To tackle this problem, we propose a novel framework, dubbed PersonalVideo, that applies direct supervision on videos synthesized by the T2V model to bridge the gap. Specifically, we introduce a learnable Isolated Identity Adapter to customize the specific identity non-intrusively, which does not comprise the original T2V model's abilities (e.g., motion dynamic and semantic following). With the non-reconstructive identity loss, we further employ simulated prompt augmentation to reduce overfitting by supervising generated results in more semantic scenarios, gaining good robustness even with only a single reference image available. Extensive experiments demonstrate our method's superiority in delivering high identity faithfulness while preserving the inherent video generation qualities of the original T2V model, outshining prior approaches. Notably, our PersonalVideo seamlessly integrates with pre-trained SD components, such as ControlNet and style LoRA, requiring no extra tuning overhead.
Thinking LLMs: General Instruction Following with Thought Generation
LLMs are typically trained to answer user questions or follow instructions similarly to how human experts respond. However, in the standard alignment framework they lack the basic ability of explicit thinking before answering. Thinking is important for complex questions that require reasoning and planning -- but can be applied to any task. We propose a training method for equipping existing LLMs with such thinking abilities for general instruction following without use of additional human data. We achieve this by an iterative search and optimization procedure that explores the space of possible thought generations, allowing the model to learn how to think without direct supervision. For each instruction, the thought candidates are scored using a judge model to evaluate their responses only, and then optimized via preference optimization. We show that this procedure leads to superior performance on AlpacaEval and Arena-Hard, and shows gains from thinking on non-reasoning categories such as marketing, health and general knowledge, in addition to more traditional reasoning & problem-solving tasks.
PaLM2-VAdapter: Progressively Aligned Language Model Makes a Strong Vision-language Adapter
This paper demonstrates that a progressively aligned language model can effectively bridge frozen vision encoders and large language models (LLMs). While the fundamental architecture and pre-training methods of vision encoders and LLMs have been extensively studied, the architecture and training strategy of vision-language adapters vary significantly across recent works. Our research undertakes a thorough exploration of the state-of-the-art perceiver resampler architecture and builds a strong baseline. However, we observe that the vision-language alignment with perceiver resampler exhibits slow convergence and limited scalability with a lack of direct supervision. To address this issue, we propose PaLM2-VAdapter, employing a progressively aligned language model as the vision-language adapter. Compared to the strong baseline with perceiver resampler, our method empirically shows faster convergence, higher performance, and stronger scalability. Extensive experiments across various Visual Question Answering (VQA) and captioning tasks on both images and videos demonstrate that our model exhibits state-of-the-art visual understanding and multi-modal reasoning capabilities. Notably, our method achieves these advancements with 30~70% fewer parameters than the state-of-the-art large vision-language models, marking a significant efficiency improvement.
Any3DIS: Class-Agnostic 3D Instance Segmentation by 2D Mask Tracking
Existing 3D instance segmentation methods frequently encounter issues with over-segmentation, leading to redundant and inaccurate 3D proposals that complicate downstream tasks. This challenge arises from their unsupervised merging approach, where dense 2D instance masks are lifted across frames into point clouds to form 3D candidate proposals without direct supervision. These candidates are then hierarchically merged based on heuristic criteria, often resulting in numerous redundant segments that fail to combine into precise 3D proposals. To overcome these limitations, we propose a 3D-Aware 2D Mask Tracking module that uses robust 3D priors from a 2D mask segmentation and tracking foundation model (SAM-2) to ensure consistent object masks across video frames. Rather than merging all visible superpoints across views to create a 3D mask, our 3D Mask Optimization module leverages a dynamic programming algorithm to select an optimal set of views, refining the superpoints to produce a final 3D proposal for each object. Our approach achieves comprehensive object coverage within the scene while reducing unnecessary proposals, which could otherwise impair downstream applications. Evaluations on ScanNet200 and ScanNet++ confirm the effectiveness of our method, with improvements across Class-Agnostic, Open-Vocabulary, and Open-Ended 3D Instance Segmentation tasks.
Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
The availability of large-scale multimodal datasets and advancements in diffusion models have significantly accelerated progress in 4D content generation. Most prior approaches rely on multiple image or video diffusion models, utilizing score distillation sampling for optimization or generating pseudo novel views for direct supervision. However, these methods are hindered by slow optimization speeds and multi-view inconsistency issues. Spatial and temporal consistency in 4D geometry has been extensively explored respectively in 3D-aware diffusion models and traditional monocular video diffusion models. Building on this foundation, we propose a strategy to migrate the temporal consistency in video diffusion models to the spatial-temporal consistency required for 4D generation. Specifically, we present a novel framework, Diffusion4D, for efficient and scalable 4D content generation. Leveraging a meticulously curated dynamic 3D dataset, we develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets. To control the dynamic strength of these assets, we introduce a 3D-to-4D motion magnitude metric as guidance. Additionally, we propose a novel motion magnitude reconstruction loss and 3D-aware classifier-free guidance to refine the learning and generation of motion dynamics. After obtaining orbital views of the 4D asset, we perform explicit 4D construction with Gaussian splatting in a coarse-to-fine manner. The synthesized multi-view consistent 4D image set enables us to swiftly generate high-fidelity and diverse 4D assets within just several minutes. Extensive experiments demonstrate that our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency across various prompt modalities.
What does CLIP know about peeling a banana?
Humans show an innate capability to identify tools to support specific actions. The association between objects parts and the actions they facilitate is usually named affordance. Being able to segment objects parts depending on the tasks they afford is crucial to enable intelligent robots to use objects of daily living. Traditional supervised learning methods for affordance segmentation require costly pixel-level annotations, while weakly supervised approaches, though less demanding, still rely on object-interaction examples and support a closed set of actions. These limitations hinder scalability, may introduce biases, and usually restrict models to a limited set of predefined actions. This paper proposes AffordanceCLIP, to overcome these limitations by leveraging the implicit affordance knowledge embedded within large pre-trained Vision-Language models like CLIP. We experimentally demonstrate that CLIP, although not explicitly trained for affordances detection, retains valuable information for the task. Our AffordanceCLIP achieves competitive zero-shot performance compared to methods with specialized training, while offering several advantages: i) it works with any action prompt, not just a predefined set; ii) it requires training only a small number of additional parameters compared to existing solutions and iii) eliminates the need for direct supervision on action-object pairs, opening new perspectives for functionality-based reasoning of models.
Understanding Self-supervised Learning with Dual Deep Networks
We propose a novel theoretical framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks (e.g., SimCLR). First, we prove that in each SGD update of SimCLR with various loss functions, including simple contrastive loss, soft Triplet loss and InfoNCE loss, the weights at each layer are updated by a covariance operator that specifically amplifies initial random selectivities that vary across data samples but survive averages over data augmentations. To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a hierarchical latent tree model (HLTM) and prove that the hidden neurons of deep ReLU networks can learn the latent variables in HLTM, despite the fact that the network receives no direct supervision from these unobserved latent variables. This leads to a provable emergence of hierarchical features through the amplification of initially random selectivities through contrastive SSL. Extensive numerical studies justify our theoretical findings. Code is released in https://github.com/facebookresearch/luckmatters/tree/master/ssl.
Dynamic-Group-Aware Networks for Multi-Agent Trajectory Prediction with Relational Reasoning
Demystifying the interactions among multiple agents from their past trajectories is fundamental to precise and interpretable trajectory prediction. However, previous works mainly consider static, pair-wise interactions with limited relational reasoning. To promote more comprehensive interaction modeling and relational reasoning, we propose DynGroupNet, a dynamic-group-aware network, which can i) model time-varying interactions in highly dynamic scenes; ii) capture both pair-wise and group-wise interactions; and iii) reason both interaction strength and category without direct supervision. Based on DynGroupNet, we further design a prediction system to forecast socially plausible trajectories with dynamic relational reasoning. The proposed prediction system leverages the Gaussian mixture model, multiple sampling and prediction refinement to promote prediction diversity, training stability and trajectory smoothness, respectively. Extensive experiments show that: 1)DynGroupNet can capture time-varying group behaviors, infer time-varying interaction category and interaction strength during trajectory prediction without any relation supervision on physical simulation datasets; 2)DynGroupNet outperforms the state-of-the-art trajectory prediction methods by a significant improvement of 22.6%/28.0%, 26.9%/34.9%, 5.1%/13.0% in ADE/FDE on the NBA, NFL Football and SDD datasets and achieve the state-of-the-art performance on the ETH-UCY dataset.
RenderOcc: Vision-Centric 3D Occupancy Prediction with 2D Rendering Supervision
3D occupancy prediction holds significant promise in the fields of robot perception and autonomous driving, which quantifies 3D scenes into grid cells with semantic labels. Recent works mainly utilize complete occupancy labels in 3D voxel space for supervision. However, the expensive annotation process and sometimes ambiguous labels have severely constrained the usability and scalability of 3D occupancy models. To address this, we present RenderOcc, a novel paradigm for training 3D occupancy models only using 2D labels. Specifically, we extract a NeRF-style 3D volume representation from multi-view images, and employ volume rendering techniques to establish 2D renderings, thus enabling direct 3D supervision from 2D semantics and depth labels. Additionally, we introduce an Auxiliary Ray method to tackle the issue of sparse viewpoints in autonomous driving scenarios, which leverages sequential frames to construct comprehensive 2D rendering for each object. To our best knowledge, RenderOcc is the first attempt to train multi-view 3D occupancy models only using 2D labels, reducing the dependence on costly 3D occupancy annotations. Extensive experiments demonstrate that RenderOcc achieves comparable performance to models fully supervised with 3D labels, underscoring the significance of this approach in real-world applications.
