new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

De-identification of Patient Notes with Recurrent Neural Networks

Objective: Patient notes in electronic health records (EHRs) may contain critical information for medical investigations. However, the vast majority of medical investigators can only access de-identified notes, in order to protect the confidentiality of patients. In the United States, the Health Insurance Portability and Accountability Act (HIPAA) defines 18 types of protected health information (PHI) that needs to be removed to de-identify patient notes. Manual de-identification is impractical given the size of EHR databases, the limited number of researchers with access to the non-de-identified notes, and the frequent mistakes of human annotators. A reliable automated de-identification system would consequently be of high value. Materials and Methods: We introduce the first de-identification system based on artificial neural networks (ANNs), which requires no handcrafted features or rules, unlike existing systems. We compare the performance of the system with state-of-the-art systems on two datasets: the i2b2 2014 de-identification challenge dataset, which is the largest publicly available de-identification dataset, and the MIMIC de-identification dataset, which we assembled and is twice as large as the i2b2 2014 dataset. Results: Our ANN model outperforms the state-of-the-art systems. It yields an F1-score of 97.85 on the i2b2 2014 dataset, with a recall 97.38 and a precision of 97.32, and an F1-score of 99.23 on the MIMIC de-identification dataset, with a recall 99.25 and a precision of 99.06. Conclusion: Our findings support the use of ANNs for de-identification of patient notes, as they show better performance than previously published systems while requiring no feature engineering.

  • 4 authors
·
Jun 10, 2016

Tissue Cross-Section and Pen Marking Segmentation in Whole Slide Images

Tissue segmentation is a routine preprocessing step to reduce the computational cost of whole slide image (WSI) analysis by excluding background regions. Traditional image processing techniques are commonly used for tissue segmentation, but often require manual adjustments to parameter values for atypical cases, fail to exclude all slide and scanning artifacts from the background, and are unable to segment adipose tissue. Pen marking artifacts in particular can be a potential source of bias for subsequent analyses if not removed. In addition, several applications require the separation of individual cross-sections, which can be challenging due to tissue fragmentation and adjacent positioning. To address these problems, we develop a convolutional neural network for tissue and pen marking segmentation using a dataset of 200 H&E stained WSIs. For separating tissue cross-sections, we propose a novel post-processing method based on clustering predicted centroid locations of the cross-sections in a 2D histogram. On an independent test set, the model achieved a mean Dice score of 0.981pm0.033 for tissue segmentation and a mean Dice score of 0.912pm0.090 for pen marking segmentation. The mean absolute difference between the number of annotated and separated cross-sections was 0.075pm0.350. Our results demonstrate that the proposed model can accurately segment H&E stained tissue cross-sections and pen markings in WSIs while being robust to many common slide and scanning artifacts. The model with trained model parameters and post-processing method are made publicly available as a Python package called SlideSegmenter.

  • 3 authors
·
Jan 24, 2024

Large-scale Training Data Search for Object Re-identification

We consider a scenario where we have access to the target domain, but cannot afford on-the-fly training data annotation, and instead would like to construct an alternative training set from a large-scale data pool such that a competitive model can be obtained. We propose a search and pruning (SnP) solution to this training data search problem, tailored to object re-identification (re-ID), an application aiming to match the same object captured by different cameras. Specifically, the search stage identifies and merges clusters of source identities which exhibit similar distributions with the target domain. The second stage, subject to a budget, then selects identities and their images from the Stage I output, to control the size of the resulting training set for efficient training. The two steps provide us with training sets 80\% smaller than the source pool while achieving a similar or even higher re-ID accuracy. These training sets are also shown to be superior to a few existing search methods such as random sampling and greedy sampling under the same budget on training data size. If we release the budget, training sets resulting from the first stage alone allow even higher re-ID accuracy. We provide interesting discussions on the specificity of our method to the re-ID problem and particularly its role in bridging the re-ID domain gap. The code is available at https://github.com/yorkeyao/SnP.