GaussianFlow: Splatting Gaussian Dynamics for 4D Content Creation
Creating 4D fields of Gaussian Splatting from images or videos is a challenging task due to its under-constrained nature. While the optimization can draw photometric reference from the input videos or be regulated by generative models, directly supervising Gaussian motions remains underexplored. In this paper, we introduce a novel concept, Gaussian flow, which connects the dynamics of 3D Gaussians and pixel velocities between consecutive frames. The Gaussian flow can be efficiently obtained by splatting Gaussian dynamics into the image space. This differentiable process enables direct dynamic supervision from optical flow. Our method significantly benefits 4D dynamic content generation and 4D novel view synthesis with Gaussian Splatting, especially for contents with rich motions that are hard to be handled by existing methods. The common color drifting issue that happens in 4D generation is also resolved with improved Guassian dynamics. Superior visual quality on extensive experiments demonstrates our method's effectiveness. Quantitative and qualitative evaluations show that our method achieves state-of-the-art results on both tasks of 4D generation and 4D novel view synthesis. Project page: https://zerg-overmind.github.io/GaussianFlow.github.io/
BASIC: Boosting Visual Alignment with Intrinsic Refined Embeddings in Multimodal Large Language Models
Mainstream Multimodal Large Language Models (MLLMs) achieve visual understanding by using a vision projector to bridge well-pretrained vision encoders and large language models (LLMs). The inherent gap between visual and textual modalities makes the embeddings from the vision projector critical for visual comprehension. However, current alignment approaches treat visual embeddings as contextual cues and merely apply auto-regressive supervision to textual outputs, neglecting the necessity of introducing equivalent direct visual supervision, which hinders the potential finer alignment of visual embeddings. In this paper, based on our analysis of the refinement process of visual embeddings in the LLM's shallow layers, we propose BASIC, a method that utilizes refined visual embeddings within the LLM as supervision to directly guide the projector in generating initial visual embeddings. Specifically, the guidance is conducted from two perspectives: (i) optimizing embedding directions by reducing angles between initial and supervisory embeddings in semantic space; (ii) improving semantic matching by minimizing disparities between the logit distributions of both visual embeddings. Without additional supervisory models or artificial annotations, BASIC significantly improves the performance of MLLMs across a wide range of benchmarks, demonstrating the effectiveness of our introduced direct visual supervision.
Model-Based Image Signal Processors via Learnable Dictionaries
Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP). Computational photography tasks such as image denoising and colour constancy are commonly performed in the RAW domain, in part due to the inherent hardware design, but also due to the appealing simplicity of noise statistics that result from the direct sensor readings. Despite this, the availability of RAW images is limited in comparison with the abundance and diversity of available RGB data. Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping: handcrafted model-based methods that are interpretable and controllable usually require manual parameter fine-tuning, while end-to-end learnable neural networks require large amounts of training data, at times with complex training procedures, and generally lack interpretability and parametric control. Towards addressing these existing limitations, we present a novel hybrid model-based and data-driven ISP that builds on canonical ISP operations and is both learnable and interpretable. Our proposed invertible model, capable of bidirectional mapping between RAW and RGB domains, employs end-to-end learning of rich parameter representations, i.e. dictionaries, that are free from direct parametric supervision and additionally enable simple and plausible data augmentation. We evidence the value of our data generation process by extensive experiments under both RAW image reconstruction and RAW image denoising tasks, obtaining state-of-the-art performance in both. Additionally, we show that our ISP can learn meaningful mappings from few data samples, and that denoising models trained with our dictionary-based data augmentation are competitive despite having only few or zero ground-truth labels.
Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io
Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement Learning
Whereas machine learning models typically learn language by directly training on language tasks (e.g., next-word prediction), language emerges in human children as a byproduct of solving non-language tasks (e.g., acquiring food). Motivated by this observation, we ask: can embodied reinforcement learning (RL) agents also indirectly learn language from non-language tasks? Learning to associate language with its meaning requires a dynamic environment with varied language. Therefore, we investigate this question in a multi-task environment with language that varies across the different tasks. Specifically, we design an office navigation environment, where the agent's goal is to find a particular office, and office locations differ in different buildings (i.e., tasks). Each building includes a floor plan with a simple language description of the goal office's location, which can be visually read as an RGB image when visited. We find RL agents indeed are able to indirectly learn language. Agents trained with current meta-RL algorithms successfully generalize to reading floor plans with held-out layouts and language phrases, and quickly navigate to the correct office, despite receiving no direct language supervision.
RA-Touch: Retrieval-Augmented Touch Understanding with Enriched Visual Data
Visuo-tactile perception aims to understand an object's tactile properties, such as texture, softness, and rigidity. However, the field remains underexplored because collecting tactile data is costly and labor-intensive. We observe that visually distinct objects can exhibit similar surface textures or material properties. For example, a leather sofa and a leather jacket have different appearances but share similar tactile properties. This implies that tactile understanding can be guided by material cues in visual data, even without direct tactile supervision. In this paper, we introduce RA-Touch, a retrieval-augmented framework that improves visuo-tactile perception by leveraging visual data enriched with tactile semantics. We carefully recaption a large-scale visual dataset with tactile-focused descriptions, enabling the model to access tactile semantics typically absent from conventional visual datasets. A key challenge remains in effectively utilizing these tactile-aware external descriptions. RA-Touch addresses this by retrieving visual-textual representations aligned with tactile inputs and integrating them to focus on relevant textural and material properties. By outperforming prior methods on the TVL benchmark, our method demonstrates the potential of retrieval-based visual reuse for tactile understanding. Code is available at https://aim-skku.github.io/RA-Touch
Visual Speech-Aware Perceptual 3D Facial Expression Reconstruction from Videos
The recent state of the art on monocular 3D face reconstruction from image data has made some impressive advancements, thanks to the advent of Deep Learning. However, it has mostly focused on input coming from a single RGB image, overlooking the following important factors: a) Nowadays, the vast majority of facial image data of interest do not originate from single images but rather from videos, which contain rich dynamic information. b) Furthermore, these videos typically capture individuals in some form of verbal communication (public talks, teleconferences, audiovisual human-computer interactions, interviews, monologues/dialogues in movies, etc). When existing 3D face reconstruction methods are applied in such videos, the artifacts in the reconstruction of the shape and motion of the mouth area are often severe, since they do not match well with the speech audio. To overcome the aforementioned limitations, we present the first method for visual speech-aware perceptual reconstruction of 3D mouth expressions. We do this by proposing a "lipread" loss, which guides the fitting process so that the elicited perception from the 3D reconstructed talking head resembles that of the original video footage. We demonstrate that, interestingly, the lipread loss is better suited for 3D reconstruction of mouth movements compared to traditional landmark losses, and even direct 3D supervision. Furthermore, the devised method does not rely on any text transcriptions or corresponding audio, rendering it ideal for training in unlabeled datasets. We verify the efficiency of our method through exhaustive objective evaluations on three large-scale datasets, as well as subjective evaluation with two web-based user studies.
Deep Learning for Identifying Iran's Cultural Heritage Buildings in Need of Conservation Using Image Classification and Grad-CAM
The cultural heritage buildings (CHB), which are part of mankind's history and identity, are in constant danger of damage or in extreme situations total destruction. That being said, it's of utmost importance to preserve them by identifying the existent, or presumptive, defects using novel methods so that renovation processes can be done in a timely manner and with higher accuracy. The main goal of this research is to use new deep learning (DL) methods in the process of preserving CHBs (situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as these countries still preserve their CHBs using manual, and even archaic, methods that need direct human supervision. Having proven their effectiveness and performance when it comes to processing images, the convolutional neural networks (CNN) are a staple in computer vision (CV) literacy and this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be very difficult and prone to overfitting; that's why we opted to use a technique called transfer learning (TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification. Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were very favorable based on those of similar research. The final proposed model can pave the way for moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease in human-induced errors.
F-HOI: Toward Fine-grained Semantic-Aligned 3D Human-Object Interactions
Existing 3D human object interaction (HOI) datasets and models simply align global descriptions with the long HOI sequence, while lacking a detailed understanding of intermediate states and the transitions between states. In this paper, we argue that fine-grained semantic alignment, which utilizes state-level descriptions, offers a promising paradigm for learning semantically rich HOI representations. To achieve this, we introduce Semantic-HOI, a new dataset comprising over 20K paired HOI states with fine-grained descriptions for each HOI state and the body movements that happen between two consecutive states. Leveraging the proposed dataset, we design three state-level HOI tasks to accomplish fine-grained semantic alignment within the HOI sequence. Additionally, we propose a unified model called F-HOI, designed to leverage multimodal instructions and empower the Multi-modal Large Language Model to efficiently handle diverse HOI tasks. F-HOI offers multiple advantages: (1) It employs a unified task formulation that supports the use of versatile multimodal inputs. (2) It maintains consistency in HOI across 2D, 3D, and linguistic spaces. (3) It utilizes fine-grained textual supervision for direct optimization, avoiding intricate modeling of HOI states. Extensive experiments reveal that F-HOI effectively aligns HOI states with fine-grained semantic descriptions, adeptly tackling understanding, reasoning, generation, and reconstruction tasks.
InpaintHuman: Reconstructing Occluded Humans with Multi-Scale UV Mapping and Identity-Preserving Diffusion Inpainting
Reconstructing complete and animatable 3D human avatars from monocular videos remains challenging, particularly under severe occlusions. While 3D Gaussian Splatting has enabled photorealistic human rendering, existing methods struggle with incomplete observations, often producing corrupted geometry and temporal inconsistencies. We present InpaintHuman, a novel method for generating high-fidelity, complete, and animatable avatars from occluded monocular videos. Our approach introduces two key innovations: (i) a multi-scale UV-parameterized representation with hierarchical coarse-to-fine feature interpolation, enabling robust reconstruction of occluded regions while preserving geometric details; and (ii) an identity-preserving diffusion inpainting module that integrates textual inversion with semantic-conditioned guidance for subject-specific, temporally coherent completion. Unlike SDS-based methods, our approach employs direct pixel-level supervision to ensure identity fidelity. Experiments on synthetic benchmarks (PeopleSnapshot, ZJU-MoCap) and real-world scenarios (OcMotion) demonstrate competitive performance with consistent improvements in reconstruction quality across diverse poses and viewpoints.
SPF-Portrait: Towards Pure Portrait Customization with Semantic Pollution-Free Fine-tuning
Fine-tuning a pre-trained Text-to-Image (T2I) model on a tailored portrait dataset is the mainstream method for text-driven customization of portrait attributes. Due to Semantic Pollution during fine-tuning, existing methods struggle to maintain the original model's behavior and achieve incremental learning while customizing target attributes. To address this issue, we propose SPF-Portrait, a pioneering work to purely understand customized semantics while eliminating semantic pollution in text-driven portrait customization. In our SPF-Portrait, we propose a dual-path pipeline that introduces the original model as a reference for the conventional fine-tuning path. Through contrastive learning, we ensure adaptation to target attributes and purposefully align other unrelated attributes with the original portrait. We introduce a novel Semantic-Aware Fine Control Map, which represents the precise response regions of the target semantics, to spatially guide the alignment process between the contrastive paths. This alignment process not only effectively preserves the performance of the original model but also avoids over-alignment. Furthermore, we propose a novel response enhancement mechanism to reinforce the performance of target attributes, while mitigating representation discrepancy inherent in direct cross-modal supervision. Extensive experiments demonstrate that SPF-Portrait achieves state-of-the-art performance. Project webpage: https://spf-portrait.github.io/SPF-Portrait/
Layton: Latent Consistency Tokenizer for 1024-pixel Image Reconstruction and Generation by 256 Tokens
Image tokenization has significantly advanced visual generation and multimodal modeling, particularly when paired with autoregressive models. However, current methods face challenges in balancing efficiency and fidelity: high-resolution image reconstruction either requires an excessive number of tokens or compromises critical details through token reduction. To resolve this, we propose Latent Consistency Tokenizer (Layton) that bridges discrete visual tokens with the compact latent space of pre-trained Latent Diffusion Models (LDMs), enabling efficient representation of 1024x1024 images using only 256 tokens-a 16 times compression over VQGAN. Layton integrates a transformer encoder, a quantized codebook, and a latent consistency decoder. Direct application of LDM as the decoder results in color and brightness discrepancies. Thus, we convert it to latent consistency decoder, reducing multi-step sampling to 1-2 steps for direct pixel-level supervision. Experiments demonstrate Layton's superiority in high-fidelity reconstruction, with 10.8 reconstruction Frechet Inception Distance on MSCOCO-2017 5K benchmark for 1024x1024 image reconstruction. We also extend Layton to a text-to-image generation model, LaytonGen, working in autoregression. It achieves 0.73 score on GenEval benchmark, surpassing current state-of-the-art methods. Project homepage: https://github.com/OPPO-Mente-Lab/Layton
Direct Diffusion Score Preference Optimization via Stepwise Contrastive Policy-Pair Supervision
Diffusion models have achieved impressive results in generative tasks such as text-to-image synthesis, yet they often struggle to fully align outputs with nuanced user intent and maintain consistent aesthetic quality. Existing preference-based training methods like Diffusion Direct Preference Optimization help address these issues but rely on costly and potentially noisy human-labeled datasets. In this work, we introduce Direct Diffusion Score Preference Optimization (DDSPO), which directly derives per-timestep supervision from winning and losing policies when such policies are available. Unlike prior methods that operate solely on final samples, DDSPO provides dense, transition-level signals across the denoising trajectory. In practice, we avoid reliance on labeled data by automatically generating preference signals using a pretrained reference model: we contrast its outputs when conditioned on original prompts versus semantically degraded variants. This practical strategy enables effective score-space preference supervision without explicit reward modeling or manual annotations. Empirical results demonstrate that DDSPO improves text-image alignment and visual quality, outperforming or matching existing preference-based methods while requiring significantly less supervision. Our implementation is available at: https://dohyun-as.github.io/DDSPO
Enhancing Logical Reasoning in Language Models via Symbolically-Guided Monte Carlo Process Supervision
Large language models (LLMs) have shown strong performance in many reasoning benchmarks. However, recent studies have pointed to memorization, rather than generalization, as one of the leading causes for such performance. LLMs, in fact, are susceptible to content variations, demonstrating a lack of robust planning or symbolic abstractions supporting their reasoning process. To improve reliability, many attempts have been made to combine LLMs with symbolic methods. Nevertheless, existing approaches fail to effectively leverage symbolic representations due to the challenges involved in developing reliable and scalable verification mechanisms. In this paper, we propose to overcome such limitations by synthesizing high-quality symbolic reasoning trajectories with stepwise pseudo-labels at scale via Monte Carlo estimation. A Process Reward Model (PRM) can be efficiently trained based on the synthesized data and then used to select more symbolic trajectories. The trajectories are then employed with Direct Preference Optimization (DPO) and Supervised Fine-Tuning (SFT) to improve logical reasoning and generalization. Our results on benchmarks (i.e., FOLIO and LogicAsker) show the effectiveness of the proposed method with gains on frontier and open-weight models. Moreover, additional experiments on claim verification data reveal that fine-tuning on the generated symbolic reasoning trajectories enhances out-of-domain generalizability, suggesting the potential impact of the proposed method in enhancing planning and logical reasoning.
VideoSAVi: Self-Aligned Video Language Models without Human Supervision
Recent advances in vision-language models (VLMs) have significantly enhanced video understanding tasks. Instruction tuning (i.e., fine-tuning models on datasets of instructions paired with desired outputs) has been key to improving model performance. However, creating diverse instruction-tuning datasets is challenging due to high annotation costs and the complexity of capturing temporal information in videos. Existing approaches often rely on large language models to generate instruction-output pairs, which can limit diversity and lead to responses that lack grounding in the video content. To address this, we propose VideoSAVi (Self-Aligned Video Language Model), a novel self-training pipeline that enables VLMs to generate their own training data without extensive manual annotation. The process involves three stages: (1) generating diverse video-specific questions, (2) producing multiple candidate answers, and (3) evaluating these responses for alignment with the video content. This self-generated data is then used for direct preference optimization (DPO), allowing the model to refine its own high-quality outputs and improve alignment with video content. Our experiments demonstrate that even smaller models (0.5B and 7B parameters) can effectively use this self-training approach, outperforming previous methods and achieving results comparable to those trained on proprietary preference data. VideoSAVi shows significant improvements across multiple benchmarks: up to 28% on multi-choice QA, 8% on zero-shot open-ended QA, and 12% on temporal reasoning benchmarks. These results demonstrate the effectiveness of our self-training approach in enhancing video understanding while reducing dependence on proprietary models.
LLMs Could Autonomously Learn Without External Supervision
In the quest for super-human performance, Large Language Models (LLMs) have traditionally been tethered to human-annotated datasets and predefined training objectives-a process that is both labor-intensive and inherently limited. This paper presents a transformative approach: Autonomous Learning for LLMs, a self-sufficient learning paradigm that frees models from the constraints of human supervision. This method endows LLMs with the ability to self-educate through direct interaction with text, akin to a human reading and comprehending literature. Our approach eliminates the reliance on annotated data, fostering an Autonomous Learning environment where the model independently identifies and reinforces its knowledge gaps. Empirical results from our comprehensive experiments, which utilized a diverse array of learning materials and were evaluated against standard public quizzes, reveal that Autonomous Learning outstrips the performance of both Pre-training and Supervised Fine-Tuning (SFT), as well as retrieval-augmented methods. These findings underscore the potential of Autonomous Learning to not only enhance the efficiency and effectiveness of LLM training but also to pave the way for the development of more advanced, self-reliant AI systems.
Direct speech-to-speech translation with discrete units
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. We tackle the problem by first applying a self-supervised discrete speech encoder on the target speech and then training a sequence-to-sequence speech-to-unit translation (S2UT) model to predict the discrete representations of the target speech. When target text transcripts are available, we design a joint speech and text training framework that enables the model to generate dual modality output (speech and text) simultaneously in the same inference pass. Experiments on the Fisher Spanish-English dataset show that the proposed framework yields improvement of 6.7 BLEU compared with a baseline direct S2ST model that predicts spectrogram features. When trained without any text transcripts, our model performance is comparable to models that predict spectrograms and are trained with text supervision, showing the potential of our system for translation between unwritten languages. Audio samples are available at https://facebookresearch.github.io/speech_translation/direct_s2st_units/index.html .
Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models
Retrieval-augmented generation (RAG) integrates large language models ( LLM s) with retrievers to access external knowledge, improving the factuality of LLM generation in knowledge-grounded tasks. To optimize the RAG performance, most previous work independently fine-tunes the retriever to adapt to frozen LLM s or trains the LLMs to use documents retrieved by off-the-shelf retrievers, lacking end-to-end training supervision. Recent work addresses this limitation by jointly training these two components but relies on overly simplifying assumptions of document independence, which has been criticized for being far from real-world scenarios. Thus, effectively optimizing the overall RAG performance remains a critical challenge. We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components: (i) a generative knowledge selection model and (ii) an LLM generator. DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted maximization, progressively improving RAG components through a variational approach. In the estimation step, we treat document permutation as a latent variable and directly estimate its distribution from the selection model by applying an importance sampling strategy. In the maximization step, we calibrate the optimization expectation using importance weights and jointly train the selection model and LLM generator. Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning. Extensive experiments conducted on five datasets illustrate that DRO outperforms the best baseline with 5%-15% improvements in EM and F1. We also provide in-depth experiments to qualitatively analyze the stability, convergence, and variance of DRO.
SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
VidChain: Chain-of-Tasks with Metric-based Direct Preference Optimization for Dense Video Captioning
Despite the advancements of Video Large Language Models (VideoLLMs) in various tasks, they struggle with fine-grained temporal understanding, such as Dense Video Captioning (DVC). DVC is a complicated task of describing all events within a video while also temporally localizing them, which integrates multiple fine-grained tasks, including video segmentation, video captioning, and temporal video grounding. Previous VideoLLMs attempt to solve DVC in a single step, failing to utilize their reasoning capability. Moreover, previous training objectives for VideoLLMs do not fully reflect the evaluation metrics, therefore not providing supervision directly aligned to target tasks. To address such a problem, we propose a novel framework named VidChain comprised of Chain-of-Tasks (CoTasks) and Metric-based Direct Preference Optimization (M-DPO). CoTasks decompose a complex task into a sequence of sub-tasks, allowing VideoLLMs to leverage their reasoning capabilities more effectively. M-DPO aligns a VideoLLM with evaluation metrics, providing fine-grained supervision to each task that is well-aligned with metrics. Applied to two different VideoLLMs, VidChain consistently improves their fine-grained video understanding, thereby outperforming previous VideoLLMs on two different DVC benchmarks and also on the temporal video grounding task. Code is available at https://github.com/mlvlab/VidChain.