  • 4 authors
·
Mar 28, 2023

DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4

The digitization of healthcare has facilitated the sharing and re-using of medical data but has also raised concerns about confidentiality and privacy. HIPAA (Health Insurance Portability and Accountability Act) mandates removing re-identifying information before the dissemination of medical records. Thus, effective and efficient solutions for de-identifying medical data, especially those in free-text forms, are highly needed. While various computer-assisted de-identification methods, including both rule-based and learning-based, have been developed and used in prior practice, such solutions still lack generalizability or need to be fine-tuned according to different scenarios, significantly imposing restrictions in wider use. The advancement of large language models (LLM), such as ChatGPT and GPT-4, have shown great potential in processing text data in the medical domain with zero-shot in-context learning, especially in the task of privacy protection, as these models can identify confidential information by their powerful named entity recognition (NER) capability. In this work, we developed a novel GPT4-enabled de-identification framework (``DeID-GPT") to automatically identify and remove the identifying information. Compared to existing commonly used medical text data de-identification methods, our developed DeID-GPT showed the highest accuracy and remarkable reliability in masking private information from the unstructured medical text while preserving the original structure and meaning of the text. This study is one of the earliest to utilize ChatGPT and GPT-4 for medical text data processing and de-identification, which provides insights for further research and solution development on the use of LLMs such as ChatGPT/GPT-4 in healthcare. Codes and benchmarking data information are available at https://github.com/yhydhx/ChatGPT-API.

  • 18 authors
·
Mar 20, 2023

A Cost-Effective LLM-based Approach to Identify Wildlife Trafficking in Online Marketplaces

Wildlife trafficking remains a critical global issue, significantly impacting biodiversity, ecological stability, and public health. Despite efforts to combat this illicit trade, the rise of e-commerce platforms has made it easier to sell wildlife products, putting new pressure on wild populations of endangered and threatened species. The use of these platforms also opens a new opportunity: as criminals sell wildlife products online, they leave digital traces of their activity that can provide insights into trafficking activities as well as how they can be disrupted. The challenge lies in finding these traces. Online marketplaces publish ads for a plethora of products, and identifying ads for wildlife-related products is like finding a needle in a haystack. Learning classifiers can automate ad identification, but creating them requires costly, time-consuming data labeling that hinders support for diverse ads and research questions. This paper addresses a critical challenge in the data science pipeline for wildlife trafficking analytics: generating quality labeled data for classifiers that select relevant data. While large language models (LLMs) can directly label advertisements, doing so at scale is prohibitively expensive. We propose a cost-effective strategy that leverages LLMs to generate pseudo labels for a small sample of the data and uses these labels to create specialized classification models. Our novel method automatically gathers diverse and representative samples to be labeled while minimizing the labeling costs. Our experimental evaluation shows that our classifiers achieve up to 95% F1 score, outperforming LLMs at a lower cost. We present real use cases that demonstrate the effectiveness of our approach in enabling analyses of different aspects of wildlife trafficking.

  • 7 authors
·
Apr 29, 2025

Person Re-identification by Contour Sketch under Moderate Clothing Change

Person re-identification (re-id), the process of matching pedestrian images across different camera views, is an important task in visual surveillance. Substantial development of re-id has recently been observed, and the majority of existing models are largely dependent on color appearance and assume that pedestrians do not change their clothes across camera views. This limitation, however, can be an issue for re-id when tracking a person at different places and at different time if that person (e.g., a criminal suspect) changes his/her clothes, causing most existing methods to fail, since they are heavily relying on color appearance and thus they are inclined to match a person to another person wearing similar clothes. In this work, we call the person re-id under clothing change the "cross-clothes person re-id". In particular, we consider the case when a person only changes his clothes moderately as a first attempt at solving this problem based on visible light images; that is we assume that a person wears clothes of a similar thickness, and thus the shape of a person would not change significantly when the weather does not change substantially within a short period of time. We perform cross-clothes person re-id based on a contour sketch of person image to take advantage of the shape of the human body instead of color information for extracting features that are robust to moderate clothing change. Due to the lack of a large-scale dataset for cross-clothes person re-id, we contribute a new dataset that consists of 33698 images from 221 identities. Our experiments illustrate the challenges of cross-clothes person re-id and demonstrate the effectiveness of our proposed method.