SolidGen: An Autoregressive Model for Direct B-rep Synthesis
The Boundary representation (B-rep) format is the de-facto shape representation in computer-aided design (CAD) to model solid and sheet objects. Recent approaches to generating CAD models have focused on learning sketch-and-extrude modeling sequences that are executed by a solid modeling kernel in postprocess to recover a B-rep. In this paper we present a new approach that enables learning from and synthesizing B-reps without the need for supervision through CAD modeling sequence data. Our method SolidGen, is an autoregressive neural network that models the B-rep directly by predicting the vertices, edges, and faces using Transformer-based and pointer neural networks. Key to achieving this is our Indexed Boundary Representation that references B-rep vertices, edges and faces in a well-defined hierarchy to capture the geometric and topological relations suitable for use with machine learning. SolidGen can be easily conditioned on contexts e.g., class labels, images, and voxels thanks to its probabilistic modeling of the B-rep distribution. We demonstrate qualitatively, quantitatively, and through perceptual evaluation by human subjects that SolidGen can produce high quality, realistic CAD models.
Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization
Reinforcement Learning (RL) plays a crucial role in aligning large language models (LLMs) with human preferences and improving their ability to perform complex tasks. However, current approaches either require significant computational resources due to the use of multiple models and extensive online sampling for training (e.g., PPO) or are framed as bandit problems (e.g., DPO, DRO), which often struggle with multi-step reasoning tasks, such as math problem-solving and complex reasoning that involve long chains of thought. To overcome these limitations, we introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model. The MDP formulation of DQO offers structural advantages over bandit-based methods, enabling more effective process supervision. Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
SONAR-SLT: Multilingual Sign Language Translation via Language-Agnostic Sentence Embedding Supervision
Sign language translation (SLT) is typically trained with text in a single spoken language, which limits scalability and cross-language generalization. Earlier approaches have replaced gloss supervision with text-based sentence embeddings, but up to now, these remain tied to a specific language and modality. In contrast, here we employ language-agnostic, multimodal embeddings trained on text and speech from multiple languages to supervise SLT, enabling direct multilingual translation. To address data scarcity, we propose a coupled augmentation method that combines multilingual target augmentations (i.e. translations into many languages) with video-level perturbations, improving model robustness. Experiments show consistent BLEURT gains over text-only sentence embedding supervision, with larger improvements in low-resource settings. Our results demonstrate that language-agnostic embedding supervision, combined with coupled augmentation, provides a scalable and semantically robust alternative to traditional SLT training.
Accurate and Complete Surface Reconstruction from 3D Gaussians via Direct SDF Learning
3D Gaussian Splatting (3DGS) has recently emerged as a powerful paradigm for photorealistic view synthesis, representing scenes with spatially distributed Gaussian primitives. While highly effective for rendering, achieving accurate and complete surface reconstruction remains challenging due to the unstructured nature of the representation and the absence of explicit geometric supervision. In this work, we propose DiGS, a unified framework that embeds Signed Distance Field (SDF) learning directly into the 3DGS pipeline, thereby enforcing strong and interpretable surface priors. By associating each Gaussian with a learnable SDF value, DiGS explicitly aligns primitives with underlying geometry and improves cross-view consistency. To further ensure dense and coherent coverage, we design a geometry-guided grid growth strategy that adaptively distributes Gaussians along geometry-consistent regions under a multi-scale hierarchy. Extensive experiments on standard benchmarks, including DTU, Mip-NeRF 360, and Tanks& Temples, demonstrate that DiGS consistently improves reconstruction accuracy and completeness while retaining high rendering fidelity.
Temporal Grounding as a Learning Signal for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment and track objects in videos based on natural language expressions, requiring precise alignment between visual content and textual queries. However, existing methods often suffer from semantic misalignment, largely due to indiscriminate frame sampling and supervision of all visible objects during training -- regardless of their actual relevance to the expression. We identify the core problem as the absence of an explicit temporal learning signal in conventional training paradigms. To address this, we introduce MeViS-M, a dataset built upon the challenging MeViS benchmark, where we manually annotate temporal spans when each object is referred to by the expression. These annotations provide a direct, semantically grounded supervision signal that was previously missing. To leverage this signal, we propose Temporally Grounded Learning (TGL), a novel learning framework that directly incorporates temporal grounding into the training process. Within this frame- work, we introduce two key strategies. First, Moment-guided Dual-path Propagation (MDP) improves both grounding and tracking by decoupling language-guided segmentation for relevant moments from language-agnostic propagation for others. Second, Object-level Selective Supervision (OSS) supervises only the objects temporally aligned with the expression in each training clip, thereby reducing semantic noise and reinforcing language-conditioned learning. Extensive experiments demonstrate that our TGL framework effectively leverages temporal signal to establish a new state-of-the-art on the challenging MeViS benchmark. We will make our code and the MeViS-M dataset publicly available.
PhysMaster: Mastering Physical Representation for Video Generation via Reinforcement Learning
Video generation models nowadays are capable of generating visually realistic videos, but often fail to adhere to physical laws, limiting their ability to generate physically plausible videos and serve as ''world models''. To address this issue, we propose PhysMaster, which captures physical knowledge as a representation for guiding video generation models to enhance their physics-awareness. Specifically, PhysMaster is based on the image-to-video task where the model is expected to predict physically plausible dynamics from the input image. Since the input image provides physical priors like relative positions and potential interactions of objects in the scenario, we devise PhysEncoder to encode physical information from it as an extra condition to inject physical knowledge into the video generation process. The lack of proper supervision on the model's physical performance beyond mere appearance motivates PhysEncoder to apply reinforcement learning with human feedback to physical representation learning, which leverages feedback from generation models to optimize physical representations with Direct Preference Optimization (DPO) in an end-to-end manner. PhysMaster provides a feasible solution for improving physics-awareness of PhysEncoder and thus of video generation, proving its ability on a simple proxy task and generalizability to wide-ranging physical scenarios. This implies that our PhysMaster, which unifies solutions for various physical processes via representation learning in the reinforcement learning paradigm, can act as a generic and plug-in solution for physics-aware video generation and broader applications.
DirectSwap: Mask-Free Cross-Identity Training and Benchmarking for Expression-Consistent Video Head Swapping
Video head swapping aims to replace the entire head of a video subject, including facial identity, head shape, and hairstyle, with that of a reference image, while preserving the target body, background, and motion dynamics. Due to the lack of ground-truth paired swapping data, prior methods typically train on cross-frame pairs of the same person within a video and rely on mask-based inpainting to mitigate identity leakage. Beyond potential boundary artifacts, this paradigm struggles to recover essential cues occluded by the mask, such as facial pose, expressions, and motion dynamics. To address these issues, we prompt a video editing model to synthesize new heads for existing videos as fake swapping inputs, while maintaining frame-synchronized facial poses and expressions. This yields HeadSwapBench, the first cross-identity paired dataset for video head swapping, which supports both training ( videos) and benchmarking ( videos) with genuine outputs. Leveraging this paired supervision, we propose DirectSwap, a mask-free, direct video head-swapping framework that extends an image U-Net into a video diffusion model with a motion module and conditioning inputs. Furthermore, we introduce the Motion- and Expression-Aware Reconstruction (MEAR) loss, which reweights the diffusion loss per pixel using frame-difference magnitudes and facial-landmark proximity, thereby enhancing cross-frame coherence in motion and expressions. Extensive experiments demonstrate that DirectSwap achieves state-of-the-art visual quality, identity fidelity, and motion and expression consistency across diverse in-the-wild video scenes. We will release the source code and the HeadSwapBench dataset to facilitate future research.
AMOR: A Recipe for Building Adaptable Modular Knowledge Agents Through Process Feedback
The notable success of large language models (LLMs) has sparked an upsurge in building language agents to complete various complex tasks. We present AMOR, an agent framework based on open-source LLMs, which reasons with external knowledge bases and adapts to specific domains through human supervision to the reasoning process. AMOR builds reasoning logic over a finite state machine (FSM) that solves problems through autonomous executions and transitions over disentangled modules. This allows humans to provide direct feedback to the individual modules, and thus naturally forms process supervision. Based on this reasoning and feedback framework, we develop AMOR through two-stage fine-tuning: warm-up and adaptation. The former fine-tunes the LLM with examples automatically constructed from various public datasets, enabling AMOR to generalize across different knowledge environments, while the latter tailors AMOR to specific domains using process feedback. Extensive experiments across multiple domains demonstrate the advantage of AMOR to strong baselines, thanks to its FSM-based reasoning and process feedback mechanism. The code and data are publicly available at https://github.com/JianGuanTHU/AMOR.
From Perception to Punchline: Empowering VLM with the Art of In-the-wild Meme
Generating humorous memes is a challenging multimodal task that moves beyond direct image-to-caption supervision. It requires a nuanced reasoning over visual content, contextual cues, and subjective humor. To bridge this gap between visual perception and humorous punchline creation, we propose HUMOR}, a novel framework that guides VLMs through hierarchical reasoning and aligns them with group-wise human preferences. First, HUMOR employs a hierarchical, multi-path Chain-of-Thought (CoT): the model begins by identifying a template-level intent, then explores diverse reasoning paths under different contexts, and finally anchors onto a high-quality, context-specific path. This CoT supervision, which traces back from ground-truth captions, enhances reasoning diversity. We further analyze that this multi-path exploration with anchoring maintains a high expected humor quality, under the practical condition that high-quality paths retain significant probability mass. Second, to capture subjective humor, we train a pairwise reward model that operates within groups of memes sharing the same template. Following established theory, this approach ensures a consistent and robust proxy for human preference, even with subjective and noisy labels. The reward model then enables a group-wise reinforcement learning optimization, guaranteeing providing a theoretical guarantee for monotonic improvement within the trust region. Extensive experiments show that HUMOR empowers various VLMs with superior reasoning diversity, more reliable preference alignment, and higher overall meme quality. Beyond memes, our work presents a general training paradigm for open-ended, human-aligned multimodal generation, where success is guided by comparative judgment within coherent output group.
Silkie: Preference Distillation for Large Visual Language Models
This paper explores preference distillation for large vision language models (LVLMs), improving their ability to generate helpful and faithful responses anchoring the visual context. We first build a vision-language feedback (VLFeedback) dataset utilizing AI annotation. Specifically, responses are generated by models sampled from 12 LVLMs, conditioned on multi-modal instructions sourced from various datasets. We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations. Furthermore, the preference supervision is distilled into Qwen-VL-Chat through the direct preference optimization (DPO) method. The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities, respectively. Silkie also demonstrates reduced hallucination by setting a new state-of-the-art score of 3.02 on the MMHal-Bench benchmark. Further analysis shows that DPO with our VLFeedback dataset mainly boosts the fine-grained perception and complex cognition abilities of LVLMs, leading to more comprehensive improvements compared to human-annotated preference datasets.
VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment
As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis
We propose GRGS, a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions. Unlike existing methods that rely on per-character optimization or ignore physical constraints, GRGS adopts a feed-forward, fully supervised strategy projecting geometry, material, and illumination cues from multi-view 2D observations into 3D Gaussian representations. To recover accurate geometry under diverse lighting conditions, we introduce a Lighting-robust Geometry Refinement (LGR) module trained on synthetically relit data to predict precise depth and surface normals. Based on the high-quality geometry, a Physically Grounded Neural Rendering (PGNR) module is further proposed to integrate neural prediction with physics-based shading, supporting editable relighting with shadows and indirect illumination. Moreover, we design a 2D-to-3D projection training scheme leveraging differentiable supervision from ambient occlusion, direct, and indirect lighting maps, alleviating the computational cost of ray tracing. Extensive experiments demonstrate that GRGS achieves superior visual quality, geometric consistency, and generalization across characters and lighting conditions.
FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding
As CLIP's global alignment limits its ability to capture fine-grained details, recent efforts have focused on enhancing its region-text alignment. However, current remote sensing (RS)-specific CLIP variants still inherit this limited spatial awareness. We identify two key limitations behind this: (1) current RS image-text datasets generate global captions from object-level labels, leaving the original object-level supervision underutilized; (2) despite the success of region-text alignment methods in general domain, their direct application to RS data often leads to performance degradation. To address these, we construct the first multi-granularity RS image-text dataset, MGRS-200k, featuring rich object-level textual supervision for RS region-category alignment. We further investigate existing fine-grained CLIP tuning strategies and find that current explicit region-text alignment methods, whether in a direct or indirect way, underperform due to severe degradation of CLIP's semantic coherence. Building on these, we propose FarSLIP, a Fine-grained Aligned RS Language-Image Pretraining framework. Rather than the commonly used patch-to-CLS self-distillation, FarSLIP employs patch-to-patch distillation to align local and global visual cues, which improves feature discriminability while preserving semantic coherence. Additionally, to effectively utilize region-text supervision, it employs simple CLS token-based region-category alignment rather than explicit patch-level alignment, further enhancing spatial awareness. FarSLIP features improved fine-grained vision-language alignment in RS domain and sets a new state of the art not only on RS open-vocabulary semantic segmentation, but also on image-level tasks such as zero-shot classification and image-text retrieval. Our dataset, code, and models are available at https://github.com/NJU-LHRS/FarSLIP.
MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting
Surface reconstruction has been widely studied in computer vision and graphics. However, existing surface reconstruction works struggle to recover accurate scene geometry when the input views are extremely sparse. To address this issue, we propose MeshSplat, a generalizable sparse-view surface reconstruction framework via Gaussian Splatting. Our key idea is to leverage 2DGS as a bridge, which connects novel view synthesis to learned geometric priors and then transfers these priors to achieve surface reconstruction. Specifically, we incorporate a feed-forward network to predict per-view pixel-aligned 2DGS, which enables the network to synthesize novel view images and thus eliminates the need for direct 3D ground-truth supervision. To improve the accuracy of 2DGS position and orientation prediction, we propose a Weighted Chamfer Distance Loss to regularize the depth maps, especially in overlapping areas of input views, and also a normal prediction network to align the orientation of 2DGS with normal vectors predicted by a monocular normal estimator. Extensive experiments validate the effectiveness of our proposed improvement, demonstrating that our method achieves state-of-the-art performance in generalizable sparse-view mesh reconstruction tasks. Project Page: https://hanzhichang.github.io/meshsplat_web
KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at https://github.com/vboussot/KonfAI{https://github.com/vboussot/KonfAI}.
PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples
We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.
Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques including SFT and RLHF face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become untenable when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) critique of critique can be easier than critique itself, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) this difficulty relationship is recursively held, suggesting that when direct evaluation is infeasible, performing high-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. To examine these hypotheses, we perform Human-Human, Human-AI, and AI-AI experiments across multiple tasks. Our results demonstrate encouraging evidence supporting these hypotheses and suggest that recursive self-critiquing is a promising direction for scalable oversight.
DiS-ReX: A Multilingual Dataset for Distantly Supervised Relation Extraction
Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a single language inhibits utilization of large amounts of data in other languages which could allow extraction of more diverse facts. Very recently, a dataset for multilingual DS-RE has been released. However, our analysis reveals that the proposed dataset exhibits unrealistic characteristics such as 1) lack of sentences that do not express any relation, and 2) all sentences for a given entity pair expressing exactly one relation. We show that these characteristics lead to a gross overestimation of the model performance. In response, we propose a new dataset, DiS-ReX, which alleviates these issues. Our dataset has more than 1.5 million sentences, spanning across 4 languages with 36 relation classes + 1 no relation (NA) class. We also modify the widely used bag attention models by encoding sentences using mBERT and provide the first benchmark results on multilingual DS-RE. Unlike the competing dataset, we show that our dataset is challenging and leaves enough room for future research to take place in this field.
Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning
In this paper, we propose R^3: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R^3 overcomes these limitations by learning from correct demonstrations. Specifically, R^3 progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R^3 establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by 4.1 points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by 4.2 points across three backbone models, and without any extra data, Codellama-7B + R^3 performs comparable to larger models or closed-source models.
Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors
Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
Contrastive Deep Supervision
The success of deep learning is usually accompanied by the growth in neural network depth. However, the traditional training method only supervises the neural network at its last layer and propagates the supervision layer-by-layer, which leads to hardship in optimizing the intermediate layers. Recently, deep supervision has been proposed to add auxiliary classifiers to the intermediate layers of deep neural networks. By optimizing these auxiliary classifiers with the supervised task loss, the supervision can be applied to the shallow layers directly. However, deep supervision conflicts with the well-known observation that the shallow layers learn low-level features instead of task-biased high-level semantic features. To address this issue, this paper proposes a novel training framework named Contrastive Deep Supervision, which supervises the intermediate layers with augmentation-based contrastive learning. Experimental results on nine popular datasets with eleven models demonstrate its effects on general image classification, fine-grained image classification and object detection in supervised learning, semi-supervised learning and knowledge distillation. Codes have been released in Github.
Solving math word problems with process- and outcome-based feedback
Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks. When moving beyond prompting, this raises the question of how we should supervise such models: outcome-based approaches which supervise the final result, or process-based approaches which supervise the reasoning process itself? Differences between these approaches might naturally be expected not just in final-answer errors but also in reasoning errors, which can be difficult to detect and are problematic in many real-world domains such as education. We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task, GSM8K. We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision. However, for correct reasoning steps we find it necessary to use process-based supervision or supervision from learned reward models that emulate process-based feedback. In total, we improve the previous best results from 16.8% to 12.7% final-answer error and 14.0% to 3.4% reasoning error among final-answer-correct solutions.
Investigating the Impact of Direct Punishment on the Emergence of Cooperation in Multi-Agent Reinforcement Learning Systems
Solving the problem of cooperation is fundamentally important for the creation and maintenance of functional societies. Problems of cooperation are omnipresent within human society, with examples ranging from navigating busy road junctions to negotiating treaties. As the use of AI becomes more pervasive throughout society, the need for socially intelligent agents capable of navigating these complex cooperative dilemmas is becoming increasingly evident. Direct punishment is a ubiquitous social mechanism that has been shown to foster the emergence of cooperation in both humans and non-humans. In the natural world, direct punishment is often strongly coupled with partner selection and reputation and used in conjunction with third-party punishment. The interactions between these mechanisms could potentially enhance the emergence of cooperation within populations. However, no previous work has evaluated the learning dynamics and outcomes emerging from Multi-Agent Reinforcement Learning (MARL) populations that combine these mechanisms. This paper addresses this gap. It presents a comprehensive analysis and evaluation of the behaviors and learning dynamics associated with direct punishment, third-party punishment, partner selection, and reputation. Finally, we discuss the implications of using these mechanisms on the design of cooperative AI systems.
LuciBot: Automated Robot Policy Learning from Generated Videos
Automatically generating training supervision for embodied tasks is crucial, as manual designing is tedious and not scalable. While prior works use large language models (LLMs) or vision-language models (VLMs) to generate rewards, these approaches are largely limited to simple tasks with well-defined rewards, such as pick-and-place. This limitation arises because LLMs struggle to interpret complex scenes compressed into text or code due to their restricted input modality, while VLM-based rewards, though better at visual perception, remain limited by their less expressive output modality. To address these challenges, we leverage the imagination capability of general-purpose video generation models. Given an initial simulation frame and a textual task description, the video generation model produces a video demonstrating task completion with correct semantics. We then extract rich supervisory signals from the generated video, including 6D object pose sequences, 2D segmentations, and estimated depth, to facilitate task learning in simulation. Our approach significantly improves supervision quality for complex embodied tasks, enabling large-scale training in simulators.
Let's Verify Step by Step
In recent years, large language models have greatly improved in their ability to perform complex multi-step reasoning. However, even state-of-the-art models still regularly produce logical mistakes. To train more reliable models, we can turn either to outcome supervision, which provides feedback for a final result, or process supervision, which provides feedback for each intermediate reasoning step. Given the importance of training reliable models, and given the high cost of human feedback, it is important to carefully compare the both methods. Recent work has already begun this comparison, but many questions still remain. We conduct our own investigation, finding that process supervision significantly outperforms outcome supervision for training models to solve problems from the challenging MATH dataset. Our process-supervised model solves 78% of problems from a representative subset of the MATH test set. Additionally, we show that active learning significantly improves the efficacy of process supervision. To support related research, we also release PRM800K, the complete dataset of 800,000 step-level human feedback labels used to train our best reward model.