  • 3 authors
·
Feb 6, 2020

The P-DESTRE: A Fully Annotated Dataset for Pedestrian Detection, Tracking, Re-Identification and Search from Aerial Devices

Over the last decades, the world has been witnessing growing threats to the security in urban spaces, which has augmented the relevance given to visual surveillance solutions able to detect, track and identify persons of interest in crowds. In particular, unmanned aerial vehicles (UAVs) are a potential tool for this kind of analysis, as they provide a cheap way for data collection, cover large and difficult-to-reach areas, while reducing human staff demands. In this context, all the available datasets are exclusively suitable for the pedestrian re-identification problem, in which the multi-camera views per ID are taken on a single day, and allows the use of clothing appearance features for identification purposes. Accordingly, the main contributions of this paper are two-fold: 1) we announce the UAV-based P-DESTRE dataset, which is the first of its kind to provide consistent ID annotations across multiple days, making it suitable for the extremely challenging problem of person search, i.e., where no clothing information can be reliably used. Apart this feature, the P-DESTRE annotations enable the research on UAV-based pedestrian detection, tracking, re-identification and soft biometric solutions; and 2) we compare the results attained by state-of-the-art pedestrian detection, tracking, reidentification and search techniques in well-known surveillance datasets, to the effectiveness obtained by the same techniques in the P-DESTRE data. Such comparison enables to identify the most problematic data degradation factors of UAV-based data for each task, and can be used as baselines for subsequent advances in this kind of technology. The dataset and the full details of the empirical evaluation carried out are freely available at http://p-destre.di.ubi.pt/.

  • 5 authors
·
Apr 6, 2020

Keypoint Promptable Re-Identification

Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance. While many studies have tackled occlusions caused by objects, multi-person occlusions remain less explored. In this work, we identify and address a critical challenge overlooked by previous occluded ReID methods: the Multi-Person Ambiguity (MPA) arising when multiple individuals are visible in the same bounding box, making it impossible to determine the intended ReID target among the candidates. Inspired by recent work on prompting in vision, we introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints indicating the intended target. Since promptable re-identification is an unexplored paradigm, existing ReID datasets lack the pixel-level annotations necessary for prompting. To bridge this gap and foster further research on this topic, we introduce Occluded-PoseTrack ReID, a novel ReID dataset with keypoints labels, that features strong inter-person occlusions. Furthermore, we release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches on various occluded scenarios. Our code, dataset and annotations are available at https://github.com/VlSomers/keypoint_promptable_reidentification.

  • 3 authors
·
Jul 25, 2024

CriSp: Leveraging Tread Depth Maps for Enhanced Crime-Scene Shoeprint Matching

Shoeprints are a common type of evidence found at crime scenes and are used regularly in forensic investigations. However, existing methods cannot effectively employ deep learning techniques to match noisy and occluded crime-scene shoeprints to a shoe database due to a lack of training data. Moreover, all existing methods match crime-scene shoeprints to clean reference prints, yet our analysis shows matching to more informative tread depth maps yields better retrieval results. The matching task is further complicated by the necessity to identify similarities only in corresponding regions (heels, toes, etc) of prints and shoe treads. To overcome these challenges, we leverage shoe tread images from online retailers and utilize an off-the-shelf predictor to estimate depth maps and clean prints. Our method, named CriSp, matches crime-scene shoeprints to tread depth maps by training on this data. CriSp incorporates data augmentation to simulate crime-scene shoeprints, an encoder to learn spatially-aware features, and a masking module to ensure only visible regions of crime-scene prints affect retrieval results. To validate our approach, we introduce two validation sets by reprocessing existing datasets of crime-scene shoeprints and establish a benchmarking protocol for comparison. On this benchmark, CriSp significantly outperforms state-of-the-art methods in both automated shoeprint matching and image retrieval tailored to this task.