Understanding self-supervised Learning Dynamics without Contrastive Pairs
While contrastive approaches of self-supervised learning (SSL) learn representations by minimizing the distance between two augmented views of the same data point (positive pairs) and maximizing views from different data points (negative pairs), recent non-contrastive SSL (e.g., BYOL and SimSiam) show remarkable performance {\it without} negative pairs, with an extra learnable predictor and a stop-gradient operation. A fundamental question arises: why do these methods not collapse into trivial representations? We answer this question via a simple theoretical study and propose a novel approach, DirectPred, that directly sets the linear predictor based on the statistics of its inputs, without gradient training. On ImageNet, it performs comparably with more complex two-layer non-linear predictors that employ BatchNorm and outperforms a linear predictor by 2.5% in 300-epoch training (and 5% in 60-epoch). DirectPred is motivated by our theoretical study of the nonlinear learning dynamics of non-contrastive SSL in simple linear networks. Our study yields conceptual insights into how non-contrastive SSL methods learn, how they avoid representational collapse, and how multiple factors, like predictor networks, stop-gradients, exponential moving averages, and weight decay all come into play. Our simple theory recapitulates the results of real-world ablation studies in both STL-10 and ImageNet. Code is released https://github.com/facebookresearch/luckmatters/tree/master/ssl.
Future-as-Label: Scalable Supervision from Real-World Outcomes
Many real-world prediction problems lack labels observable at prediction time, creating a temporal gap between prediction and outcome that yields supervision only after events resolve. To address this setting, we extend reinforcement learning with verifiable rewards to temporally resolved real-world prediction, and use it to train language models to make probabilistic forecasts under causally masked information with retrospective evaluation using proper scoring rules. Supervision is derived solely from post-resolution outcomes, preserving delayed-reward semantics. On real-world forecasting benchmarks, Qwen3-32B trained using Foresight Learning improves Brier score by 27% and halves calibration error relative to its pretrained baseline, and outperforms Qwen3-235B on both constructed future-event prediction tasks and the Metaculus benchmark despite a 7x parameter disadvantage.
Guiding Through Complexity: What Makes Good Supervision for Hard Reasoning Tasks?
How can "weak teacher models" such as average human annotators or existing AI systems, effectively supervise LLMs to improve performance on hard reasoning tasks, especially those that challenge and requires expertise or daily practice from the teacher models? In this paper, we seek for empirical answers to this question by investigating various data-driven strategies that offer supervision data at different quality levels upon tasks of varying complexity. Two intuitive strategies emerge for teacher models to provide supervision during alignment training: 1) using lower-quality supervision from complete tasks that match the difficulty of the target reasoning tasks, and 2) leveraging higher-quality supervision from easier subtasks that are less challenging. Interestingly, we find that even when the outcome error rate for hard task supervision is high (e.g., 90\%), training on such data can outperform perfectly correct supervision on easier subtasks on multiple hard math benchmarks. We further identify a more critical factor influencing training performance: step-wise error rates, which indicate the severity of errors in solutions. Specifically, training on hard task supervision with the same outcome error rates but disparate step-wise error rates can lead to a 30\% accuracy gap on MATH benchmark. Our results also reveal that supplementing hard task supervision with the corresponding subtask supervision can yield notable performance improvements than simply combining rephrased hard full task supervision, suggesting new avenues for data augmentation. Data and code are released at https://github.com/hexuan21/Weak-to-Strong.
Learning Transferable Visual Models From Natural Language Supervision
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
Improving Distantly Supervised Relation Extraction using Word and Entity Based Attention
Relation extraction is the problem of classifying the relationship between two entities in a given sentence. Distant Supervision (DS) is a popular technique for developing relation extractors starting with limited supervision. We note that most of the sentences in the distant supervision relation extraction setting are very long and may benefit from word attention for better sentence representation. Our contributions in this paper are threefold. Firstly, we propose two novel word attention models for distantly- supervised relation extraction: (1) a Bi-directional Gated Recurrent Unit (Bi-GRU) based word attention model (BGWA), (2) an entity-centric attention model (EA), and (3) a combination model which combines multiple complementary models using weighted voting method for improved relation extraction. Secondly, we introduce GDS, a new distant supervision dataset for relation extraction. GDS removes test data noise present in all previous distant- supervision benchmark datasets, making credible automatic evaluation possible. Thirdly, through extensive experiments on multiple real-world datasets, we demonstrate the effectiveness of the proposed methods.
TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
We introduce TableLLM, a robust large language model (LLM) with 13 billion parameters, purpose-built for proficiently handling tabular data manipulation tasks, whether they are embedded within documents or spreadsheets, catering to real-world office scenarios. We propose a distant supervision method for training, which comprises a reasoning process extension strategy, aiding in training LLMs to understand reasoning patterns more effectively as well as a cross-way validation strategy, ensuring the quality of the automatically generated data. To evaluate the performance of TableLLM, we have crafted a benchmark tailored to address both document and spreadsheet formats as well as constructed a well-organized evaluation pipeline capable of handling both scenarios. Thorough evaluations underscore the advantages of TableLLM when compared to various existing general-purpose and tabular data-focused LLMs. We have publicly released the model checkpoint, source code, benchmarks, and a web application for user interaction.
Attention-Based LSTM for Psychological Stress Detection from Spoken Language Using Distant Supervision
We propose a Long Short-Term Memory (LSTM) with attention mechanism to classify psychological stress from self-conducted interview transcriptions. We apply distant supervision by automatically labeling tweets based on their hashtag content, which complements and expands the size of our corpus. This additional data is used to initialize the model parameters, and which it is fine-tuned using the interview data. This improves the model's robustness, especially by expanding the vocabulary size. The bidirectional LSTM model with attention is found to be the best model in terms of accuracy (74.1%) and f-score (74.3%). Furthermore, we show that distant supervision fine-tuning enhances the model's performance by 1.6% accuracy and 2.1% f-score. The attention mechanism helps the model to select informative words.
Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled Datasets
Enabling robots to learn novel visuomotor skills in a data-efficient manner remains an unsolved problem with myriad challenges. A popular paradigm for tackling this problem is through leveraging large unlabeled datasets that have many behaviors in them and then adapting a policy to a specific task using a small amount of task-specific human supervision (i.e. interventions or demonstrations). However, how best to leverage the narrow task-specific supervision and balance it with offline data remains an open question. Our key insight in this work is that task-specific data not only provides new data for an agent to train on but can also inform the type of prior data the agent should use for learning. Concretely, we propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset (including many sub-optimal behaviors). The agent is then jointly trained on the expert and queried data. We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data. By doing so, it is able to learn more effectively from the mix of task-specific and offline data compared to naively mixing the data or only using the task-specific data. Furthermore, we find that our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images. See https://sites.google.com/view/behaviorretrieval for videos and code.
Self-Supervised Policy Adaptation during Deployment
In most real world scenarios, a policy trained by reinforcement learning in one environment needs to be deployed in another, potentially quite different environment. However, generalization across different environments is known to be hard. A natural solution would be to keep training after deployment in the new environment, but this cannot be done if the new environment offers no reward signal. Our work explores the use of self-supervision to allow the policy to continue training after deployment without using any rewards. While previous methods explicitly anticipate changes in the new environment, we assume no prior knowledge of those changes yet still obtain significant improvements. Empirical evaluations are performed on diverse simulation environments from DeepMind Control suite and ViZDoom, as well as real robotic manipulation tasks in continuously changing environments, taking observations from an uncalibrated camera. Our method improves generalization in 31 out of 36 environments across various tasks and outperforms domain randomization on a majority of environments.
Supervised Chain of Thought
Large Language Models (LLMs) have revolutionized natural language processing and hold immense potential for advancing Artificial Intelligence. However, the core architecture of most mainstream LLMs -- the Transformer -- has inherent limitations in computational depth, rendering them theoretically incapable of solving many reasoning tasks that demand increasingly deep computations. Chain of Thought (CoT) prompting has emerged as a technique to address these architectural limitations, as evidenced by several theoretical studies. It offers a promising approach to solving complex reasoning tasks that were previously beyond the capabilities of these models. Despite its successes, CoT and its variants (such as Tree of Thought, Graph of Thought, etc.) rely on a "one-prompt-for-all" approach, using a single prompt structure (e.g., "think step by step") for a wide range of tasks -- from counting and sorting to solving mathematical and algorithmic problems. This approach poses significant challenges for models to generate the correct reasoning steps, as the model must navigate through a vast prompt template space to find the appropriate template for each task. In this work, we build upon previous theoretical analyses of CoT to demonstrate how the one-prompt-for-all approach can negatively affect the computability of LLMs. We partition the solution search space into two: the prompt space and the answer space. Our findings show that task-specific supervision is essential for navigating the prompt space accurately and achieving optimal performance. Through experiments with state-of-the-art LLMs, we reveal a gap in reasoning performance when supervision is applied versus when it is not.
Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer
Generating high-quality 3D assets from text and images has long been challenging, primarily due to the absence of scalable 3D representations capable of capturing intricate geometry distributions. In this work, we introduce Direct3D, a native 3D generative model scalable to in-the-wild input images, without requiring a multiview diffusion model or SDS optimization. Our approach comprises two primary components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D Diffusion Transformer (D3D-DiT). D3D-VAE efficiently encodes high-resolution 3D shapes into a compact and continuous latent triplane space. Notably, our method directly supervises the decoded geometry using a semi-continuous surface sampling strategy, diverging from previous methods relying on rendered images as supervision signals. D3D-DiT models the distribution of encoded 3D latents and is specifically designed to fuse positional information from the three feature maps of the triplane latent, enabling a native 3D generative model scalable to large-scale 3D datasets. Additionally, we introduce an innovative image-to-3D generation pipeline incorporating semantic and pixel-level image conditions, allowing the model to produce 3D shapes consistent with the provided conditional image input. Extensive experiments demonstrate the superiority of our large-scale pre-trained Direct3D over previous image-to-3D approaches, achieving significantly better generation quality and generalization ability, thus establishing a new state-of-the-art for 3D content creation. Project page: https://nju-3dv.github.io/projects/Direct3D/.