  • 3 authors
·
Apr 25, 2024

Improving the Performance of Radiology Report De-identification with Large-Scale Training and Benchmarking Against Cloud Vendor Methods

Objective: To enhance automated de-identification of radiology reports by scaling transformer-based models through extensive training datasets and benchmarking performance against commercial cloud vendor systems for protected health information (PHI) detection. Materials and Methods: In this retrospective study, we built upon a state-of-the-art, transformer-based, PHI de-identification pipeline by fine-tuning on two large annotated radiology corpora from Stanford University, encompassing chest X-ray, chest CT, abdomen/pelvis CT, and brain MR reports and introducing an additional PHI category (AGE) into the architecture. Model performance was evaluated on test sets from Stanford and the University of Pennsylvania (Penn) for token-level PHI detection. We further assessed (1) the stability of synthetic PHI generation using a "hide-in-plain-sight" method and (2) performance against commercial systems. Precision, recall, and F1 scores were computed across all PHI categories. Results: Our model achieved overall F1 scores of 0.973 on the Penn dataset and 0.996 on the Stanford dataset, outperforming or maintaining the previous state-of-the-art model performance. Synthetic PHI evaluation showed consistent detectability (overall F1: 0.959 [0.958-0.960]) across 50 independently de-identified Penn datasets. Our model outperformed all vendor systems on synthetic Penn reports (overall F1: 0.960 vs. 0.632-0.754). Discussion: Large-scale, multimodal training improved cross-institutional generalization and robustness. Synthetic PHI generation preserved data utility while ensuring privacy. Conclusion: A transformer-based de-identification model trained on diverse radiology datasets outperforms prior academic and commercial systems in PHI detection and establishes a new benchmark for secure clinical text processing.

  • 8 authors
·
Nov 6, 2025

CLIPN for Zero-Shot OOD Detection: Teaching CLIP to Say No

Out-of-distribution (OOD) detection refers to training the model on an in-distribution (ID) dataset to classify whether the input images come from unknown classes. Considerable effort has been invested in designing various OOD detection methods based on either convolutional neural networks or transformers. However, zero-shot OOD detection methods driven by CLIP, which only require class names for ID, have received less attention. This paper presents a novel method, namely CLIP saying no (CLIPN), which empowers the logic of saying no within CLIP. Our key motivation is to equip CLIP with the capability of distinguishing OOD and ID samples using positive-semantic prompts and negation-semantic prompts. Specifically, we design a novel learnable no prompt and a no text encoder to capture negation semantics within images. Subsequently, we introduce two loss functions: the image-text binary-opposite loss and the text semantic-opposite loss, which we use to teach CLIPN to associate images with no prompts, thereby enabling it to identify unknown samples. Furthermore, we propose two threshold-free inference algorithms to perform OOD detection by utilizing negation semantics from no prompts and the text encoder. Experimental results on 9 benchmark datasets (3 ID datasets and 6 OOD datasets) for the OOD detection task demonstrate that CLIPN, based on ViT-B-16, outperforms 7 well-used algorithms by at least 2.34% and 11.64% in terms of AUROC and FPR95 for zero-shot OOD detection on ImageNet-1K. Our CLIPN can serve as a solid foundation for effectively leveraging CLIP in downstream OOD tasks. The code is available on https://github.com/xmed-lab/CLIPN.

  • 4 authors
·
Aug 23, 2023

Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting

Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.

  • 11 authors
·
Jan 13, 2023

Entropy is not Enough for Test-Time Adaptation: From the Perspective of Disentangled Factors

Test-time adaptation (TTA) fine-tunes pre-trained deep neural networks for unseen test data. The primary challenge of TTA is limited access to the entire test dataset during online updates, causing error accumulation. To mitigate it, TTA methods have utilized the model output's entropy as a confidence metric that aims to determine which samples have a lower likelihood of causing error. Through experimental studies, however, we observed the unreliability of entropy as a confidence metric for TTA under biased scenarios and theoretically revealed that it stems from the neglect of the influence of latent disentangled factors of data on predictions. Building upon these findings, we introduce a novel TTA method named Destroy Your Object (DeYO), which leverages a newly proposed confidence metric named Pseudo-Label Probability Difference (PLPD). PLPD quantifies the influence of the shape of an object on prediction by measuring the difference between predictions before and after applying an object-destructive transformation. DeYO consists of sample selection and sample weighting, which employ entropy and PLPD concurrently. For robust adaptation, DeYO prioritizes samples that dominantly incorporate shape information when making predictions. Our extensive experiments demonstrate the consistent superiority of DeYO over baseline methods across various scenarios, including biased and wild. Project page is publicly available at https://whitesnowdrop.github.io/DeYO/.