Successive Prompting for Decomposing Complex Questions
Answering complex questions that require making latent decisions is a challenging task, especially when limited supervision is available. Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting by demonstrating how to output intermediate rationalizations while solving the complex question in a single pass. We introduce ``Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution. Successive prompting decouples the supervision for decomposing complex questions from the supervision for answering simple questions, allowing us to (1) have multiple opportunities to query in-context examples at each reasoning step (2) learn question decomposition separately from question answering, including using synthetic data, and (3) use bespoke (fine-tuned) components for reasoning steps where a large LM does not perform well. The intermediate supervision is typically manually written, which can be expensive to collect. We introduce a way to generate a synthetic dataset which can be used to bootstrap a model's ability to decompose and answer intermediate questions. Our best model (with successive prompting) achieves an improvement of ~5% absolute F1 on a few-shot version of the DROP dataset when compared with a state-of-the-art model with the same supervision.
Self-supervised Learning of Geometrically Stable Features Through Probabilistic Introspection
Self-supervision can dramatically cut back the amount of manually-labelled data required to train deep neural networks. While self-supervision has usually been considered for tasks such as image classification, in this paper we aim at extending it to geometry-oriented tasks such as semantic matching and part detection. We do so by building on several recent ideas in unsupervised landmark detection. Our approach learns dense distinctive visual descriptors from an unlabelled dataset of images using synthetic image transformations. It does so by means of a robust probabilistic formulation that can introspectively determine which image regions are likely to result in stable image matching. We show empirically that a network pre-trained in this manner requires significantly less supervision to learn semantic object parts compared to numerous pre-training alternatives. We also show that the pre-trained representation is excellent for semantic object matching.
Improving In-Context Few-Shot Learning via Self-Supervised Training
Self-supervised pretraining has made few-shot learning possible for many NLP tasks. But the pretraining objectives are not typically adapted specifically for in-context few-shot learning. In this paper, we propose to use self-supervision in an intermediate training stage between pretraining and downstream few-shot usage with the goal to teach the model to perform in-context few shot learning. We propose and evaluate four self-supervised objectives on two benchmarks. We find that the intermediate self-supervision stage produces models that outperform strong baselines. Ablation study shows that several factors affect the downstream performance, such as the amount of training data and the diversity of the self-supervised objectives. Human-annotated cross-task supervision and self-supervision are complementary. Qualitative analysis suggests that the self-supervised-trained models are better at following task requirements.
MedDistant19: Towards an Accurate Benchmark for Broad-Coverage Biomedical Relation Extraction
Relation extraction in the biomedical domain is challenging due to the lack of labeled data and high annotation costs, needing domain experts. Distant supervision is commonly used to tackle the scarcity of annotated data by automatically pairing knowledge graph relationships with raw texts. Such a pipeline is prone to noise and has added challenges to scale for covering a large number of biomedical concepts. We investigated existing broad-coverage distantly supervised biomedical relation extraction benchmarks and found a significant overlap between training and test relationships ranging from 26% to 86%. Furthermore, we noticed several inconsistencies in the data construction process of these benchmarks, and where there is no train-test leakage, the focus is on interactions between narrower entity types. This work presents a more accurate benchmark MedDistant19 for broad-coverage distantly supervised biomedical relation extraction that addresses these shortcomings and is obtained by aligning the MEDLINE abstracts with the widely used SNOMED Clinical Terms knowledge base. Lacking thorough evaluation with domain-specific language models, we also conduct experiments validating general domain relation extraction findings to biomedical relation extraction.
ScriptoriumWS: A Code Generation Assistant for Weak Supervision
Weak supervision is a popular framework for overcoming the labeled data bottleneck: the need to obtain labels for training data. In weak supervision, multiple noisy-but-cheap sources are used to provide guesses of the label and are aggregated to produce high-quality pseudolabels. These sources are often expressed as small programs written by domain experts -- and so are expensive to obtain. Instead, we argue for using code-generation models to act as coding assistants for crafting weak supervision sources. We study prompting strategies to maximize the quality of the generated sources, settling on a multi-tier strategy that incorporates multiple types of information. We explore how to best combine hand-written and generated sources. Using these insights, we introduce ScriptoriumWS, a weak supervision system that, when compared to hand-crafted sources, maintains accuracy and greatly improves coverage.
Improve Mathematical Reasoning in Language Models by Automated Process Supervision
Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4\% success rate on the MATH benchmark, a 36\% relative improvement from the 51\% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods.
Design of Negative Sampling Strategies for Distantly Supervised Skill Extraction
Skills play a central role in the job market and many human resources (HR) processes. In the wake of other digital experiences, today's online job market has candidates expecting to see the right opportunities based on their skill set. Similarly, enterprises increasingly need to use data to guarantee that the skills within their workforce remain future-proof. However, structured information about skills is often missing, and processes building on self- or manager-assessment have shown to struggle with issues around adoption, completeness, and freshness of the resulting data. Extracting skills is a highly challenging task, given the many thousands of possible skill labels mentioned either explicitly or merely described implicitly and the lack of finely annotated training corpora. Previous work on skill extraction overly simplifies the task to an explicit entity detection task or builds on manually annotated training data that would be infeasible if applied to a complete vocabulary of skills. We propose an end-to-end system for skill extraction, based on distant supervision through literal matching. We propose and evaluate several negative sampling strategies, tuned on a small validation dataset, to improve the generalization of skill extraction towards implicitly mentioned skills, despite the lack of such implicit skills in the distantly supervised data. We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements, and combining three different strategies in one model further increases the performance, up to 8 percentage points in RP@5. We introduce a manually annotated evaluation benchmark for skill extraction based on the ESCO taxonomy, on which we validate our models. We release the benchmark dataset for research purposes to stimulate further research on the task.
ANEA: Distant Supervision for Low-Resource Named Entity Recognition
Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. In this work, we present ANEA, a tool to automatically annotate named entities in texts based on entity lists. It spans the whole pipeline from obtaining the lists to analyzing the errors of the distant supervision. A tuning step allows the user to improve the automatic annotation with their linguistic insights without labelling or checking all tokens manually. In six low-resource scenarios, we show that the F1-score can be increased by on average 18 points through distantly supervised data obtained by ANEA.
A critical analysis of self-supervision, or what we can learn from a single image
We look critically at popular self-supervision techniques for learning deep convolutional neural networks without manual labels. We show that three different and representative methods, BiGAN, RotNet and DeepCluster, can learn the first few layers of a convolutional network from a single image as well as using millions of images and manual labels, provided that strong data augmentation is used. However, for deeper layers the gap with manual supervision cannot be closed even if millions of unlabelled images are used for training. We conclude that: (1) the weights of the early layers of deep networks contain limited information about the statistics of natural images, that (2) such low-level statistics can be learned through self-supervision just as well as through strong supervision, and that (3) the low-level statistics can be captured via synthetic transformations instead of using a large image dataset.
Compute as Teacher: Turning Inference Compute Into Reference-Free Supervision
Where do learning signals come from when there is no ground truth in post-training? We propose turning exploration into supervision through Compute as Teacher (CaT), which converts the model's own exploration at inference-time into reference-free supervision by synthesizing a single reference from a group of parallel rollouts and then optimizing toward it. Concretely, the current policy produces a group of rollouts; a frozen anchor (the initial policy) reconciles omissions and contradictions to estimate a reference, turning extra inference-time compute into a teacher signal. We turn this into rewards in two regimes: (i) verifiable tasks use programmatic equivalence on final answers; (ii) non-verifiable tasks use self-proposed rubrics-binary, auditable criteria scored by an independent LLM judge, with reward given by the fraction satisfied. Unlike selection methods (best-of-N, majority, perplexity, or judge scores), synthesis may disagree with the majority and be correct even when all rollouts are wrong; performance scales with the number of rollouts. As a test-time procedure, CaT improves Gemma 3 4B, Qwen 3 4B, and Llama 3.1 8B (up to +27% on MATH-500; +12% on HealthBench). With reinforcement learning (CaT-RL), we obtain further gains (up to +33% and +30%), with the trained policy surpassing the initial teacher signal.
Debate Helps Weak-to-Strong Generalization
Common methods for aligning already-capable models with desired behavior rely on the ability of humans to provide supervision. However, future superhuman models will surpass the capability of humans. Therefore, humans will only be able to weakly supervise superhuman models. This expected deficiency of human evaluation would weaken the safety of future AI systems. Scalable oversight and weak-to-strong generalization are two complementary approaches to tackle this issue. In this paper, we attempt to combine the strengths of these two approaches to further improve alignment. Specifically, we investigate ways of improving human supervision with a strong pretrained model and then supervise the strong model with enhanced weak human supervision. To make iterative empirical progress, we consider an analogy: can we use a strong model to improve weak model supervision and then use it to supervise the strong model? We empirically test it by finetuning a small weak model on ground truth labels with the additional help from a large strong model, and then finetuning the strong model on labels generated by the weak model. We find that debate can assist a weak model in extracting trustworthy information from an untrustworthy strong model, which provides leverage as context on samples when training a weak model. We also show that an ensemble of weak models helps exploit long arguments generated by strong model debaters and obtain a more robust supervision estimate. Extensive experiments on the OpenAI weak-to-strong NLP benchmarks show that the combination approach leads to better alignment, which indicates that debate has the potential to help weak-to-strong generalization.
Suppressing Pink Elephants with Direct Principle Feedback
Existing methods for controlling language models, such as RLHF and Constitutional AI, involve determining which LLM behaviors are desirable and training them into a language model. However, in many cases, it is desirable for LLMs to be controllable at inference time, so that they can be used in multiple contexts with diverse needs. We illustrate this with the Pink Elephant Problem: instructing an LLM to avoid discussing a certain entity (a ``Pink Elephant''), and instead discuss a preferred entity (``Grey Elephant''). We apply a novel simplification of Constitutional AI, Direct Principle Feedback, which skips the ranking of responses and uses DPO directly on critiques and revisions. Our results show that after DPF fine-tuning on our synthetic Pink Elephants dataset, our 13B fine-tuned LLaMA 2 model significantly outperforms Llama-2-13B-Chat and a prompted baseline, and performs as well as GPT-4 in on our curated test set assessing the Pink Elephant Problem.
Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
Helping the Helper: Supporting Peer Counselors via AI-Empowered Practice and Feedback
Millions of users come to online peer counseling platforms to seek support on diverse topics ranging from relationship stress to anxiety. However, studies show that online peer support groups are not always as effective as expected largely due to users' negative experiences with unhelpful counselors. Peer counselors are key to the success of online peer counseling platforms, but most of them often do not have systematic ways to receive guidelines or supervision. In this work, we introduce CARE: an interactive AI-based tool to empower peer counselors through automatic suggestion generation. During the practical training stage, CARE helps diagnose which specific counseling strategies are most suitable in the given context and provides tailored example responses as suggestions. Counselors can choose to select, modify, or ignore any suggestion before replying to the support seeker. Building upon the Motivational Interviewing framework, CARE utilizes large-scale counseling conversation data together with advanced natural language generation techniques to achieve these functionalities. We demonstrate the efficacy of CARE by performing both quantitative evaluations and qualitative user studies through simulated chats and semi-structured interviews. We also find that CARE especially helps novice counselors respond better in challenging situations.
Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning
Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize and provide insights into the current research on instruction learning, particularly by answering the following questions: (i) What is task instruction, and what instruction types exist? (ii) How to model instructions? (iii) What factors influence and explain the instructions' performance? (iv) What challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.
Cross-task weakly supervised learning from instructional videos
In this paper we investigate learning visual models for the steps of ordinary tasks using weak supervision via instructional narrations and an ordered list of steps instead of strong supervision via temporal annotations. At the heart of our approach is the observation that weakly supervised learning may be easier if a model shares components while learning different steps: `pour egg' should be trained jointly with other tasks involving `pour' and `egg'. We formalize this in a component model for recognizing steps and a weakly supervised learning framework that can learn this model under temporal constraints from narration and the list of steps. Past data does not permit systematic studying of sharing and so we also gather a new dataset, CrossTask, aimed at assessing cross-task sharing. Our experiments demonstrate that sharing across tasks improves performance, especially when done at the component level and that our component model can parse previously unseen tasks by virtue of its compositionality.
Grounding of Textual Phrases in Images by Reconstruction
Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.
DMotion: Robotic Visuomotor Control with Unsupervised Forward Model Learned from Videos
Learning an accurate model of the environment is essential for model-based control tasks. Existing methods in robotic visuomotor control usually learn from data with heavily labelled actions, object entities or locations, which can be demanding in many cases. To cope with this limitation, we propose a method, dubbed DMotion, that trains a forward model from video data only, via disentangling the motion of controllable agent to model the transition dynamics. An object extractor and an interaction learner are trained in an end-to-end manner without supervision. The agent's motions are explicitly represented using spatial transformation matrices containing physical meanings. In the experiments, DMotion achieves superior performance on learning an accurate forward model in a Grid World environment, as well as a more realistic robot control environment in simulation. With the accurate learned forward models, we further demonstrate their usage in model predictive control as an effective approach for robotic manipulations.
ToolComp: A Multi-Tool Reasoning & Process Supervision Benchmark
Despite recent advances in AI, the development of systems capable of executing complex, multi-step reasoning tasks involving multiple tools remains a significant challenge. Current benchmarks fall short in capturing the real-world complexity of tool-use reasoning, where verifying the correctness of not only the final answer but also the intermediate steps is important for evaluation, development, and identifying failures during inference time. To bridge this gap, we introduce ToolComp, a comprehensive benchmark designed to evaluate multi-step tool-use reasoning. ToolComp is developed through a collaboration between models and human annotators, featuring human-edited/verified prompts, final answers, and process supervision labels, allowing for the evaluation of both final outcomes and intermediate reasoning. Evaluation across six different model families demonstrates the challenging nature of our dataset, with the majority of models achieving less than 50% accuracy. Additionally, we generate synthetic training data to compare the performance of outcome-supervised reward models (ORMs) with process-supervised reward models (PRMs) to assess their ability to improve complex tool-use reasoning as evaluated by ToolComp. Our results show that PRMs generalize significantly better than ORMs, achieving a 19% and 11% improvement in rank@1 accuracy for ranking base and fine-tuned model trajectories, respectively. These findings highlight the critical role of process supervision in both the evaluation and training of AI models, paving the way for more robust and capable systems in complex, multi-step tool-use tasks.
From <Answer> to <Think>: Multidimensional Supervision of Reasoning Process for LLM Optimization
Improving the multi-step reasoning ability of Large Language Models (LLMs) is a critical yet challenging task. The dominant paradigm, outcome-supervised reinforcement learning (RLVR), rewards only correct final answers, often propagating flawed reasoning and suffering from sparse reward signals. While process-level reward models (PRMs) provide denser, step-by-step feedback, they lack generalizability and interpretability, requiring task-specific segmentation of the reasoning process. To this end, we propose the Dimension-level Reward Model (DRM), a new supervision framework that bridges the gap between these two approaches. DRM evaluates the quality of a reasoning process along three fundamental, complementary, and interpretable dimensions: Confidence for uncertainty calibration, Relevance for semantic alignment, and Coherence for logical consistency. Together, these dimensions capture aspects beyond final answer correctness and enable interpretable assessment without requiring ground truth answers. Experimental results show that DRM provides effective supervision signals, guides the optimization of LLMs and enhances their reasoning ability. In particular, DRM-supervised training achieves consistent gains on both in-distribution and out-of-distribution open-domain tasks, including mathematics, question answering, code execution, and puzzles. Our findings demonstrate that multidimensional supervision of the reasoning process can improve the generalized reasoning ability of LLMs beyond the training distribution.
Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, it is an unexplored area to enhance LLMs' ability to follow soft constraints. To bridge the gap, we initially design a pipeline to construct datasets with high-quality outputs automatically. Additionally, to fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method. Furthermore, taking into account the difficulty of soft constraints indicated by the number of constraints, we design a curriculum learning training paradigm based on the constraint quantity. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements.The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraint.
Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance
We propose BOSS, an approach that automatically learns to solve new long-horizon, complex, and meaningful tasks by growing a learned skill library with minimal supervision. Prior work in reinforcement learning require expert supervision, in the form of demonstrations or rich reward functions, to learn long-horizon tasks. Instead, our approach BOSS (BOotStrapping your own Skills) learns to accomplish new tasks by performing "skill bootstrapping," where an agent with a set of primitive skills interacts with the environment to practice new skills without receiving reward feedback for tasks outside of the initial skill set. This bootstrapping phase is guided by large language models (LLMs) that inform the agent of meaningful skills to chain together. Through this process, BOSS builds a wide range of complex and useful behaviors from a basic set of primitive skills. We demonstrate through experiments in realistic household environments that agents trained with our LLM-guided bootstrapping procedure outperform those trained with naive bootstrapping as well as prior unsupervised skill acquisition methods on zero-shot execution of unseen, long-horizon tasks in new environments. Website at clvrai.com/boss.
Direct Neural Machine Translation with Task-level Mixture of Experts models
Direct neural machine translation (direct NMT) is a type of NMT system that translates text between two non-English languages. Direct NMT systems often face limitations due to the scarcity of parallel data between non-English language pairs. Several approaches have been proposed to address this limitation, such as multilingual NMT and pivot NMT (translation between two languages via English). Task-level Mixture of expert models (Task-level MoE), an inference-efficient variation of Transformer-based models, has shown promising NMT performance for a large number of language pairs. In Task-level MoE, different language groups can use different routing strategies to optimize cross-lingual learning and inference speed. In this work, we examine Task-level MoE's applicability in direct NMT and propose a series of high-performing training and evaluation configurations, through which Task-level MoE-based direct NMT systems outperform bilingual and pivot-based models for a large number of low and high-resource direct pairs, and translation directions. Our Task-level MoE with 16 experts outperforms bilingual NMT, Pivot NMT models for 7 language pairs, while pivot-based models still performed better in 9 pairs and directions.
Tailoring Self-Supervision for Supervised Learning
Recently, it is shown that deploying a proper self-supervision is a prospective way to enhance the performance of supervised learning. Yet, the benefits of self-supervision are not fully exploited as previous pretext tasks are specialized for unsupervised representation learning. To this end, we begin by presenting three desirable properties for such auxiliary tasks to assist the supervised objective. First, the tasks need to guide the model to learn rich features. Second, the transformations involved in the self-supervision should not significantly alter the training distribution. Third, the tasks are preferred to be light and generic for high applicability to prior arts. Subsequently, to show how existing pretext tasks can fulfill these and be tailored for supervised learning, we propose a simple auxiliary self-supervision task, predicting localizable rotation (LoRot). Our exhaustive experiments validate the merits of LoRot as a pretext task tailored for supervised learning in terms of robustness and generalization capability. Our code is available at https://github.com/wjun0830/Localizable-Rotation.
TIPS: Text-Image Pretraining with Spatial Awareness
While image-text representation learning has become very popular in recent years, existing models tend to lack spatial awareness and have limited direct applicability for dense understanding tasks. For this reason, self-supervised image-only pretraining is still the go-to method for many dense vision applications (e.g. depth estimation, semantic segmentation), despite the lack of explicit supervisory signals. In this paper, we close this gap between image-text and self-supervised learning, by proposing a novel general-purpose image-text model, which can be effectively used off-the-shelf for dense and global vision tasks. Our method, which we refer to as Text-Image Pretraining with Spatial awareness (TIPS), leverages two simple and effective insights. First, on textual supervision: we reveal that replacing noisy web image captions by synthetically generated textual descriptions boosts dense understanding performance significantly, due to a much richer signal for learning spatially aware representations. We propose an adapted training method that combines noisy and synthetic captions, resulting in improvements across both dense and global understanding tasks. Second, on the learning technique: we propose to combine contrastive image-text learning with self-supervised masked image modeling, to encourage spatial coherence, unlocking substantial enhancements for downstream applications. Building on these two ideas, we scale our model using the transformer architecture, trained on a curated set of public images. Our experiments are conducted on 8 tasks involving 16 datasets in total, demonstrating strong off-the-shelf performance on both dense and global understanding, for several image-only and image-text tasks.