  • 7 authors
·
Mar 12, 2024

AnimalClue: Recognizing Animals by their Traces

Wildlife observation plays an important role in biodiversity conservation, necessitating robust methodologies for monitoring wildlife populations and interspecies interactions. Recent advances in computer vision have significantly contributed to automating fundamental wildlife observation tasks, such as animal detection and species identification. However, accurately identifying species from indirect evidence like footprints and feces remains relatively underexplored, despite its importance in contributing to wildlife monitoring. To bridge this gap, we introduce AnimalClue, the first large-scale dataset for species identification from images of indirect evidence. Our dataset consists of 159,605 bounding boxes encompassing five categories of indirect clues: footprints, feces, eggs, bones, and feathers. It covers 968 species, 200 families, and 65 orders. Each image is annotated with species-level labels, bounding boxes or segmentation masks, and fine-grained trait information, including activity patterns and habitat preferences. Unlike existing datasets primarily focused on direct visual features (e.g., animal appearances), AnimalClue presents unique challenges for classification, detection, and instance segmentation tasks due to the need for recognizing more detailed and subtle visual features. In our experiments, we extensively evaluate representative vision models and identify key challenges in animal identification from their traces. Our dataset and code are available at https://dahlian00.github.io/AnimalCluePage/

  • 5 authors
·
Jul 27, 2025 2

Large-Scale Spatio-Temporal Person Re-identification: Algorithms and Benchmark

Person re-identification (re-ID) in the scenario with large spatial and temporal spans has not been fully explored. This is partially because that, existing benchmark datasets were mainly collected with limited spatial and temporal ranges, e.g., using videos recorded in a few days by cameras in a specific region of the campus. Such limited spatial and temporal ranges make it hard to simulate the difficulties of person re-ID in real scenarios. In this work, we contribute a novel Large-scale Spatio-Temporal LaST person re-ID dataset, including 10,862 identities with more than 228k images. Compared with existing datasets, LaST presents more challenging and high-diversity re-ID settings, and significantly larger spatial and temporal ranges. For instance, each person can appear in different cities or countries, and in various time slots from daytime to night, and in different seasons from spring to winter. To our best knowledge, LaST is a novel person re-ID dataset with the largest spatio-temporal ranges. Based on LaST, we verified its challenge by conducting a comprehensive performance evaluation of 14 re-ID algorithms. We further propose an easy-to-implement baseline that works well on such challenging re-ID setting. We also verified that models pre-trained on LaST can generalize well on existing datasets with short-term and cloth-changing scenarios. We expect LaST to inspire future works toward more realistic and challenging re-ID tasks. More information about the dataset is available at https://github.com/shuxjweb/last.git.

  • 7 authors
·
May 31, 2021

Near-perfect photo-ID of the Hula painted frog with zero-shot deep local-feature matching

Accurate individual identification is essential for monitoring rare amphibians, yet invasive marking is often unsuitable for critically endangered species. We evaluate state-of-the-art computer-vision methods for photographic re-identification of the Hula painted frog (Latonia nigriventer) using 1,233 ventral images from 191 individuals collected during 2013-2020 capture-recapture surveys. We compare deep local-feature matching in a zero-shot setting with deep global-feature embedding models. The local-feature pipeline achieves 98% top-1 closed-set identification accuracy, outperforming all global-feature models; fine-tuning improves the best global-feature model to 60% top-1 (91% top-10) but remains below local matching. To combine scalability with accuracy, we implement a two-stage workflow in which a fine-tuned global-feature model retrieves a short candidate list that is re-ranked by local-feature matching, reducing end-to-end runtime from 6.5-7.8 hours to ~38 minutes while maintaining ~96% top-1 closed-set accuracy on the labeled dataset. Separation of match scores between same- and different-individual pairs supports thresholding for open-set identification, enabling practical handling of novel individuals. We deploy this pipeline as a web application for routine field use, providing rapid, standardized, non-invasive identification to support conservation monitoring and capture-recapture analyses. Overall, in this species, zero-shot deep local-feature matching outperformed global-feature embedding and provides a strong default for photo-identification.

  • 6 authors
·
Jan 13